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ABSTRACT Seismic data acquisition is frequently carried out at irregular sampling intervals along
spatial coordinates. This causes problems in the subsequent multi-trace data
processing which often requires equi-spaced traces and thus the data must be first
regularised. To this end, we illustrate a frequency domain method to transform 2D data
irregularly sampled in the spatial direction to equivalent equi-spaced data. We follow
a probabilistic inversion where the a-posteriori model is the desired (correct and noise
free) frequency spectrum, the a-priori model is computed through the Non Uniform
Discrete Fourier Transform (also known as Riemann sum) and the noise introduced by
the irregular sampling is described empirically, on the basis of the distances between
samples. All the variables are assumed to have Gaussian distributions and are
described by their means and covariances. Once the optimum frequency spectrum is
estimated, a Fourier anti-transform  brings the data back into the time-space at
constant spatial intervals. The proposed method is applied to synthetic and real
seismic data, with various degrees of sampling irregularities and offset gaps, and with
different noise contaminations and dips of events. The results are satisfactory and are
improved with respect to those obtained by applying a previously developed method.

1. Introduction

Despite efforts to acquire seismic data through regularly sampled source and receiver
positions, seismic processing, usually, has to be performed considering irregularly-sampled,
spatial coordinates. This situation is not handled accurately by complex multichannel algorithms,
such as pre-stack time or depth migration, since the data is by force interpolated on a regular grid
before critical processing steps can be carried out. Even the simple and widely used Discrete
Fourier Transform (DFT) suffers this limitation and leads to sub-optimal results when neglecting
this issue. Besides the more or less complex interpolation schemes in the time domain (linear,
spline, cubic), geophysical literature has addressed the problem of irregular sampling through
different methods. These include, amongst others: the hyperbolic and linear Radon Transform
(Thorson and Claerbout, 1985), the parabolic Radon Transform (Hampson, 1986; Kabir and
Verschuur, 1995) and trace interpolation in the f-x domain (Spitz, 1991). 

In this paper, we propose an extension of the method presented by Duijndam et al. (1999),
which is based on the estimation in the Fourier domain of the best f-k spectrum of the irregularly
sampled seismic data along one spatial coordinate (x coordinate). This estimate is obtained by
means of a probabilistic inversion approach (Tarantola, 2005) in the f-x domain. We start
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explaining the problems brought by irregular spatial sampling to the computation of the bi-
dimensional frequency spectrum. Then, we describe the method for an optimum, noise-free,
frequency spectrum  estimation from which a regularly sampled time-space record can be
derived. 

We assume that the seismic data are band-limited and regularly sampled in the Fourier domain
and  the “noise” is represented by the frequency components that are out of the considered
frequency bandwidth. Differently from the approach proposed by Duijndam et al. (1999), which
assumes that there is no a-priori information available, we consider that the a-priori information
can be derived from the Non Uniform Discrete Fourier Transform of the original data. Moreover,
its appropriate manipulation can significantly improve the estimation of the optimum spectrum.

Finally, we demonstrate the applicability of our method on synthetic data where we have
removed groups of traces to simulate gaps in the spatial direction and on real data with both
missing traces and non-uniform spatial sampling.

2. Method

2.1. Description of the problem

The DFT computes the bi-dimensional spectrum of the data on regular grids in both the
original and the transform domain. Eq. (1) describes the formula implemented in a typical DFT
algorithm: 

(1)

where d(n,m) are the input data as a function of space index n, and time index m; D is the bi-
dimensional spectrum as a function of the spatial k, and temporal f frequencies; X is the number
of traces and T is the number of temporal samples of the input data.

If the data are irregularly sampled, suppose along the x direction only, the above formula is
inaccurate for the computation of the theoretical spectrum; nevertheless, even considering the
real spatial coordinates the problem will not be amended, as the following example demonstrates.

Fig. 1a shows a noise-free synthetic data set made of five linear dipping events. Each event is
characterised by a Ricker wavelet with central frequency of 30 Hz. The data are irregularly
sampled along the x coordinates, while the time sampling rate is constant at 2 ms. We chose this
data set because the harmonic components can be easily evaluated and the spectrum is well
known. 

If the f-k spectrum is computed with the Fourier transform given by Eq. (1), a blurring and
smearing of the true spectral components along with the appearance of some noise contaminating
the whole spectrum can be observed in Fig. 1b.

To get a result closer to the true one, one can make use of Eq. (2), which expresses the Fourier
transform calculated in the true positions of the traces (Riemann sum) where the data has been
1D Fourier transformed from time to frequency by means of the classic DFT. Here M is the
computed f-k spectrum, d are the original data in the f-x domain, ∆xs is the distance between two
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traces, X is the number of traces and n is the frequency index that varies from  -N to +N-1. 2N is
thus the total number of frequencies we want to represent. Even in this case, the result is not
satisfactory, as can be clearly observed in Fig. 2a where some blurring and noise are still evident.

