The three-dimensional pattern of elastic moduli (bulk modulus, Young modulus, shear modulus) of the upper crust (0-10 km depth) has been determined in the Friuli area (north-eastern Italy) from the 3D Vp, Vp/Vs and density structures. Firstly, 3D Pwave velocity and P to S velocity ratio were modeled by joint inversion for hypocentres and velocity structure. Then, we apply the tomographic inversion method of Sequential Integrated Inversion (SII) to recover the three dimensional density structure. The pattern of the elastic moduli is characterized by marked lateral and depth variations that reflect the geologic-structural heterogeneity of the area, produced by the superposition of several tectonic phases with different orientations of the principal axes of stress. The bulk (K), Young (E) and shear (G) moduli image a high rigidity body with an irregular shape, at 4-8 km depth. The body is characterized by G ≥ 3.2·1010 N·m-2, K ≥ 6.8·1010 N·m-2 and E ≥ 8.4·1010 N·m-2 and is associated to platform limestones and dolomitic rocks. The seismicity is mainly located along the sharp variations of the moduli pattern, in or adjacent to high rigidity zones. The most severe earthquakes (M
Sequential Integrated Inversion of tomographic images and gravity data: an application to the Friuli area (north-eastern Italy)
Abstract: