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ABSTRACT Independent Component Analysis (ICA) is an emerging new technique in the blind
identification of signals recorded in a variety of different fields. ICA tries to find the
most statistically independent sources from an observable random vector, with the
only restriction that all sources, but at the most one, are non-Gaussian; no other a
priori information on sources and mixing dynamic system are needed. The
applications of this technique to the analysis of volcanic time series are until today
relatively few. In this paper, we show that ICA is a suitable technique to separate a
volcanic source component from ocean microseisms in a seismic data set recorded at
the Mt. Etna volcano, Italy. The encouraging results obtained with this methodology
in the presented case study support its wider applicability in the volcano seismology
context. The separation and consequent elimination of noise components from the
continuous seismic signal can in fact facilitate tasks such as the characterization of
volcanic regimes, their relationship with tectonic activity and the identification of
possible precursors of paroxysmal phases.

1.  Introduction

The seismic wavefield near an active volcano consists of the mixture of signals in a wide range
of frequency bands both from inside the volcano (our signal of interest) and from outside (i.e.,
noise components). Identifying and extracting a continuous volcanic component (e.g., volcanic
tremor) embedded in background noise, possibly with a low signal-to-noise ratio, is challenging
and becomes an important issue in broadband, multi-sensor signal processing. The problem can
be restated as the decomposition of a multi-sensor data set into at least two complementary
subspaces, namely the signal of interest and the background noise. In a volcanic data set, the
background noise is often dominated by microseisms, i.e. seismic noise originating from ocean
waves (Kadota and Labianca, 1981), and/or by a noise of anthropogenic origin (e.g., continuous
industrial activities), which may show similar characteristics during the whole day or show, on the
contrary, strong 24 hour cycles (Carniel et al., 2008). Other noise components can have e.g.,
meteorological origin and can even modulate the volcanic signal itself (Neuberg, 2000). There are
cases in which the traditional frequency band related to oceanic microseismic also contain non
negligible volcanic source signals as demonstrated by De Lauro et al. (2005), relative to
Stromboli volcano. The effect of wind on the volcano edifice is also reported by De Lauro et al.
(2006). All these sources of noise are caused by independent processes that usually excite signals
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in specific frequency bands (e.g., 0.1–0.3 Hz for microseisms) but they can sometimes
contaminate the seismic signal over a wider frequency band, that is relevant to a volcanic tremor
analysis, making a simple spectral filtering solution quite ineffective (Webb, 1998). Sometimes,
even the volcanic signal itself can be seen as the superposition of different, simpler signals that
share the same volcanic origin but may be e.g., located in different parts of the volcano [e.g.,
different vents or craters; Carniel and Iacop (1996)] and/or show distinctive characteristics due to
the presence of multiple sources, which may share the same frequencies. An interesting example
is the Erta Ale volcano in Ethiopia, where low and high regimes alternate and the question
whether the high regime is characterized by a seismic signal that “sums up” over the low regime
one, or on the contrary, by a seismic signal that “substitutes” the low regime one, is still under
debate (Harris et al., 2005; Jones et al., 2006).

In this paper, we analyze continuous seismic recordings from Mt. Etna, in order to separate
the volcanic component from a background noise mainly attributable to ocean microseisms.
Ocean microseisms often share the same frequency band with low frequency tremor or volcanic

Fig. 1 - Sketch map of Mt. Etna with location of Pizzi Deneri (PDN) observatory and Summit Craters detail [modified
from Wassermann (1997)].
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long period events thus preventing volcanic signals from further detailed analysis (e.g., Bartosch
and Wassermann, 2004).

Mt. Etna (Italy) is an essentially basaltic volcano that is rather known for effusive eruptions,
although it produced ignimbrites of more evolved composition about 15000 years ago and, more
recently, peculiar endogenous lava domes (Behncke et al., 2003). The persistent volcanic activity
in the summit craters is characterized by phases of quiet degassing alternating with mild
Strombolian activity, which occasionally evolves into fountaining and lava overflows. Its seismic
activity includes a continuous volcanic tremor (Cannata et al., 2008) and discrete events that can
involve long and very long periods (Falsaperla et al., 2002; Cannata et al., 2009). 

