Bollettino di Geofisica Teorica e Applicata
OGS Website
About the Journal
Statistiche Web
Contacts
To Authors
On-line Submission
Subscriptions
Forthcoming
On-line First
The Historical First Issue
Issues

2023 Vol. 64
1

2022 Vol. 63
1 / 2 / 3 / 4

2021 Vol. 62
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2 / Suppl. 3

2020 Vol. 61
1 / 2 / 3 / 4 / Suppl. 1

2019 Vol. 60
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2 / Suppl. 3

2018 Vol. 59
1 / 2 / 3 / 4 / Suppl. 1

2017 Vol. 58
1 / 2 / 3 / 4

2016 Vol. 57
1 / 2 / 3 / 4 / Suppl. 1

2015 Vol. 56
1 / 2 / 3 / 4

2014 Vol. 55
1 / 2 / 3 / 4

2013 Vol. 54
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2

2012 Vol. 53
1 / 2 / 3 / 4

2011 Vol. 52
1 / 2 / 3 / 4 / Suppl. 1

2010 Vol. 51
1 / 2-3 / 4 / Suppl. 1

2009 Vol. 50
1 / 2 / 3 / 4

2008 Vol. 49
1 / 2 / 3-4 / Suppl. 1

2007 Vol. 48
1 / 2 / 3 / 4

2006 Vol. 47
1-2 / 3 / 4

2005 Vol. 46
1 / 2-3 / 4

2004 Vol. 45
1-2 / 3 / 4 / Suppl. 1 / Suppl. 2

2003 Vol. 44
1 / 2 / 3-4

2002 Vol. 43
1-2 / 3-4

2001 Vol. 42
1-2 / 3-4

2000 Vol. 41
1 / 2 / 3-4

1999 Vol. 40
1 / 2 / 3-4

1998 Vol. 39
1 / 2 / 3 / 4

1997 Vol. 38
1-2 / 3-4

1995 Vol. 37
145 / 146 / 147 / 148 / Suppl. 1

1994 Vol. 36
141-144 / Suppl. 1

1993 Vol. 35
137-138 / 139 / 140

1992 Vol. 34
133 / 134-135 / 136

1991 Vol. 33
129 / 130-131 / 132

 
 

Vol. 63, n.2, June 2022
pp. 249-266

Kernel based regularisation parameter and source dependent depth weighting in gravity data inversion

R. Varfinezhad and V.E. Ardestani

Received: 27 April 2021; accepted: 2 August 2021; published online: 14 February 2022

Abstract

In this paper, an inversion algorithm for gravity data is presented. The algorithm exploits a model weighting matrix derived from multiplication of compactness and the modified depth weighting, with its exponent being dependent on the source type. Regularisation parameter and the exponent of depth weighting are the critical inverse parameters: the first is adopted according to the maximum value of the kernel matrice (MaxKer) and the second takes the value of the structural index associated with the source type of interest. The productivity of the proposed method is examined through three synthetic and two real data sets. According to the derived results from synthetic examples, the optimised value found for the regularisation parameter to successfully invert the perfect and noisy data sets are 10-7xMaxKer and 10-1xMaxKer, respectively. Ultimately, we manipulate the inversion algorithm on the two real data sets, from the: i) salt dome of Rogun in Tajikistan and ii) Safo manganese mine in Iran. The suggested value for the regularisation parameter in real cases is 0.05xMaxKer, which is close to the corresponding value to invert the noise contaminated data. Since source types for both cases were known from a priori information, 2 is attributed to the exponent of depth weighting.



Download PDF complete


back to table of contents