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Interpretation of global geomagnetic sounding data using
stochastic inversion
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ABSTRACT The stochastic inversion theory, formulated on stochastic processes and defined on real
Hilbert spaces, has been utilized in the optimal solution to inverse the global
geomagnetic sounding (GMS) problem to estimate vertical conductivity distribution
of the Earth from long period geomagnetic continuum data in the bandwidth 0.2-0.01
cycles per day (CPD). The stochastic formalism, in essence, is based upon an iterative
perturbation algorithm, which relates the changes in the model to first order changes
in the data affected through the imposition of first order Taylor series expansion about
some a priori/updated model parameters at frequencies and degrees of spherical
harmonics. This approximation reduces the nonlinear GMS inversion problem to
solving a system of linear perturbation equations, which are simultaneously
underdetermined and overconstrained. The system of linear perturbation equations
gets solved through the application of a stochastic inversion formula and the computed
perturbations are added to the a priori/updated model parameters. This calculation
sequence keeps iterating till an optimal model results (hopefully), satisfying a reduced
chi-square statistic criterion, an indicator of goodness of fit test between observed
GMS data and the theoretical data functionals corresponding to a finally accepted
model. For the envisaged layered Earth structure, a priori resistivities and thicknesses
alongwith noise and solution autocorrelation operators are required to initiate the
stochastic inversion algorithm. Computer-assisted interactive forward modeling,
corresponding to frequencies belonging to the mentioned frequency band and a
spherical harmonic of degree one, has been undertaken to estimate a priori layer
parameters. Fidelity of the estimated parameters in terms of parameter resolutions and
total estimation error involved in respect of parameter estimations have also been
studied in their entireties. Correlation coefficients of the estimated parameters have
also been provided. Starting with a priori layer parameters, obtained by computer-
assisted interactive modeling, stochastic inversion has been successful in retrieving the
resistivity-depth distribution of the Earth from a depth of about 436.19±7.81 km from
the Earth’s surface with a resistivity low of 0.96±0.08 ohm⋅m, which gets further
reduced to 0.86±0.16 ohm⋅m at a depth of 565.0±11.9 km which continues down to a
depth of 845.62±17.74 km approximately with satisfactory parameter resolutions and
minimum total estimation errors. Correlation coefficients of the estimated parameters
are mostly characterized by zeroes/small values, indicating insignificant parameter
correlations. The agreement between the observed data and the corresponding best-fit
curve is finally obtained for a reduced chi-square statistic criterion less than unity.
Non-retrieval of resistivity-depth distribution in respect of the upper surface and
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conducting interior of the Earth is mostly caused by inadequate data bandwidth and
noisy data, as actually available, utilized in the inversion process.

1. Introduction

Geomagnetic induction studies are primarily concerned with inductive response which the
Earth’s crust and mantle show as electrical conductors towards transient variations in the Earth’s
magnetic field. The cardinal parameter to be investigated is the electrical conductivity (reciprocal
of resistivity).

The spectrum of natural geomagnetic time variations available for geomagnetic induction
studies covers several orders of magnitude in frequency.

In this study, the Earth’s model, to be investigated, is taken to be horizontally layered (Fig. 1).
The general expression for surface impedance Z for a horizontally layered (each layer has a
constant resistivity ρ1 and thickness t1) Earth model of N layers (Fig. 1), exposed to the
electromagnetic field of external origin is given (Srivastava, 1966) as

Z = -iωµ0/M1[M1t1 + arccoth{M1/M2 coth (M2t2 +…+… arccoth MN-1/MN)}] (1)

where Ml is the propagation constant of the downward diffusing field in the 1th layer given by 

Ml
2 = iωµl/ρl + Q2 (2)

for l = 1,..., N; µl and ρl are the magnetic permeability and resistivity of the lth layer
respectively, i is the imaginary quantity defined as (-1)1/2, magnetic permeability inside the
Earth is generally taken as the free space magnetic permeability µ0 (µ0 is taken as 4π ⋅ 10-7