2.  Data acquisition setup and observation

The deployment site is located at Pizzi Deneri (PDN) observatory, located NE of the NE crater
of Mt. Etna (Fig. 1). The three Wielandt-Streckeisen STS-2 broadband seismometers were
positioned as shown in Fig. 2. Vertical (Z) and horizontal (N and E) sensor components were
recorded on a PDAS data logger with a sampling rate of 20 Hz,; continuous recorded waveforms
were split into files containing 1 hour of data (i.e., 72000 samples). The observation period
extended for several days between June 30,1993 and July 23, 1993. In Fig. 3 the smoothed Welch
Power Spectrum Density (PSD) of one hour of data of the reference station S1 are plotted in the
broadband frequency range 0.04-8 Hz for the vertical (we denote it by Z1) and horizontal (N1
and E1) sensor components. The PSD show that the energy recorded from the horizontal
components increases rapidly at very low frequencies (< 0.08 Hz), probably due to installation
problems and/or wind pressure effects, whereas the vertical component has a narrower energy
band-width; for this reason, we selected the vertical component of all 3 sensors for the blind

Fig. 2 - Sensor location: the reference sensor S1 was placed in the NW-end of the tiltmeter gallery of the observatory
at Pizzi Deneri [adapted from Wassermann (1997)].



60

Boll. Geof. Teor. Appl., 51, 57-73 Cabras et al.

signal processing described below.

3.  Blind Signal Processing

Blind Signal Processing (BSP) has received wide attention from many scientific and
engineering disciplines concerned with understanding and extracting useful information from
data as diverse as biology and bioinformatics (Ladisa et al., 2005), neuroscience and
neuroinformatics (Hasegawa, 2009), communications, complex stochastic dynamics
(Capobianco, 2008), the world wide web, audio (Rufiner et al., 2006), video, sensor signals, data
mining and geophysical data processing. It is currently one of the most exciting areas of research
in neural networks, statistical signal processing, unsupervised machine learning, information
theory and exploratory data analysis. A general BSP problem can be formulated as follows
(Cichocki and Amari, 2003): we observe records of m sensor signals x(t)= [x1(t), x2(t),…, xm(t)]T

(where t is the time or sample index) from a multiple input/multiple output (MIMO) dynamical
mixing system H; the objective is to find an inverse system, termed a reconstruction system W,
if it exists and it is stable, in order to estimate the n primary source signals s(t)= [s1(t), s2(t),…,
sn(t)]

T. The estimation is performed on the basis of the n output signals y(t)= [y1(t), y2(t),…, yn(t)]
T

outcome from the reconstruction system, m sensor signals x(t) and a priori knowledge of the
mixing system. Often, source signals are simultaneously linearly filtered and mixed: the aim is
to process these observations in such a way that the original source signals are extracted by the
reconstruction system. The problem of separating and estimating the original source waveforms
from the sensor array, without knowing the transmission channel characteristics and the sources,
can be expressed as a Blind Source Separation (BSS) process. 

Fig. 3 - Broadband smoothed Welch PSD of vertical (Z1) and horizontal (N1 and E1) sensor S1 components, from July
23, 1993 11:00 to 12:00. 
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Our objective, in this simple but real case study, is to separate the volcanic origin component
(our signal of interest) from the other, non-volcanic, source, dominated by ocean microseisms
(background noise), and analyze the volcanic tremor in the low frequency range. 

4.  Generalized Independent Component Analysis technique

Independent Component Analysis (ICA) is a robust statistical technique in the field of
BSS (Hyvärinen et al., 2001). It separates a set of observed signals into the statistically most
independent components by appealing to higher-order statistics (HOS), with the further a priori
restriction that all, but at the most one, independent components are non-Gaussian. 

In the simplest linear case, a number m of mixed signals x(t) are noise-corrupted linear
combinations of n (≤m) unknown mutually statistically independent, zero-mean source signals
s(t):

(i=1, 2,…, m) (1)

or in the matrix notation:

x = Hs+νν, (2)

where νν is the vector of additive sensor noise and H is an unknown full rank m n mixing matrix.
In other words, it is assumed that the signals received by an array of sensors are linear mixtures
of primary sources. The separating (unmixing) matrix W defined by 

y = Wx, (3)

combines the observations x to generate estimates of the source signals:

(j=1, 2,…, n) (4)

The optimal weights correspond to the statistical independence of the output signals, yj (t),
which are as independent as possible by evaluation of an information-theoretical cost function,
e.g., as a minimum of Kullback-Leibler divergence (Cichocki and Amari, 2003).

