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Adding geodetic strain rate data to a seismogenic context
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ABSTRACT In several seismically active areas deformation processes at depth must generate
deformation at the surface, and the measurement of such surface deformation is an
important boundary condition for models of the evolution of interacting blocks before,
during and after earthquakes. The network of some 160 permanent GPS stations
disseminated in Europe under the European Permanent Network of EUREF, with additional
densification stations in particular areas such as the north east of Italy, provides a valuable
contribution to the estimate of the average surface strain rate. The expected strain rate is of
the order of 20-40 nanostrain per year, corresponding to a velocity change of a few mm/year
over distances of some hundreds of kilometers. Consequently, we must require accuracy in
the velocities of fractions of mm/year, and full control of systematic errors which may mask
tectonic signals. The procedures for the systematic processing of SINEX files, representing
the densified network, are reviewed here with the intent of meeting and possibly exceeding
such specifications. A method for determining the noise in time series of coordinates, and
of obtaining a reliable estimate of the accuracy in the estimated station velocities is
described. In particular, it is shown that, on average, at least three years of continuous
tracking of a permanent GPS station are required for a reliable estimate of its velocity. Then
the problem of calculation of the velocity field and its horizontal gradient is addressed. We
focus on the algorithm of weighted least squares collocation as a technique of minimum
variance to interpolate velocities and strain rates. We present the large scale velocity flow
across most of continental Europe, after subtraction of a rigid rotation approximating the
generalised NE drift of Eurasia, showing a variety of intraplate and interplate processes.
Finally we review the frictional model of Anderson to describe fault interaction and stress
release, and present analytical expressions for recurrence times of fault instabilities. This
simple framework enables a number of key problems to be identified to make proper use of
the geodetically inferred strain rate data. Taking the seismicity in Friuli as a test bed, we
discuss requirements on the knowledge of fault geometries, local rheology, fault plane
solutions, role of pore fluid pressure and historical seismicity which, in conjunction with the
surface geodetic data, are necessary to attempt a more advanced modelling of the dynamic
and potentially seismogenic processes at depth.

1. Introduction

Surface deformation at the surface reflects both the plate driving forces acting at the bottom,
and stress changes at or near fault areas on the top. Stress is, in most cases, released seismically
at pre-existing faults. The slip geometry and the detail of the vertical fault profile are constrained
by seismological and structural data, but they are by themselves insufficient to shed light on the
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dynamics of an earthquake and, eventually, on the hypothesis of an idealized seismic cycle.
Geodetic measurements of strain rate are crucial to reconstruct the deformation pattern of a fault
in space and time. The strain rates involved are small, of the order of 10 to 100 nanostrains per
year (1 nanostrain = 10-9), but continuous measurements over three or more years of the
coordinates of GPS permanent stations seem to have the stability and repeatability to ensure a
reliable estimation of such small signals with sufficient accuracy. Of the several areas that are
prone to a synergy among geodesy, seismology and structural geology, Friuli is very attractive.
Over the past thirty years, after the earthquake of May 1976, field surveys and seismic profiles,
particularly CROP (Montrasio and Sciesia, 1994) and Transalp (Transalp Working Group, 2002),
have shed new light on the structure of the Central and Eastern Alps. Seismic networks
(http://www.crs.inogs.it) have been collecting data continuously, enabling fault plane solutions
and seismic moments to be determined for several earthquakes. More recently, a number of
permanent GPS stations have been installed to form the precision regional network FredNet
(http://www.crs.inogs.it/frednet). Although the time span covered by these stations is
unfortunately still too short for a reliable determination of the velocities, it is nevertheless
possible to combine these data with data from other stations in Italy, Croatia, Slovenia and Austria
and attempt a first map of the strain rate in the area. 

The purpose of this paper is twofold. First, the systematic processing of GPS data yielding
estimates of velocities and strain rates will be reviewed, with particular attention to the reliability
and the spatial resolution of the estimated strain rates. Secondly, using the classical Anderson
theory of faulting, we will combine the geodetic information with a simple ‘slider block’ model
of the seismogenic fault of the 1976 earthquake. Using the static and dynamic equations of this
idealized model we will address the estimation of a number of important parameters, such as
critical deviatoric stress, shear stress drop, energy drop, slip and frictional heating associated with
the earthquake, and finally the question of the repeat time of the seismic cycle.