(2)

Thus, the poor spectrum estimation is related to the irregular spatial sampling we are using:
the fact that we cannot define a Nyquist frequency and apply the sampling theorem as usual,
causes a leakage of some spectral components that show up as alias noise in the spectrum and
blur the true events.

A starting point, to describe the problem analytically, comes from the practical considerations
that every real signal is band-limited and that the wavenumber separation is given by:

(3)

where is the spread extension. On the basis of the above two assumptions, the

frequency range that can be covered considering a constant ∆k step is related to the number of
traces in the gather and to the effective spatial extension of the data (usually some percent greater
than Ltot). The frequency components outside this bandwidth will contribute to the alias noise.
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Fig. 1 - Input data in the x-t domain (a), and its f-k spectrum calculated with the FFT 2D (b). 
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2.2. Probabilistic approach to the f-k spectrum estimation

The f-k spectrum estimation, in case of irregular sampling, can be formulated as an inverse
problem. Here, we review the basic steps of this methodology as explained by Duijndam et al.
(1999), pointing out the main differences that characterise our approach. The original data d(x,t)
can be related to the f-k spectrum m(f,k) by the following linear relationship (Inverse Fourier
Transform):  

d=Gm (4)

where G is the forward operator and m is the model we want to estimate by the inversion.
Tarantola (2005) introduces an uncertainty factor εε to the data d affecting the observed
measurements dobs:

dobs=d+ εε (5)

In the case of seismic data irregularly sampled, in the place of the uncertainty factor εε, we
introduce an error term n representing the frequency components outside the bandwidth of the
data. n can be considered the “noise of the model”. The constant time sampling allows us to
apply a standard Fourier transform along the time dimension and to conceive the irregular
sampling problem as a one-dimensional problem in the x direction. Eq. (4) can thus be
written: 

d=Gm+n (6)

where d(x,f) is a function of space and frequency, G is the forward operator used which will be
described later and m and n are respectively the model and the model noise as previously
stated.

The simplest way to take into account all the possible realizations of m and n is to consider

Fig. 2 - f-k spectrum calculated with the Riemann Sum (a) and same spectrum after filtering to remove noise (b). 

a) b)
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their variations as described by Gaussian distributions, namely:

m∈∈N(mprior, CM) n∈∈N(0, CN) (7)

where mprior and CM are respectively the mean and the covariance matrix of the model and CN is
the covariance matrix of the noise n. The probability density function with mean mprior and
covariance matrix CM in Eq. (7) expresses the a-priori information on the model.

By means of the inverse problem theory (Tarantola, 2005), we can compute the solution that
realizes the minimum of the least-square misfit function between the original data and the
reconstructed data in the x-f domain through Eq. (8):

(8)

where Gt is the transposed complex-conjugate of the forward operator G and dobs is the input data
d(x,f). Thus  ~m is the optimum estimate of the bi-dimensional Fourier spectrum of d.

The main difference between Duijndam's approach and ours is the way the a- priori
information is considered. Duijndam et al. (1999) states that there is no a-priori model for seismic
data. Instead, we think that since the Riemann sum, M(kn,f) given by Eq. (2), does provide an
approximate, although noisy, spectrum of the data, it can be used to derive the model a-priori
information described by mprior and CM in Eq. (8). Mathematically, mprior corresponds to the mean
value of M(kn,f) over all the temporal frequencies F as a function of kn:

(9)

while the matrix CM is expressed simply as:

(10)

where is the variance of the spatial frequency kn, and I is the identity matrix.  However, due
to the absence of a DC component in the seismic data, the contribution of mprior is negligible and
all the a-priori information is brought in by the covariance matrix.

To formulate Eq. (10), we have supposed that the spatial frequencies are uncorrelated. In this
case, CM becomes a diagonal matrix where the elements are the variances of each spatial
frequency of the Riemann sum. 

In the forward problem described by Eq. (6), the operator G allows us to pass from the f-k
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domain of the model m to the f-x domain of the data d. G is defined as follows:

(11)

where ∆k is the sampling rate for the spatial frequency k in the Fourier domain, and xs represents the
true positions of the samples; as an example for the seismic data, we can use the source to receiver
distance (offset) as xs. We call G the exponential matrix operator. 

Using this approach, we consider a bandwidth limited from -N∆k to (+N-1)∆k. The choice of
∆k [see Eq. (3)] is very important and is a trade off between two opposite conditions. On the one
hand, if ∆k is too small, for a given N, we decrease the bandwidth. On the other hand, if ∆k is too
large, we risk introducing the aliasing artefacts associated to the largest trace intervals. 