Despite the success of using ICA to analyze synthetic or simple real data, some caution should
be shown when using it to analyze real world problems, like in broadband seismic data analysis.
In fact, the basic assumptions of ICA, which cannot estimate statistically dependent original
sources, may not hold for some kinds of signals. Multiresolution Subband Decomposition ICA
(MSD-ICA) is a generalization of ICA which relaxes the assumption regarding mutual
independence of primarily sources (Cichocki and Amari, 2003; Cichocki and Georgiev, 2003;
Tanaka and Cichocki, 2004; Cichocki et al., 2007). In this approach, the key assumption is that
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the unknown broadband sources can be dependent, but in some of the subbands, sources are
independent. In other words, we assume that each unknown source can be modeled as a sum of
the subband components:

(j=1, …, n). (5)

In the simplest case, source signals can be modeled into their low- and high-frequency
subband components:

sj(t) = sjL(t) + sjH(t),                (j=1, …, n). (6)

If, for instance, the low-frequency subband components sjL(t) can be identified to be mutually
independent by some a priori knowledge, while the high-frequency subband components sjH(t)
are weakly dependent, we can use a Low Pass Filter (LPF) to sensor observed signals and then
apply any standard ICA algorithm to extract the low frequency subband components (Fig. 4). 

In order to generalize this for more than two subband components, let us assume that only
a certain set of subband components are independent. Provided that for some of the frequency
subbands (at least one) all (multi)subband components, say {sjb(t); j=1, …, n}, are mutually
independent, we can easily estimate the mixing or separating system under the condition that
these subbands are to be identified by some a priori knowledge. For this purpose, we simply
apply any standard ICA algorithm, however not for all available raw sensor data but only for
suitably (multi)subband sensor signals. After extracting the independent components from the
mixture with ICA or MSD-ICA, we can examine the effects of discarding some of the
components by reconstructing the sensor signals from the remaining components. The
reconstruction allows us to remove undesirable components that are hidden in the mixture
data. In other words, the reconstruction permits us to extract and remove one or more
independent components from the mixture x. Back-projection of extracted interesting
components allows us to remove noise, i.e. undesired components, and enhance information-
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Fig. 4 - Block diagram illustrating the simplest case of MSD-ICA.
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rich data. 
A simple model to eliminate undesirable components from a multi-sensor data set is

sketched in Fig. 5. In the first step, BSS is performed using a suitably chosen robust algorithm
with respect to noise by a linear transformation of sensor data as y=Wx, where the vector y(t)
represents the independent components. In the second step, the back-projection of selected
components y’ onto the sensors is performed. The denoised sensor signals are obtained by a
linear transformation x’ = W-1y’, where W-1 is the inverse (if m=n) or generalized pseudo-
inverse (if m>n) of the estimated unmixing matrix W and y’ is the vector obtained from the
vector y after removal of all the undesirable components, setting their values to zero. The
entries of estimated attenuation (mixing) matrix W-1 indicate how strongly each sensor picks
up each individual component. 

5.  Application to volcano seismic signals: previous studies 

As mentioned in the introduction, in recent years, ICA was adopted only sporadically to
analyze multi-sensor volcano seismic data sets. Attention was mainly directed to the analysis of
explosion quakes (Acernese et al., 2000, 2004) and the very long period tremor (De Martino et
al., 2005; De Lauro et al., 2006) of the Stromboli volcano, showing that HOS techniques are
suitable for the isolation of components of the corresponding wavefield. ICA indicates, in
particular, the presence of very-low-frequency content in the range of 0.1–0.5 Hz. Cabras et al.
(2008) showed the feasibility of applying BSS techniques in order to separate volcanic and ocean
microseism activity at Mt. Merapi volcano, Indonesia. Extensive applications of the ICA
technique, complemented by other (in some sense more seismological) techniques, can be found
in recent papers regarding the Erebus volcano (De Lauro et al., 2009a, 2009b) as well as in the
paper by Acernese et al. (2003) regarding Stromboli. The results from the Mt. Merapi volcano
and the present application to the Mt. Etna volcano further support the importance of adopting
nonlinear techniques in time domains in volcanology.