Volt⋅s⋅amp-1⋅m-1 and π being a constant), the angular frequency ω is 2πf where f is the
frequency of the inducing field, Q is the wave number of the inducing field given by
[n(n+1)]1/2/R or n/R, according to n is small or large (n≥5) and R being the radius of the Earth.
For the considered frequency range, as used in the global geomagnetic sounding (GMS) study,
the displacement current may be neglected, therefore, the dielectric constant of the medium
does not appear in Eq. (2) which may be separated into its real and imaginary components as
[(K+Q2)/2]1/2 and [(K-Q2)/2]1/2 with K as 

K2 = Q4 + (ωµ0/ρl)
2 (3)

where all the letters have the same significances as explained earlier. 
The spatial non-uniformity of the inducing field defined by its wavelength W is 

W = 2π/Q (4)

where Q has the same significance enunciated earlier. In the GMS study, spatial non-uniformity
of the inducing field is required to be considered. The propagation constant in the GMS study for
the lth layer is, therefore, provided by Eq. (2). For a laterally uniform and horizontally layered
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Earth model, the inductive response Vn, defined as the surface ratio of internal to external parts
for a spherical harmonic of degree n is the same for vertical and horizontal magnetic field
variations for given frequencies and degrees of considered harmonics. Inductive response is given
by Schmucker and Jankowski (1971) as

Vn = (iωµ0 – QZ)/(iωµ0 + QZ) (5)

where Z is the surface impedance corresponding to the propagation constant given by Eq.  (2) and
other letters appearing in Eq. (5) have the same significances as explained earlier. The
corresponding apparent resistivity ρa is given by

ρa = ⏐Z⏐2 /ωµ0 (6)

where the letters have the same significances as mentioned earlier.
In the GMS study,  Z is obtained through the application of Eq. (5) from the measured surface

ratio Vn for various frequencies and degrees of harmonics defining the geometry of the generating
source as elaborated by Schmucker (1970). It may be mentioned that the separation into its
external and internal parts of the total magnetic field in the GMS study is based on the basic
assumption of potential.

The geomagnetic response of Banks (1972) in the frequency bandwidth 0.2-0.01 cycles per
day (CPD), which includes the geomagnetic continuum is utilized in the study. The choice of
upper and lower frequencies is governed by the criteria enunciated by Parker (1970).

Fig. 1 - A horizontally stratified
Earth model.
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2. Stochastic inversion theory

An inversion theory is concerned with mapping a set of data (points in some finite vector
space) into a model space and the mapping of finite data into the model space consists of linear
functions only. Conceptually, it implies that the exact solution cannot be obtained since
information supplied by the data is insufficient for various reasons. However, it is possible to
estimate linear averages of the sought model. The stochastic technique used herein involves
stochastic processes, defined on the real Hilbert space. That is, the model space is generalized to
a Hilbert space having a fairly arbitrary norm and statistical interpretations of error and
ergodicity which are invoked in this treatment. Consequently, the sought model may be classed
according to some specified degree of confidence.

The stochastic inversion formalism, as developed by Franklin (1970), is only applicable to
linear problems. Therefore, the nonlinear GMS forward problem is linearized so that stochastic
inversion formula may be applicable to it. The first order Taylor series expansion of the GMS
forward problem (a mathematical expression of the physics of the problem so that geomagnetic
responses may be evaluated corresponding to a specified structure given the frequencies and
degrees of the considered harmonics) about some a priori/corrected model parameters and
frequencies may be expressed in terms of vector as

δµ = Aδp +  n̂ (7)

where A is a linear operator, the row elements of which are the Frechet Kernels of the data,δ p is
the difference between the actual parameter vector P of the envisaged Earth model and a
priori/corrected parameter vector  

^
P  and  n̂ is a vector being the difference between the observed

data and theoretical data functionals corresponding to a priori/corrected parameter vector  and  is
a vector containing the error components associated with the data.

The stochastic inversion formula due to Franklin (1970) may be written following the
modification made by Jackson (1979) as 

δp = (ATFqq
-1A + Fpp

-1)-1 AT Fqq
-1 δµ (8)

If p be the number of unknowns (parameters) to be estimated and q be the total number of data
used in the inversion process, then, in Eq. (8), A is the q x p system matrix and AT refers to the
transpose of A, Fpp

-1 is the inverse of Fqq, the noise autocorrelation operator, Fpp is the p x p
solution autocorrelation operator and Fpp

-1 refers to the inverse of Fpp. The estimated vector P is,
therefore, given by 

P= 
^
P  +δp (9)

where the letters have the same significances as explained earlier.
An inspection of Eq. (8) makes it evident that before a solution of this equation is attempted,

the solution autocorrelation operator Fpp and noise autocorrelation operator Fqq ought to be
obtained to initiate the inversion process. A justified choice of the solution autocorrelation
operator is fraught with uncertainties. Fpp acts as a filtration operator which may be so
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parameterized as to ignore the unrealistic solutions based on physical considerations, geological
constraints, etc. 