Tests based on synthetic data, show that optimal results are achieved by increasing the spread
length used for determining ∆k by a value of around 30% [Eq. (12)], thus considering a sampling
rate in the Fourier domain somewhat smaller than the one used for regular sampling :

(12)

Note that to preserve the complex-conjugate symmetry of the Fourier Transform, the
exponential matrix operator is computed for n by varying between -N to +N-1, differently from
the DFT, where it usually varies from 0 to 2N-1. 

Finally, detailed information is not available for a quantitative description of the noise term.
As suggested by Duijndam et al. (1999), a practical approximation can be taken replacing the
covariance matrix CN, by a diagonal matrix of weights W-1. The diagonal elements of W are
expressed by the difference (ls-1–ls ) where ls=(xs+1-xs-1)/2:

(13)

weighting the widely spaced samples more than those densely spaced in the misfit function.

2.3. f-k spectrum estimate

We can now evaluate  ~m, the optimum estimate of the bi-dimensional Fourier spectrum of the
input data, by introducing the terms previously described in Eqs. (9) and (10):

(14)

where, to summarize, G and Gt are, respectively, the exponential matrix operator [Eq. (11)] and
its transposed complex-conjugate, W is the weighting matrix [Eq. (13)], CM is the covariance
matrix [Eq. (10)] of the model a-priori information (Riemann sum), dobs is the original data in
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the f-x domain irregularly sampled and mprior is the mean of the Riemann sum [Eq. (9)].
A few words can be said about the right hand side of Eq. (14). The term GtWdobs of the second

factor corresponds to the Riemann sum scaled by ∆k/2π [see Eqs. (2) and (15)]: 

(15)

This term is added to CM
-1mprior, a factor that, as previously discussed, turns out to be

negligible. The overall effect of the whole procedure is thus embedded in the first factor
(GtWG+CM

-1)-1, which does the task of improving, in the least squares sense, the raw estimate of
Eq. (15). It depends on the diagonal covariance matrix  , whose spatial frequency
variances can be evaluated through the Riemann sum in Eq. (2). Better, CM

-1 can be
computed on a Riemann sum spectrum where the alias noise, due to irregular sampling, has been
attenuated by means of an appositely designed f-k filter (Fig. 2b). The more the noise is reduced
by the filter, the more the variances are related to the dispersion of the signal around each
spatial frequency kn, allowing a more efficient “deconvolution” expressed by the probabilistic
generalized inverse (GtWG+CM

-1)-1. Fig. 3a shows the optimum spectrum  ~m estimated by the
Riemann sum of Fig. 2a with the covariance matrix computed on its filtered version (Fig. 2b).
Clearly, the five events of the spectrum appear now less contaminated by the noise, enabling a
more accurate data reconstruction and regularization.

Differently from our approach, Duijndam et al. (1999) do not consider any a-priori
information and set the inverse of the covariance matrix CM

-1 equal to the identity matrix I scaled
by a stabilisation factor k2: 

No discrimination among the spatial frequencies is made by the covariance matrix. The k
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factor is dependent by ratio between the energies of the noise and the signal in the input data and
is determined by trial and error. 

Fig. 3b shows the result of the Duijndam et al. (1999) approach for the spectrum estimation
of the data in Fig. 1a. In this case  ~mDuij is given by:

(16)

Comparing the spectra in Figs. 3a and 3b it can be observed that the introduction of the   
variances of the filtered Riemann sum in the covariance matrix CM, has improved the spectrum
estimation by reducing the dispersed alias noise and by enhancing the energy content of the five
events.  
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Fig. 4 - Reconstructed signal (black traces) on a regular grid with our method (a); difference between the reconstructed
signal and the regularly sampled original signal (b).

Fig. 5 - Reconstructed signal (black traces) on a regular grid with the method proposed by Duijndam et al. (1999) (a);
difference between the reconstructed signal and the regularly sampled original signal (b). 
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To return to the x-t domain the Inverse Discrete Fourier Transform of Eq. (17) is applied where
the exponential matrix Greg at regular spatial sampling ∆xnew is computed by :

(17)

where P is the number of traces we want to reproduce and ∆xnew is their constant spatial sampling.
The f-x regularized data are given by:

from which, with a simple 1D Inverse Fourier Transform along the frequencies, we come back
into time.

Fig. 4a shows, in red, the synthetic model of Fig. 1a and in black the reconstructed traces that
were missing, while Fig. 4b displays the differences between the original, regularly sampled
model and the reconstructed one. From the analysis of these pictures, we can observe that a
satisfactory reconstruction and regularization of the data is achieved, with errors varying from a
maximum of 8% to about 2%. The corresponding results obtained with the Duijndam et al.
(1999) method show a somewhat inferior performance, as illustrated in Fig. 5, for the data and
the differences, respectively.

3. Application and results

We have carried out many tests on synthetic and real data to check the limits of the proposed
method (how many missing traces can be reconstructed) and to verify its applicability when noise
is contaminating the data.
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Using synthetic data, we removed groups of traces and we checked how the reconstructed
traces would match the original ones. We started removing groups of 3 adjacent traces and we
ended up removing groups of 8 adjacent traces from a total of 83 synthetic traces. Here, we
illustrate the results of only one of these tests (Figs. 6 and 7). This noise-free synthetic data is
made up of 83 traces with a spatial sampling of 1 m and shows 5 seismic events at different dips.
Four gaps of five adjacent traces have been produced to create the input data for the
reconstruction algorithms (see Figs. 6a and 7a, red traces).

Figs. 6a and 6b show the results obtained by applying our method to the same synthetic test
data.  Now, the missing traces have been properly reproduced (black traces in Fig. 6a), matching
both the amplitudes and dips of the original signals.

The black traces in Fig. 7a, represent the results obtained by applying the previous method of
Duijndam et al. (1999). Differences with respect to the original traces are plotted in Fig. 7b to

Fig. 7 - Zoom of the overlap of the input data (red traces) and the signal reconstructed with the Duijndam et al. (1999)
methodology (black traces) (a); difference between the reconstructed signal and the regularly sampled original signal (b).

Fig. 8 - Real data (common receiver gather)
used as input data for testing the different
methods.

a) b)
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show the errors in the reconstruction. It can be seen that although the gaps have been somehow
filled, there are significant errors in the amplitude of the events and some inconsistency in their
dips.

This is clearly demonstrated in Fig. 6b where the errors are much lower than in the previous
case. 

After many applications on synthetics, real data gathers (common shots, common receivers
and CMPs) were used as input for the reconstruction algorithms. Since the same conclusions can
be reached in any of the tests carried out, we show here, the results obtained for a common
receiver gather characterised by large offsets, irregular spatial sampling and large gaps of missing
traces (Fig. 8). This is one of the most difficult cases we experimented.

Figs. 9a and 9b show close-ups of the data in the region of the largest gap around a -4100 m
offset, where six traces are missing. The original data are represented in red while the
reconstructed traces are in black.

Fig. 9a shows our results and Fig. 9b illustrates results when applying the method proposed
by Duijndam et al. (1999). While the dip of the events in the smaller gaps are reproduced rather
well by both methods, based on the correlation with the existing adjacent traces, it seems that our
method reproduces the missing signal amplitudes better. The reconstruction of the six missing
traces forming the largest gap is difficult: the results obtained with the Duijndam et al. (1999)
approach are completely unsatisfactory both in terms of dips and amplitudes of the reconstructed
signals. Our method is able to somehow reproduce the wavelets at higher amplitude (at 1.9 – 2.0
s) but it fails to reconstruct the deeper events (see around 2.2 s).

4. Conclusions

We have discussed the problem of irregularly-spaced 2D seismic data and we have proposed
a frequency domain method that is able to reconstruct the missing traces and to yield an evenly
spaced data set. This method is an extension of a previously developed approach presented by

Fig. 9 - Zoom of the overlap of the input data (red traces) and the signal reconstructed with our methodology (black
traces) (a); zoom of the overlap of the input data (red traces) and the signal reconstructed with the Duijndam et al.
(1999) methodology (black traces) (b).

a) b)
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Duijndam et al. (1999).
Assuming a limited frequency band of the input data and a Gaussian distribution of all the

variables (data, model and noise), we have used a probabilistic approach to estimate the optimum
f-k spectrum where the noise components outside the signal bandwidth are removed and the
signal is amplified.

Differently from the Duijndam et al. (1999) approach, which assumes that no a-priori
information is available and in its place it introduces a constant factor (the noise/signal energy
ratio) of difficult estimation, we consider the Riemann sum of the input data as very useful a-
priori information. In fact, it can be conveniently filtered to emphasize the signal content,
significantly improving the outcome of the inversion.

Many tests have been carried out on synthetic and on real data to verify the limits of our
method and to verify the improvements brought by including a-priori information in the
inversion. What we have shown here is limited to only one synthetic and one real data example
but the results we achieved are quite representative of the whole set of tests. The method we
propose always produced improved results when compared with the previous one. In the synthetic
example shown, out of a total of 83 traces with a nominal spatial sampling of 1 m, we were able
to reconstruct five gaps of five missing traces each.

The application to real data presents more difficulties due to the presence of noise which is
additional to that due to irregular sampling. The test we showed on the common receiver is very
difficult because there are many missing traces and large gaps. However, our results are
satisfactory for most of the situations. Only for the largest gap of six traces is our method not able
to properly reconstruct all the dipping events and particularly those at lower amplitudes. 

Besides the extension to 3D, a future development could be the inclusion,  in the inversion, of
the full covariance matrix of the a-priori information instead of only the diagonal one. In our
view, this should reinforce the information on the dip of the events present in the Riemann sum.
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