Fig. 5 - Block diagram illustrating standard BSS process followed by back-projection (BP) of selected components.
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6.  Application of generalized ICA to the Mt. Etna volcano

The goal of the present study is the application of BSP to a seismic multi-sensor data set
recorded at the Mt. Etna volcano. Volcanic tremor features can, in fact, provide precious
information about the evolution of the eruptive activity (Cannata et al., 2008). Its lower frequency
band, in particular, was found to be, possibly, informative of deeper processes, not directly related
to the observed eruptive activity (Alparone et al., 2007). The frequency band 0.1-0.3 Hz during
a low volcanic activity period with some evident discrete seismic observed events, is dominated
by ocean microseism, a seismic noise originated from ocean waves (Webb, 1998), as we can see
on the PSD of the STS-2 broadband seismometer vertical channel (Fig. 3, top), where the very
sharp peak centered at 0.28 Hz dominates the low frequency spectrum. Our primary objective is
to separate the component of volcanic origin (our signal of interest) from the other sources,
dominated by ocean microseisms (background noise). To accomplish this, we apply ICA to the
signal recorded by the three STS-2 vertical channel seismometers. As we can see in Fig. 6, the
data set shows an evident background noise in the range 0.1-0.3 Hz, while the volcanic tremor
shows most of its energy in the range 2-10 Hz. However, these different frequency ranges only
indicate where each signal dominates, but do not exclude that there could still be superpositions
between the frequency ranges of noise and signal, respectively, so that a classical e.g., high-pass

Fig. 6 - Welch PSD of three Z channel sensors (left) and respective reordered estimated sources Y (right) by ICA
algorithm:  Y1 is the estimated tremor source (0.28 peak suppressed), Y3 is the estimated microseism source (0.28 peak
increased), Y2 is almost equivalent to Z3 (i.e. non-separated source).
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filter would not be an optimal solution. Moreover, in a volcanic scenario, like in many other real-
world applications, recorded time series have complex features and properties: true latent sources
are seldom all spatio-temporal decorrelated, or all statistically independent or all sparse. Thus, we
need to apply several BSP techniques in order to estimate the desired latent sources in an optimal
way.

Several BSS algorithms are available as powerful automatic procedures, which a user can
apply to given data sets. Unfortunately, a simple direct application of these techniques to noisy
volcanic data sets puts the need for a priori knowledge, expertise and proper pre-processing of
signals and post-processing of models in a coherent and robust environment immediately in
evidence. Otherwise, meaningless, inconsistent and even erroneous results can be obtained. Our
approach was to accomplish this by applying and comparing several different Second Order
Statistic (SOS) and Higher Order Statistic (HOS) algorithms in a stable and reliable software
environment, the ICALAB (ICA in MATLABTM) Package for Signal Processing (Cichocki et al.,
2007) a toolbox developed and maintained by Laboratory for Advanced Brain Signal Processing,
RIKEN, Japan.

We now briefly introduce the principal SOS and HOS BSS algorithms used in this analysis.
More details can be found in the respective cited references.

AMUSE (Algorithm for Multiple Unknown Source Extraction) is a Second Order Statistic
Spatio-Temporal Decorrelation (SOS-STD) BSS algorithm, which exploits the fact that the
estimated components should be spatio-temporally decorrelated and less complex than any
mixture of those sources (Tong et al., 1993). AMUSE is very fast, parameter free and the output
singular eigenvalues of the time-delayed covariance matrix are always uniquely ordered in
decreasing order (i.e. in increasing complexity in the sense of best linear predictability). Its main
drawback is the sensitivity to additive nose, particularly when the number of sensors is equal to
the number of sources. This problem may be reduced using the SOBI (Second Order Blind
Identification) algorithm (Belouchrani et al., 1993), which tries to exploit the fact that the source
has a stationary time structure, while the noise has not. This hypothesis, however, is not
necessarily satisfied.

AMUSE and SOBI are able to estimate colored Gaussian distributed sources and estimate
primary sources only if the sources have a temporal structure and different spectra. Moreover,
these algorithms are not able to exploit statistical independence, since only second order
statistical information is involved. 

JADE (Joint Approximate Diagonalization of Eigenmatrices) is a HOS extension of SOBI to
extract independent components (Cardoso and Souloumiac, 1993). 