2. The geodetic data

Our approach to local estimates of the strain rate tensor benefits from a highly structured and
rigorously maintained network of permanent GPS stations known as EPN (European Permanent
Network: http://www.epncb.oma.be) of the EUREF (Fig. 1). The network consists of some 160
stations operating continuously. Data are collected at the Data Center of the Bundesamt fuer
Kartographie und Geodaesie (BKG) in Frankfurt on a daily basis (Bruyninx, 2000). A
Consortium of 16 Local Analysis Centers (LAC) processes partially overlapping subnetworks of
the EPN on a weekly basis, so that each station of the network is analysed by three or more LACs
following processing standards that represent the state-of-the-art modelling of the data and
estimation algorithms. Finally, the normal equations produced by each LAC for a given week are
merged by the BKG into one normal equation system. The network is consequently readjusted
and properly aligned to the International Terrestrial Reference System on a weekly basis. Hence,
the EPN issues weekly, a normal equation for the entire network in the conventional SINEX
format. Such SINEX file is a valuable metadata that includes the adjusted coordinates, their
variance covariance matrix, and the constraints which were adopted for the alignment of the net.
These constraints are explicitly mentioned and are removable, so that the same SINEX file can



457

Adding geodetic strain rate data to a seismogenic context Boll. Geof. Teor. Appl., 47, 455-479

be re-used with different constraints at any time. Because these standardized SINEX files of the
EPN network have been available since GPS week 860 (June 1996), accurate and continuous time
series of coordinates could be computed for the EPN, resulting in a quantitative measurement of
its deformation history. Unfortunately, the spacing of the GPS stations is conceived for the
maintenance of the European geographic reference system, rather than for geodynamical
applications. Consequently, it is necessary to intensify the EPN network, to improve its spatial
resolution. To this purpose, the Local Analysis Center UPA at the University of Padova has been
systematically processing data from a network of Italian and Austrian permanent GPS stations
with the same procedures (software, setup and models) as for the EPN work since GPS week 995.
The present status of this more dense Italian network is shown in Fig. 2. This parallel processing
has resulted in a collection of weekly SINEX files completely compatible with the EPN SINEX
files of the corresponding weeks. To locally densify the EPN geodetic network, we have
henceforth adopted the approach of combining, on a weekly basis, the EPN SINEX with the

Fig. 1 - The European Permanent Network (EPN) managed by EUREF and consisting of some 160 high quality,
permanently operating GPS stations. Data are analysed weekly by 16 Local Analysis Centers, coordinated by one
combination center and supervised by a Technical Working Group. Source: http://www.epncb.oma.be .
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corresponding UPA SINEX file. The result is an increased SINEX file, for each week.
Eventually, the set of EPN SINEX files from week 860 to 994, and the set of increased SINEX
files from GPS week 995 to the present (week 1300) were staked, ITRF2000
(http://itrf.ensg.ign.fr/ITRF_solutions/2000/ITRF2000.php) constraints were imposed on the
position and velocity at a reference epoch of fiducial stations (see Table 1), and an estimate of
mean coordinates and velocities was obtained, together with their covariance matrix.

3. Noise in the time series of coordinates

The time series of the coordinates of the individual stations are the result of the normal
equation stacking, using the Bernese 4.2 program (Beutler et al., 2001), with the addition of the
ITRF2000 constraints to define a conventional datum for position and velocity. After removal of
a best-fitting straight line, the time series resemble a random sequence with zero mean and a root
mean square (rms) dispersion typically of the order of a few millimetres. Spectral analyses,
however, in most cases reveal the presence of an annual signal. Its origin is unlikely to be related
to errors in the assumed coordinates of the pole, because in such a case the annual sinusoids at
the various sites would be correlated, and the phase lags can be predicted exactly from the
nominal geographic position of the stations. A more likely explanation may be the thermal
gradients in the monumentation, or periodic fluid migration in the underground. After removing
the annual signal by standard least squares, the resulting time series are again spectrally analysed
to define the way noise power is distributed in a frequency band which ranges from a low limit
(the inverse of the length of the series) to a high limit (the Nyquist frequency is one cycle every
two weeks). The one-sided power spectral density Sx(f) of the de-trended time series x(t) can be
approximated by a linear combination of power laws Gx(f):

(1)

i = 0 White Phase Noise;
i = 1 Flicker Phase Noise;
i = 2 White Frequency Noise or Random Phase Walk;
i = 3 Flicker Frequency Noise;
i = 4 Random Frequency Walk
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Table 1 - ITRF00 velocities of fiducial sites used to
align the network to a conventional Reference Frame.

Site Vx Vy Vz
(mm/yr) (mm/yr) (mm/yr)

GRAZ -17.60 17.70 8.30

ZIMM -13.80 18.50 10.00

VILL -9.90 20.00 11.10

JOZE -18.10 16.20 7.40

POTS -16.10 16.10 7.70

GRAS -13.10 18.90 10.10
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Fig. 2 - A densification of the EPN shown in Fig. 1 is realized by means of the contribution of several Public and Private
Institutions running permanent GPS stations of the same quality standards as the EPN stations and making their data
available for scientific use.
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where i is the spectral index. The amplitude of each noise term h-i  is estimated by the least squares
fit of the model in Eq. (1) to the spectrum Sx(f) of the de-trended, zero-mean time series of the
station coordinates.

Caporali (2003) found that for most time series the power spectral density follows a power law,
with a spectral index of -1 for frequencies up to 1 cycle every six months, and a spectral index of
zero for higher frequencies. Hence, the noise profile is a flicker phase noise (or f -1) at low
frequencies and a white phase noise (or f 0) at higher frequencies. The presence of significant
coloured noise in the low-frequency band has an impact on the estimate of the uncertainty of the
regression parameters, and, notably the slope, of the straight line which is normally computed to
interpolate the time series. Were the noise white at all frequencies, then the formal uncertainty
computed by the standard least squares would be a reliable estimate of the true uncertainty. The
presence of different power laws in different frequency bands requires a different approach than
for the standard formal error, to estimate the uncertainty in the slope, and hence in the velocity.
A time domain description of the uncertainty in the slope of a time series x(t) is the sample
variance of fractional frequency variations. The average velocity over an interval T at time tk is 

(2)

where k=1,2,… is the sample number. When N consecutive samples are measured, each of
duration T, the variance of the ensemble is known as the Allan variance (Allan, 1966):

(3)

where the brackets denote infinite time average. The Allan variance, in the time domain,
represents a definition of stability in the rate of change of the time series, in the sense of
probability of change in slope. Because of the existence of processes causing this variance to
diverge for a large N, Allan (1966) suggested the introduction of the two sample (i.e. N=2)
variance:

(4)

This is the variance factor of the probability of a change in rate [Eq. (2)] from one portion of
the time series to the next consecutive, both being of length T.

The one - sided spectrum of a time series of coordinates Sx(f) is related to that of the rate of
change Sy(f) of the time series by the equation Sy(f)=(2pf)2Sx(f). The relation between the two-
sample Allan variance and the spectral density Sx(f) of the time series is obtained assuming a
stationary process (i.e. the time average of the ensemble is not affected by a time translation) and
that <yk>

2=0 (i.e. we are considering departures from the average rate of change):

(5)

E[] denotes the expectation value. Hence, the variance of the average rate of change depends on

σ Τ
2 = ( ) − ( )⎡⎣ ⎤⎦ = ( ) − ( )⎡⎣ ⎤⎦

1
0

2
0

2

2

2T
E x T x

T
R R Tx x .

σ σΤ Τ
2 2

+≡ ( ) = −( )2
1

2 1

2

, ,T y yk k

σ y n k
k

N

n

N

N T
N

y
N

y2

1

2

11

1
, ,( ) ≡

1
−

−
⎛
⎝⎜

⎞
⎠⎟==

∑∑

y
x t T x t

Tk
k k=

+( ) − ( )
,



461

Adding geodetic strain rate data to a seismogenic context Boll. Geof. Teor. Appl., 47, 455-479

the autocorrelation Rx() of the coordinate jitter x(t). Using the Wiener - Khinchin Fourier
Transform relationship between the one - sided spectral density of a random signal and its
autocorrelation function (ω = 2π f ):

(6)

we finally obtain the expression of the two-sample Allan variance of a time series with spectrum
Sx, as a function of the time T:

(7)

The Allan variance is an estimate of the stability of a time series, in the sense of maximum
change in slope which can take place with 1 σ probability between two consecutive, non-
overlapping and equal-length batches of data. The Allan variance is normally computed as a
function of the length of the batch. Taking, for example, a time series of five years, it is of
valuable interest to estimate the maximum change in slope expected in the next five years. In the
event of a larger change than that corresponding to the Allan variance, some form of signal, for
example geodynamic or other, should be considered as a cause. Contrary to the formal error
computed by least squares, which assumes white noise at all frequencies, the Allan variance [(Eq.
(7)] embodies the full spectral structure of the noise of a series, and is therefore capable of
embodying the property of our time series: i.e. flicker phase noise prevails at low frequencies
while white noise dominates higher frequencies.

