Bollettino di Geofisica Teorica e Applicata
OGS Website
About the Journal
Contacts
To Authors
On-line Submission
Subscriptions
Forthcoming
On-line First
The Historical First Issue
Issues

2022 Vol. 63
1 / 2 / 3 / 4

2021 Vol. 62
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2 / Suppl. 3

2020 Vol. 61
1 / 2 / 3 / 4 / Suppl. 1

2019 Vol. 60
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2 / Suppl. 3

2018 Vol. 59
1 / 2 / 3 / 4 / Suppl. 1

2017 Vol. 58
1 / 2 / 3 / 4

2016 Vol. 57
1 / 2 / 3 / 4 / Suppl. 1

2015 Vol. 56
1 / 2 / 3 / 4

2014 Vol. 55
1 / 2 / 3 / 4

2013 Vol. 54
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2

2012 Vol. 53
1 / 2 / 3 / 4

2011 Vol. 52
1 / 2 / 3 / 4 / Suppl. 1

2010 Vol. 51
1 / 2-3 / 4 / Suppl. 1

2009 Vol. 50
1 / 2 / 3 / 4

2008 Vol. 49
1 / 2 / 3-4 / Suppl. 1

2007 Vol. 48
1 / 2 / 3 / 4

2006 Vol. 47
1-2 / 3 / 4

2005 Vol. 46
1 / 2-3 / 4

2004 Vol. 45
1-2 / 3 / 4 / Suppl. 1 / Suppl. 2

2003 Vol. 44
1 / 2 / 3-4

2002 Vol. 43
1-2 / 3-4

2001 Vol. 42
1-2 / 3-4

2000 Vol. 41
1 / 2 / 3-4

1999 Vol. 40
1 / 2 / 3-4

1998 Vol. 39
1 / 2 / 3 / 4

1997 Vol. 38
1-2 / 3-4

1995 Vol. 37
145 / 146 / 147 / 148 / Suppl. 1

1994 Vol. 36
141-144 / Suppl. 1

1993 Vol. 35
137-138 / 139 / 140

1992 Vol. 34
133 / 134-135 / 136

1991 Vol. 33
129 / 130-131 / 132

 
 

Vol. 62, n.3, September 2021
pp. 403-426

Two-step (analytical + geostatistical) pre-stack seismic inversion for elastic properties estimation and litho-fluid facies classification

M. Aleardi

Received: 30 December 2020; accepted: 9 March 2021; published online: 20 September 2021

Abstract

We infer the P-wave velocity, S-wave velocity, density, and the litho-fluid classes through a two cascade estimation steps. First, we analytically invert each seismic gather independently using a linear 1D convolutional forward operator and assuming a Gaussian-mixture prior. This step is computationally fast because no hard or lateral constraints are imposed to the recovered solution. The outcomes provided by the analytical inversion are used as auxiliary variables for a geostatistical simulation that generates the initial ensemble of models for the subsequent stage of geostatistical inversion in which the estimated models are generated and iteratively updated according to a more realistic non-parametric prior, while spatial and hard constraints are now imposed to the solution. This second step determines the model update from the match between observed and predicted seismic gathers that are computed through a 1D convolutional operator based on the full Zoeppritz equations. Synthetic inversions are used to validate the method and demonstrate that starting the second inversion step from an ensemble of models that already quite accurately reproduce the observed data allows for a fast retrieval of a subsurface model that honours the nonparametric prior, the hardconstraints, and the spatial continuity patterns as coded by the variogram model.



Download PDF complete


back to table of contents