A widely used HOS algorithm is the Fixed-Point ICA (FPICA), also known as FastICA for its
efficient convergence. FPICA is based on a fixed-point iteration scheme for finding a maximum
of the non-Gaussianity of y = wTx. It combines the superior algorithmic properties resulting from
the fixed-point iteration with the preferable statistical properties and extracts independent non-
Gaussian distributed sources from the mixture in a sequential fashion, but not in a meaningful
and determined order like AMUSE (Hyvärinen and Oja, 1997).

An improved version of FPICA is EFICA: an Efficient variant of algorithm FastICA. EFICA
is, in fact, asymptotically statistically efficient, i.e. its accuracy given by the residual error
variance attains the Cramér-Rao lower bound (CRB), which is the variance’s theoretical minimum
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thus the error is the smallest possible (Koldovský et al., 2006; Tichavský et al., 2006, 2008) . 

7.  Results and discussion

In order to understand the complexity of the tremor wavefield, embedded in background
noise, we have processed several 1 hour records (72000 data samples) in the observation period
of low Mt. Etna activity from June 30, 1993 to July 23, 1993, when data were collected from all
three seismometers S1, S2 and S3 (Fig. 2). The most evident result, in correspondence of data
recorded during windy days on the Ionian Sea (windspeed > 7 m/s recorded at the weather station
in Catania), is the presence of a sharp peak centered at 0.28 Hz on all seismometers’ vertical
channel Welch PSD, as depicted on the left-hand side of Fig. 6. If we apply ICA to the three
channels and look at the estimated three sources Y, it is noteworthy that all the used SOS and HOS
BSS algorithms clearly separate the 0.28 Hz peak in the Y3 from the tremor spectral energy in
the Y1 on the right-hand side of Fig. 6. The non-propagating, spatially incoherent energy below
0.02 Hz in sensor Z3, left unchanged in estimated source Y2 while not projected to estimated
source Y1 and Y3 (i.e., is local to sensor Z3), could be generated by temperature-induced
seismometer noise, in fact, seismometer S3 was located in a hole dug in a layer of lapilli and the
hole was covered by an aluminium foil for temperature isolation. 

To reinforce our confidence in attributing the energy in Y3 to the ocean microseism, we can

Fig. 7 - Ocean surface wave power spectrum density obtained by evaluating the Pierson-Moskowitz equation with the
wind speed value of 7.98 m/s showing a peak at 0.17 Hz, and ocean bottom pressure power spectrum density estimated
on a 24 hour average of meaqdurements taken at a sensor on the ocean floor with surface wind speed value of 7.98 m/s
showing a peak at ~0.28 Hz [modified from Kadota and Labianca (1981)].
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Fig. 8 - Welch PSD broadband Z channel seismometer  of: SN1 (black line) installed at 2105 m deep floor station in
open Ionian Sea, in proximity of Catania, and  the VAE (grey line), a Qx80 STS-1 of Med-Net  installed at ground in
the middle of Sicily (37.469 lat 14.3533 lon, 735.1 m elev.), dataset collected during low Mt. Etna activity in 2002;
dotted lines delimit the New High- and Low-Noise Models [NHNM and NLNM in Peterson (1993)]. From Monna et
al. (2004).

Fig. 9 - On the left, smoothed Welch PSD of three sensors vertical channel Z in the frequency range 0.1-1.3 Hz; on the
right the respective estimated sources Y with ICA. 
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Fig. 10 . Spectrogram of estimated sources Y of Fig. 9, reordered by increasing frequency, black is coding higher
spectrogram energy. 

Fig. 11 - Reconstruction of denoised sensors x’ by back-projection of estimated independent component Y1 and Y3,
microseism component Y2 removed. 
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refer to a mathematical model of wind induced pressure fluctuations in the deep ocean (Kadota
and Labianca, 1981), applied to experimental data from a local deep sea floor station SN1.

In the mathematical model, the ocean-surface-wave PSD and the ocean-bottom pressure PSD
are obtained by evaluating the Pierson-Moskowitz equation with a windspeed of 7.98 m/s,
resulting in an energy peak at about 0.28 Hz, as depicted in Fig. 7.

Experimental data were recorded at station SN1 (Seismic Network 1), installed in open Ionian
Sea at 2105 m depth floor, in proximity to Catania; data were collected during low Mt. Etna
activity in 2002 (Monna et al., 2004). Again, as we can see in Fig. 8, the Z channel of SN1 has a
peak at about 0.2 Hz. We can conclude that sustained wind at sea acts as a prominent ocean
microseism source that can be recorded by land seismometers in the proximity of the volcano
during a low activity phase.