The various issues involved in the formation of Fpp have been discussed at length by Wiggins
(1972) and Jackson (1972).  In the present study, Fpp is parameterized to become a p x p diagonal
matrix in which the diagonal elements are the squares of the expected parameter variations.  Such
a parameterization of Fpp does imply that off-diagonal elements, which provide parameter cross-
correlations are not taken into account.  For non zero diagonal elements, Fpp has possessed the
property of being non singular.  A strong Fpp should work as a low pass filter.  

For a N layered Earth model (Fig. 1), if ∆ρ1, ∆ρ2,…, ∆ρl,…, ∆ρN be the expected variations in
resistivities and ∆t1, ∆t2,…, ∆tl ,…, ∆tN-1 be the expected variations in thicknesses, the solution
autocorrelation operator has the representation as 

Fpp = diag [ ∆ρ1
2, ∆ρ2

2,…, ∆ρl
2,…, ∆ρN

2, ∆t1
2, ∆t2

2 ,…, ∆tl
2 ,…,∆tN-1

2 ] (10)

It is assumed that expected resistivity and the thickness variations are uncorrelated, thus Fpp

may be generated.
The noise autocorrelation operator Fqq has the representation as 

Fqq = diag [ σ1
2, σ2

2, …, σm
2,…, σq

2] (11)

where σ1, σ2, …, σq are standard deviations of the observed data. In this deviation, it is assumed
that the noise components of the data are uncorrelated i.e., error in a data corresponding to a
frequency is unrelated to the error in the data at another frequency. 

The resolution of the estimated parameters in an inversion problem is given by Jackson (1972)
as

U = (ATFqq
-1 A + Fpp

-1)-1 ATFqq
-1A (12)

where the letters have the same significances as explained earlier.
The degree to which the matrix U resembles an identity matrix is a measure of the parameter

resolution obtainable from the given data set. Closeness of rows to showing unity on diagonals
and zeroes on the off-diagonal elements is called the deltaness criteria of the resolution matrix.
The row elements of the resolution matrix are called the averaging kernels, that may also be
regarded as windows through which the estimations of the inversion problem may be viewed
(Jackson, 1972).

The total errors of the estimated parameters in an inversion problem may be obtained
(Jackson, 1979) as 

cov (P) = (LA-I) Fpp (LA-I)T + LFqq LT (13)

where P, being the parameter vector being estimated, I is the pxp identity matrix, (LA-I)T and LT

are the transposes of the matrices (LA-I) and L, respectively, and L being the minimum variance
estimator (Jackson, 1979) given as 



404

Boll. Geof. Teor. Appl., 48, 399-414 Sarkar and Singh

L = (ATFqq
-1A + Fpp

-1)-1 ATFqq
-1A (14)

where the letters have the same significances as explained earlier. In Eq. (13), first term is the
covariance of resolving errors, and the second term is the covariance of random errors propagated
into the estimates by the data.  With the help of Eq. (14),  the Eq. (13) may be simplified as 

cov (P) = (ATFqqA + Fpp
-1)-1 (15)

where the letters have the same significances as illustrated earlier.
In Eq. (13), the diagonal elements are the variance terms of the estimation vector P and off-

diagonal elements are the covariance terms of P.
The parameter correlation coefficients of an inversion problem may be obtained after Jackson

(1972) as

(16)

where the letters have the same significances as explained earlier.
It provides the parameter correlation coefficient between the Pz and Pz' parameters.  If [P]zz' is

non zero, then the parameters Pz and Pz' are correlated.  It [P]zz' shows that the value of the
parameter Pz affects the size of the parameter Pz'. On the other hand, if Pzz' is near unity, the
parameters Pz and Pz' are strongly correlated and (nearly) linearly dependent.  

The reduced chi-square (χ2) statistic criterion, used as a goodness of the fit-test (Mills and
Fitch, 1977) between the observed data and the theoretical data corresponding to an estimated
model obtained by inversion or otherwise is given by 

(17)

where gm (P, Sm), σm and gm ( 
^
P  , Sm) are the observed data, the corresponding standard deviation

and the theoretical data for an estimated model  
^
P  respectively for the m-th frequency Sm in which

S is a vector containing the frequency values and q being the number of data.  In applying this
criterion, it is assumed that the data are normally distributed with zero mean and known variances
in the presence of random errors, which are also assumed to be normally distributed. If a model
is to be acceptable, then

χ2≤1 (18)
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should hold good. 

3. State-of-the-art GMS inversion problem 

The subject of one dimensional inversions of GMS data for finding the conductivity depth
profile of the horizontally stratified/concentrically stratified (spherically symmetric) Earth model
contains a wide class of diverse techniques. 

Lahiri and Price (1939) obtained a five parameter model for GMS data for a spherically
symmetric Earth model.  In this technique, conductivity varies as an arbitrary inverse power of
radius below some arbitrary depth.  The GMS inversion technique of Eckhardt (1963) is based on
the solution of a first order differential equation. Parker (1970) applied the linear average
approach of Backus and Gilbert (1967, 1968, 1970) for the inversion of geomagnetic data.  Parker
(1970) assumed the conductivity to be a continuous function of the radius for a spherically
symmetric Earth model. A simple technique, based on a two-layer approximation, for the
inversion of GMS data is due to Schmucker (1970). The conductivity and thickness for each
resolved frequency component can be uniquely obtained in this inversion technique. 

Bailey (1970) and Weidelt (1972) presented mathematical proofs showing uniqueness of
geomagnetic depth sounding inversion problem. Bailey’s (1970) technique is based on the
solution of a nonlinear integro-differential equation and Weidelt’s (1972) technique uses the
solution of an integral equation.  The techniques of Bailey (1970) and Weidelt (1972) exploited
the analytical properties of response functions in a complex frequency plane. These inversion
techniques are reported to be unsatisfactory while dealing with noisy and bandlimited field data.
Jady (1974), using a variational approach, developed an inversion technique for geosounding data
in order to estimate the conductivity structure of a concentrically stratified Earth model. The
general built-in shortcomings of iterative least-squares algorithms were discussed in detail by
Anderssen (1975) in the context of inversion of global electromagnetic induction data.
Rokityansky (1982) has presented an exhaustive treatment pertaining to the various aspects of the
geoelectromagnetic investigation on the Earth’s crust and mantle. He has depicted in detail the
geomagnetic induction studies undertaken in Russia and east Europe.

4. Results of GMS inversion study

A nine layered, isotropic, homogeneous and horizontally stratified resistivity (reciprocal of
conductivity) thickness model of the Earth is chosen following Banks (1972). The proposed
model satisfies the global observation that conductivity of the Earth increases quite sharply with
depth everywhere (Banks, 1972).  For a horizontally stratified Earth model, the wave number of
the inducing field in the GMS study is given by n(n+1)1/2 /R, where n is the degree of the spherical
harmonic of the inducing field given by unity (Banks, 1972) and R being the Earth’s average
radius taken to be 6371 km.  Thus, wave number of the inducing field is 2.22 x 10-7 m-1.  The
diagonal elements of the noise autocorrelation operator Fqq are taken to be squares of the
respective standard deviations of the geomagnetic data (Fig. 2). Fixation of diagonal elements of
solution autocorrelation operators in regard to layer parameters is somewhat difficult. Variability
limits of ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7 and ρ8 are assigned values which are squares of 6% of the
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respective a priori values; t1, t2, t3, t4, t5, t6, t7 and t8 parameters are assigned variability limits that
are squares of 13% of the respective a priori values.

A priori model parameters consisting of resistivites and thicknesses of the proposed nine
layered Earth model are obtained through computer-assisted interactive modeling (based on the
forward problem solution of GMS corresponding to the considered frequency range and degree
of the harmonic) subject to satisfying a given reduced (χ2) statistic criterion (Mills and Fitch,
1977) between the observed geomagnetic responses and the theoretical ones, corresponding to an
assumed resistivity-thickness model of the Earth. In the interactive modeling, the resistivity-
thickness model of the Earth is selected corresponding to a χ2 criterion of 5.73, keeping in view
that the Earth model, so obtained, would be updated (hopefully) through the application of a
stochastic inversion. Thus, the standard requirement of χ2 criterion ≤1 is not adhered to. It is also
an arduous task indeed, to obtain a model having a χ2 criterion ≤1, using an interactive modeling
process. The conductivity of the core of the Earth corresponding to the resistivity ρ9 = 3.3x10-5

ohm⋅m (Rokityansky, 1982) is kept constant in the forward modeling. This conductivity is so
large that the skin depth is less than 10.0 km even for the frequency 0.01 CPD, the lower cutoff
frequency limit. 

The inversion of GMS data (apparent resistivities)  is initiated with a priori parameters as
ρ1 = 150.0, ρ2 = 2.45, ρ3 = 1.5, ρ4 = 2.0, ρ5 = 0.2, ρ6 = 0.35, ρ7 = 0.02 , ρ8 = 0.002 all in ohm⋅m;
t1 = 300.0, t2 = 135.0, t3 = 240.0, t4 = 430.0, t5 = 600.0, t6 = 550.0, t7 = 450.0  and t8 = 77.0 all in
km.  The conductivity of the core of the Earth (corresponding resistivity ρ9) is kept constant all
through the inversion process as in the forward modeling. Table 1 shows the convergence of a
priori parameters as a function of iterations.  Near surface resistivities ρ1 and ρ2 do not show any
convergences from their a priori values of 150.0 and 2.45 ohm⋅m, respectively.  It is caused by
the sharp high frequency cutoff imposed (Parker, 1970). A priori values for ρ3 and ρ4 show
convergences and arrive at the values of 0.96 and 0.86 ohm⋅m respectively.  A priori values of ρ5,
ρ6, ρ7 and ρ8 show insignificant variations in the iterations (Table 1). The resolving kernel plots
(row elements from first to sixteenth row of the 16x16 resolution matrix) are shown in Fig. 2a to
2p in the form of bar diagrams in respect of estimations of  ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, t1, t2, t3,
t4, t5, t6, t7 and t8 parameters respectively. Solid and the hollow bars in respect of the suit of
diagrams of Fig. 2a to 2p present diagonal elements (resolutions attained) and the relevant non-
diagonal elements of the matrices in respect of the mentioned parameter estimations. With
references to Fig 2c, 2d, 2k, and 2l, we observe ρ3, ρ4, t3 and t4 are estimated with good
resolutions having the values of 0.86, 0.85, 0.83 and 0.81, respectively (solid bars); non-diagonal
elements pertaining to these estimates are also small enough. Thus, high resolution values given
by diagonal elements coupled with negligibly small non-diagonal elements ensure attainments of
satisfactory deltaness criteria in respect of ρ3, ρ4, t3 and t4 estimates.

Fig. 3 provides the geomagnetic responses and the corresponding standard deviations in terms
of apparent resistivities, as computed through Eqs. (5) and (6) from Banks (1972) continuum
data, plotted against the resolved frequencies. The geomagnetic sounding curve and the, finally,
estimated parameters with their respective total estimation errors are also shown in Fig. 3. A
perusal of Fig. 3 indicates that the geomagnetic sounding curve, attained after six iterations with
a reduced χ2 statistic criterion of 0.86, has taken a mean path in respect of the input data. The
error components of the estimated parameters, as shown in Table 2, indicate that the resolution
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Fig. 2 - Bar diagram giving the elements of the estimated resolution matrix in respect of the parameter estimations.
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Fig. 2 - continued.
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errors are higher than the corresponding random errors for the estimated ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7,
ρ8, t1, t2, t3, t4, t5, t6, t7 and t8 parameters of the Earth model.  For ρ3, resolution error equals
random error and for ρ4 , random error of 0.14 ohm⋅m exceeds the resolution error of 0.08
ohm⋅m.  The parameter correlation coefficient matrix shown in Table 3 is characterized by the
absence of strong correlations.  Mention may be made of the correlations for ρ2 - ρ3 combination,
ρ3 - ρ4 combination and ρ4 - ρ6 combination, showing correlation coefficients of –0.49, -0.38 and
0.4 respectively.

A study of the system matrix A (not shown here because of its huge size being a 35x16 matrix)
appearing in each iteration shows that the geosounding apparent resistivity derivatives with
respect to ρ1, ρ2, ρ5, ρ6, ρ7, ρ8, t1, t2, t5, t6, t7 and t8 parameters are negligibly small for most of the
frequencies. Therefore, the lack of convergences in respect of the mentioned parameters may be
attributable to the general insensitivity of GMS responses for these parameters, corresponding to
the mentioned frequencies. According to Jupp and Vozoff (1975), such parameters may be called
irrelevant ones. The insensitivity of the GMS responses to ρ5, ρ6, ρ7, ρ8, t5, t6, t7 and t8 is mostly
put down to sharp low frequency cutoff clamped at 0.01 CPD, leading to a drastic reduction of
skin depth and rapid fall in signal strength in the conducting interior of the Earth. The lack of
convergences of t1, t2, ρ1 and ρ2 estimates are due to a sharp high frequency cutoff imposed at 0.2
CPD. In order to study if reduced noise level to the input data would lead to a possible
improvement in parameter estimations, the geomagnetic inversion study was repeated with an
approximately five percent noise level in the input data. The estimated parameters are not much
different from the parameters already obtained. ρ3, ρ4, t3, and t4 estimates are marginally

Parameters
A priori
values

First
iteration

Second
iteration

Third
iteration

Fourth
iteration

Fifth
iteration

Sixth
iteration

ρ1(ohm-m) 150.0 150.06 150.43 150.23 150.22 150.23 150.24
ρ2       “ ≤ 2.45 2.41 2.43 2.43 2.43 2.43 2.44
ρ3 “   ≤ 1.5 0.21 0.64 0.76 0.95 0.96 0.96
ρ4        “   ≤ 2.0 0.73 0.73 0.73 0.87 0.86 0.86
ρ5        “ ≤ 0.2 0.19 0.18 0.19 0.18 0.19 0.19
ρ6 “   ≤ 0.35 0.35 0.38 0.34 0.34 0.34 0.34
ρ7        “ ≤ 0.02 0.01 0.02 0.02 0.02 0.02 0.02
ρ8 “   ≤ 0.002 0.002 0.002 0.001 0.002 0.002 0.002

t1 (km) 300.0 301.27 301.73 301.76 301.78 301.78 301.72
t2 “  ≤ 135.0 134.42 134.48 134.48 134.48 134.48 134.47
t3 “  ≤ 240.0 190.23 208.37 195.36 140.36 137.36 128.81
t4 “  ≤ 430.0 370.68 305.75 295.88 270.76 280.88 280.62
t5 “  ≤ 600.0 585.75 590.78 592.7 592.82 592.76 592.88
t6 “  ≤ 550.0 548.22 547.18 547.28 547.32 548.72 547.38
t7 “  ≤ 450.0 450.12 450.28 450.29 450.18 450.21 450.28
t8 “  ≤ 77.0 77.12 77.12 77.12 77.12 77.12 77.12

Table 1 - Convergence of a priori layer parameters as a function of iterations.
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improved over their previous values whilst ρ1, ρ2, ρ5, ρ6, ρ7, ρ8, t1, t2, t5, t6, t7 and t8 estimates
continue to be the same as earlier.

In the present study, Fpp for GMS inversion problem is set up such that (i) the expected
parameter variability limits should be able to provide a satisfactory trade-off between the
resolution and estimation error of an estimate, (ii) the computed parameter perturbations should
provide smooth values and (iii) a satisfactory deltaness criteria may be obtained for the resolution
matrix. Through a perusal of Table 2, incorporating the total estimation errors in regard to the
estimated layer parameters, it is observed that total estimation errors are less than the adopted
standard deviations in regard to the a priori layer parameters obtained by computer-assisted
interactive modeling. Therefore, stochastic inversion has improved upon the adopted standard
deviations of the a priori layer parameters.