Coloured noise in a time series affects not only the estimated uncertainty of the slope but also
the nominal value of the slope, relative to the values that would be obtained by standard least
squares. We consider a simple linear regression:

(8)

where X0 is the time-series of the coordinates, A is the partial derivative matrix of the linear
regression, Z is the two-dimensional vector of the unknown intercept and velocity, and ε(t) is the
noise vector with elements x(t).

If the power spectral density of the time series follows a power law with a non zero spectral
index, then the corresponding autocorrelation function should differ from a Dirac delta in the
time domain. This means that the coordinates at a given epoch are statistically dependent from
coordinates at different epochs. Because one normally assumes uncorrelated samples in standard
least squares, i.e. diagonal weight matrix of the input data, then the estimated slope and intercept
could in principle be affected by the non diagonality of the weight matrix. More specifically, all
the samples are assumed with the same variance and approximate their covariance with the
normalized autocorrelation ρx(T)=Rx(T)/Rx(0), T being the lag between any two data points. By
standard least squares formulae:
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(9)

and the variance of the velocity is related to the variance of the time series σ0
2 by the (2,2)

element of the variance covariance matrix of the linear regression (the (1,1) element is the
variance of the intercept) in Eq. (9):

(10)

The effect of the data being autocorrelated on the slope estimate has been tested (Caporali,
2003) in a number of time series of EPN permanent stations with three or more years of
continuous tracking. It turns out that the effect is negligibly small for virtually all stations
examined, basically because the decorrelation time is of the order of a few weeks, which is short
compared to the length of the time series. 

In conclusion, the estimates of the velocities remain unchanged whether or not the non
diagonality of the correlation matrix is taken into account, but the formal uncertainties in the
velocities are smaller by a factor of ~ 4 relative to the stability of the time series, as defined by
the Allan variance. This rescaling is a consequence of the 1/f ‘flicker phase’ noise in the time
series at low frequencies. However, the cause of this particular noise remains unclear at present.

Fig. 3 shows an example of the time series of the permanent station PADO: the time series for
each coordinate are shown in Fig. 3a; the identification of periodicities, in particular the annual
term, is shown in Fig. 3b in the time (left) and frequency (right) domain; the spectral properties
of the time series after removal of long periodic terms are shown on the left-hand side of Fig. 3c,
with an estimate of the spectral index. On the right-hand side, we plot the autocorrelation
function. Finally, Fig. 3d shows the Allan variance of each series, as an indication of the time
stability of the time series. Similar plots for the other European stations are available at the web
site http://cisas.unipd.it/gps/project.html. 

4. From scattered velocities to a velocity field and its horizontal gradient

The velocities at the GPS sites, and their uncertainties, form the basis to estimate the tectonic
flow of a surface, and its horizontal gradient, namely the strain rate tensor (Caporali et al., 2003).
For this purpose, we require an interpolation algorithm that maps the scattered data to a regular
grid. In the literature, two different approaches are proposed. One is based on the Delaunay
triangulation, where triangles with vertexes are formed at the stations, and linear interpolation is
used to map the data to the nearest grid point. This is the simplest method to implement and
works very well under the assumptions of very regular spacing of the stations, and homogeneous
values of their uncertainties, which is unfortunately only rarely the case. Velocities of stations
with just three years of data (the minimum required to estimate velocities) are analysed together
with those of stations with eight years of data. Some stations are clustered, while there exist
elsewhere relatively large areas with a comparatively smaller population of stations. An additional
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complication in the Delaunay approach is related to the estimate of the horizontal velocity
gradient and its uncertainty: it is unclear how to propagate the covariance of the velocity of a
permanent station to a covariance of the strain rate tensor. A second approach, based on least
squares collocation, seems more suited to cope with the geographical and statistical properties of
our input scattered velocities, although at the expenses of a larger computation time. Least
squares collocation requires a covariance function for the data to be specified. This function
defines how the input data decorrelate with increasing lag distance. Although there is no other
constraint that its regularity at the origin (it should be finite at zero lag and have zero derivative)
and at infinity (it should tend to zero), the choice of the function is arbitrary. A popular selection

Fig. 3 - Example of the analysis of time series of coordinates of the permanent station PADO. The time series for each
coordinate are shown in Fig. 3a;  the identification of periodicities, in particular the annual term, is shown in Fig. 3b
in the time (left) and frequency (right) domain; the spectral properties of the time series after removal of long periodic
terms are shown in the left hand side of Fig. 3c, with an estimate of the spectral index. On the right hand side, we plot
the autocorrelation function. Finally, Fig. 3d shows the Allan variance of each series, as an indication of the time
stability of the time series. The velocities given in this figure represent the maximum velocity change which can be
expected with 1σ confidence in the next 168 weeks. 
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is the isotropic covariance function, falling off to infinity as the inverse square of the lag distance
d:

(11)

The non-diagonal structure of the matrix C implies that, for example, to compute the north
component of the velocity at a grid point we consider not only the contribution of the north velocities
at all the data points through the matrix Cnn, but also the contribution of the east velocities through
the matrix Cen .