Now, we focus our interest to the 0.1-1.3 Hz, range, on a data set where sea microseism origin
dominates the wavefield. If we simply bandpass the Z channels of the 3 sensors, apparently, we

Fig. 12 - Signal enhancement (black is coding higher spectrogram energy).  Top: spectrogram of original vertical
channel seismometer signals  Z1, Z2, Z3 in the frequency range 0.1-1.3 Hz, dominated by  stationary microseism peak.
Bottom: spectrogram of denoised sensors x’1, x’2, x’3 of Fig. 11, showing better time-frequency structures of volcanic
origin without oceanic microseism contamination. 
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do not get more information from volcano sources (see Fig. 9 left side), because ocean
microseism energy dominates the frequency range, but if we analyze the data with MSD-ICA, i.e.
processing with ICA the band-passed sensor array, we can obtain enhanced information on the
primary sources in that range (see Fig. 9 right-hand side). In this case, we continue to get the sea
microseism source in Y2, but we also get two energy sources, Y1 and Y3, peaked at 0.9 and 1.2
Hz respectively, which are known Mt. Etna tremor spectral dominant peaks, observed during the
pre-eruptive period (Lombardo et al., 1996; Alparone et al., 2007). In order to analyze the
evolution of spectral features over time, a spectrogram of separated components is graphed in Fig.
10: on the top, we easily recognize the (relatively constant) ocean microseism, while Y1 and Y3
appear as more time-variable, and partially spectrally overlapping, signals. We do not attempt to
identify Y1 and Y3 as individual volcanic meaningful sources but rather we recombine them, thus
dividing the whole data sources into a volcanic subspace with similar features (Y1 and Y3), and
a noise subspace, dominated by sea microseism (Y2). We can now simply enhance the volcanic
sensor data by applying a back projection to the selected subspace given by the combination of
Y1 and Y3, thus removing the noisy component Y2. Fig. 11 shows the smoothed PSD of the
resulting band-passed and denoised sensor vector x’, which could be further analyzed with
standard techniques like time-frequency analysis as shown in the spectrogram of Fig. 12, in order
e.g., to better investigate the time evolution of its spectral content. This can facilitate e.g., the
identification of volcanic regimes (Jones et al., 2006), the time scales of preparation of
paroxysmal events (Carniel et al., 2006) and/or the effect of external triggers such as tectonic
events (Carniel and Tárraga, 2006). 

8.  Conclusions

In this paper, we proposed an application of BSS and ICA to the analysis of continuous
seismic data recorded at Mt. Etna volcano, showing that these techniques are suitable to separate
tremor components from ocean, microseism-dominated, background noise. The results confirm
what was previously obtained at the Mt. Merapi volcano analyzing data recorded by one
broadband and two short-period seismometers (Cabras et al., 2008), although in that work only
HOS methods separated tremor from ocean microseism successfully; this underlines the fact that
in general, we must apply and compare several different BSS techniques to separate meaningful
volcanic sources. In the present work, where the data recorded by three broadband seismometers
were analyzed, we had the opportunity of exploiting the use of MSD-ICA as a generalization of
ICA in order to analyze the complexity of the volcanic tremor wavefield in the frequency band
0.1-1.3 Hz. In this frequency band, dominated by the presence of microseismic noise, a blind
source separation applied after a properly chosen prefiltering phase clearly highlighted the
presence of significant components of volcanic origin, with spectral peaks at 0.9 and 1.2 Hz.
After this identification we could enhance the signals of interest, and only those, recorded at each
sensor, by back projecting only the selected estimated tremor components. The result is a
significantly less noisy volcanic tremor signal, that can be used to perform any subsequent, more
sophisticated analysis. This case study underlines that it is possible to filter broadband seismic
data recorded by an array of seismometers even in the presence of a low signal-to-noise ratio and
a non trivial intersection between the frequency bands of the signal of interest and noise, i.e. the
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part of the signal we are not interested in. In the specific case, this was dominated by ocean
microseism, but in other cases the source of noise could be obviously of completely different
origin, including an anthropogenic one. The generalized ICA technique can then assume an
important role in the efficient filtering of low signal-to-noise volcanic seismic data by extracting
coherent volcanic components from a, possibly much more energetic, non-volcanic background
noise. 
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