Through a perusal of Table 1, in conjunction with Table 2, tabulating the estimated layer
parameters (resistivities and thicknesses) and the corresponding estimation errors respectively, it
is observed that at a depth of 436.19±7.81 km (approx.) a resistivity of 0.96±0.08  ohm⋅m exists,
which continues for a constant layer thickness of  128.81±4.09 km. Thus, the globally observed
resistivity low starts at a depth of 436.19±7.81 km (approx.). Thereafter, the resistivity further
diminishes to a value of 0.96±0.08 ohm⋅m, which goes for a thickness of 280.62±5.84 km starting
from 565.0±11.9 km depth.

We thus confirm the low resistivity zone, starting at a depth of 436.19±7.81 km (approx.)
continues up to a depth of 845.62±17.74 km (approx.). Estimated resistivities beyond the
aforementioned depth of 845.62±17.74 km (approx.)  are not reliable because of poor resolutions

Estimation of
resistivity values

Resolution error
(ohm-m)

Random error
(ohm-m)

Total estimation
error (ohm-m)

ρ1 5.05 0.01 5.05
ρ2 0.41 0.04 0.41
ρ3 0.06 0.06 0.08
ρ4 0.08 0.14 0.16
ρ5 0.15 0.06 0.16
ρ6 0.20 0.08 0.22
ρ7 0.06 0.01 0.06
ρ8 0.02 0.0 0.02

Table 2 - Error components of the estimated parameters.

Estimation of
thickness values

Resolution error
(km)

Random error
(km)

Total estimation
error (km)

t1 4.5 1.18 4.65
t2 2.93 1.19 3.16
t3 3.83 1.44 4.09
t4 5.55 1.82 5.84
t5 6.45 1.38 6.60
t6 6.52 0.0 6.52
t7 5.87 0.0 5.87
t8 2.83 0.0 2.83
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involved in the estimations of the parameters already mentioned. We have also not taken
cognizance of the estimated shallow resistivity distribution within the depth span of 436.19±7.81
km  for the poor resolutions involving ρ1 and ρ2 estimates.

For the best-fitting conductivity model of Banks (1969, Fig. 19), estimated resistivity at about
400 km depth gives a value of 1 ohm⋅m, which continues for about 200 km. Subsequently, at a
depth of 500 km or more, the resistivity gets leveled off, thereafter resistivity continues to
decrease monotonically, albeit rather slowly. Parker (1970) obtained a decrease of deeper
resistivity starting from a 300 to 700 km depth as based on Banks (1969) low frequency data.
Parker’s (1970) resolution spread having been in excess of a 300 km, considerable uncertainty
crops up in assigning the depth of resistivity lows. However, resistivity lows at 400 and 600 km
depths caused by mineral phase changes mentioned earlier, are covered by Parker’s (1970)
resistivity lows. 

The abrupt resistivity lows at the two depth levels of 400 and 600 km (approx.) are well known
seismic discontinues believed to have been caused by prominent mineral phase changes taking
place in the mantle (Rokityanski, 1982). Abrupt resistivity lows around the 400 and 700 km
depths were also noted by Utada et al. (2003) while estimating electrical conductivity in the mid-
mantle beneath the North Pacific region. Estimated resistivity values at the mentioned depth
levels by Utada et al. (2003)  closely follow the already well established trends already discussed.

Olsen (1998), using the C-response values of geomagnetic observations arrived at a
conductivity structure, which shows the upper mantle has remarkably little structure with a
monotonic decrease of resistivity from 100 ohm⋅m at a depth of 200 km to about 0.7 ohm⋅m
below the depth of 1000 km. Based on the spherical harmonic analysis of solar daily variations,

Fig. 3 - Geomagnetic responses (apparent resistivities) and the corresponding standard deviations, best-fit curve shown
against the resolved frequencies and the estimated parameters along with the respective total estimation errors.
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Schmucker (1999) found the well established transition in mantle resistivity between 400 and 800
km depths from values close to 100 ohm⋅m to values below 1 ohm⋅m. The mentioned transition
in resistivity, according to Schmucker (1999), could take place at 500 and 750 km depths in a
single step around 600 km or with a smooth decent starting at 400 km ending below 800 km.

The resistivity low in the present work starts at a higher depth of 436.19±7.81 km (approx.).
The depth level of two abrupt resistivity lows at 436.19±7.81 km and 565.0±11.9 km
approximately, closely follow the postulated well known mineral phase changes at 400 and 600
km depths of the mantle.

Thus, the deeper resistivity-depth profile of the Earth, in general, shows a region of high
resistivity (poorly resolved) covering the upper several hundred kilometers, leading to a zone of
low resistivity which continues for about 1000 km or so, resistivity remains ill defined from 1000
km down.

5. Conclusions

The performance of the GMS inversion study in the light of the findings is satisfactory. Out
of the sixteen parameters, defining the layer thicknesses and resistivities of the Earth model, four
parameters, namely; ρ3, ρ4, t3, and t4 have been estimated with good resolutions. The rest of the
parameters, namely; ρ1, ρ2, ρ5, ρ6, ρ7, ρ8, t1, t2, t5, t6, t7 and t8 elude adequate estimations. Thus,
inadequate frequency bandwidth coupled with noise contaminated data are principally
responsible for non estimations of ρ1, ρ2, ρ5, ρ6, ρ7, ρ8, t1, t2, t5, t6, t7 and t8 parameters.

Improper parameter estimates in respect of ρ3, ρ4, t1 and t2 are most likely due to sharp high
frequency cutoff imposed at 0.2 CPD. Non-convergences of parameters ρ5, ρ6, ρ7, ρ8, t5, t6, t7 and

Table 3 - Parameter correlation coefficient matrix of the estimated parameters.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 t1 t2 t3 t4 t5 t6 t7 t8

1.0 0.0 -0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.02 0.03 0.05 0.03 0.01 0.02 0.01

1.0 -0.49 0.17 -0.03 0.02 0.05 0.02 -0.01 -0.01 0.0 -0.01 -0.05 0.02 0.04 0.03

1.00 -0.38 0.14 0.00 0.1 0.08 -0.48 -0.18 0.03 0.04 0.0 0.0 0.03 0.02

1.00 0.04 0.40 0.01 0.01 0.11 0.03 -0.02 -0.12 -0.1 0.04 0.02 0.02

1.00 0.24 0.02 0.01 0.01 -0.01 -0.03 -0.08 -0.08 0.02 0.04 0.03

1.00 -0.01 -0.01 0.06 0.02 0.01 0.09 0.09 0.02 0.04 0.02

1.0 0.02 0.01 0.02 0.011 0.04 0.07 0.03 0.02 0.08

1.0 0.04 0.03 0.06 0.07 0.01 0.04 0.02 0.02

1.0 -0.03 0.04 -0.02 -0.02 0.06 0.04 0.03

1.0 0.06 0.04 0.01 0.06 0.04 0.03

1.0 0.03 -0.01 0.02 0.03 0.04

1.0 -0.04 0.06 0.04 0.07

1.0 0.03 0.02 0.02

1.0 0.01 0.06

1.0 0.03

1.0



413

Interpretation of GMS data  Boll. Geof. Teor. Appl., 48, 399-414

t8 and the resultant improper resolutions, leading to non estimations in respect of the aforestated
parameters are most probably attributable to sharp low frequency cutoff  imposed at 0.01 CPD,
drastically reducing the skin depth as mentioned earlier. 

If it were possible to extend the lower frequency limit beyond 0.01 CPD by incorporating the
11-year sun spot variation, perhaps, a deeper conductivity structure of the Earth would have been
adequately deciphered. However, attempts at retrieving the 11-year sun spot variation by Eckhardt
et al. (1963) were in the negative.

The solution obtained by stochastic inversion in general is not unique. It is evident from the
fact that models satisfying the data belong to Hilbert space, which includes all the possible
models. Such models cannot be unique for the given data, as only a finite collection of observed
data is available (Backus and Gilbert, 1967). The properties of the Earth, on the other hand, are
likely to be infinitely variable if viewed on a sufficiently finer scale. In other words, an infinite
dimensional vector in an abstract infinite dimensional parameter space fits the exact description
of the model.

Notwithstanding the aforestated inherent shortcomings, the stochastic inversion utilized
herein has been successful in estimating the vertical resistivity distribution of the Earth for about
410 km, commencing at a depth of around 436 km from the Earth’s surface, using the band-
limited and noise contaminated geomagnetic continuum data.
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