The covariance matrix C depends on a scale distance d0, which should be determined by the data
themselves. Other choices are also possible, and the final result is, to a large extent, independent of
the form of the function. Least squares collocation is a minimum variance algorithm which
interpolates the velocity at a grid point by means of a weighted sum of the velocities at all the data
points, with a weight dependent on the distance of the grid point from the individual data points. If
the input velocities have uneven uncertainties, then the covariance function can be conveniently
complemented with the a priori covariance W of the input velocities. In this manner, one takes into
account proper the a priori statistics of the input data: 

(12)

with

(13)

and σ2 is, for example, the Allan variance of each velocity.
The computational effort required by this method is that it requires the inversion of a squared

matrix of dimension equal to the number of available data points. However, this inversion is required
only once. The covariance of the interpolated velocity is obtained by taking the ensemble average of
the product of the transposed interpolated velocity times the interpolated velocity:

(14)

The matrix S in Eq. (14) represents the covariance of the scattered velocities, and is found in the
SINEX file resulting from the normal stacking equation yielding the time series.

The eigenvalues of the covariance matrix of the velocity (14) yield the error ellipse of the
interpolated velocity at every grid point P. The collocation assumes that the input data have zero
mean. Hence, after interpolation the mean value will have to be added back.

The components of the strain-rate tensor are obtained likewise by considering the horizontal
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derivatives of the covariance function:

(15)

The strain-rate matrix is the symmetric part of the matrix described by Eq. (15). The
antisymmetric part represents a rigid rotation, and hence gives no contribution to the strain rate. It
should be noted that because the covariance function tends to zero as the inverse square of the
distance, for values of the distance larger compared to the scale distance, the derivative tends also to
zero. Consequently, when interpolating at points with a distance from the data points larger than the
scale distance, the collocation algorithm will tend to return a zero strain rate. 
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Fig. 4 - Scattered velocities of permanent GPS stations with three or more years of data, after subtraction of the velocity
predicted by the model Nuvel1A NNR in terms of rigid rotations about an Eurasian Euler pole. Error ellipses are at 1
σ. Also shown the interpolation, by weighted least squares collocation, of the scattered velocities to a regular grid of
2-degree spacing. Large values of the velocities are visible for the station REYK, in the portion of Iceland belonging
to the American plate. The convergence of the African plate with the reference Eurasian plate is visible as a decreasing
velocity field northwards. Further east, the counterclockwise motion of Turkey and the convergence of the Arabian
plate with Eurasian along the Caucasus appear well defined by the data. Numerical values of the velocities are
tabulated in Table 2.
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E Lon N Lat vN vE min axis maj axis Az site DOMES
(°) (°) (mm/yr) (mm/yr) (mm/yr) (mm/yr) (deg)

13.51 46.55 0.54 1.23 0.76 1.03 88.38 ACOM 00000M000

-8.40 43.36 5.56 -0.27 0.03 0.04 93.66 ACOR 13434M001

12.17 46.53 -3.12 0.67 0.75 1.01 91.22 AFAL 00000M000

8.76 41.93 0.09 1.27 0.03 0.03 87.89 AJAC 10077M005

-0.48 38.34 0.36 1.56 0.03 0.03 92.77 ALAC 13433M001

-2.46 36.85 -1.07 0.42 0.04 0.05 101.74 ALME 13437M001

32.76 39.89 -24.41 1.35 0.03 0.04 82.45 ANKR 20805M002A

32.76 39.89 -24.47 1.38 0.03 0.04 82.38 ANKR 20805M002C

13.35 42.37 0.61 4.02 0.04 0.05 87.93 AQUI 12757M001B

11.53 45.87 -1.52 5.67 0.25 0.33 90.58 ASIA 12714M001

1.40 41.60 -0.02 0.86 0.03 0.04 84.74 BELL 13431M001

21.04 52.48 -0.36 1.67 0.02 0.03 91.21 BOGI 12207M003

21.04 52.48 -0.36 1.67 0.02 0.02 91.26 BOGO 12207M002A

17.07 52.28 -0.90 0.91 0.02 0.03 91.59 BOR1 12205M002A

6.75 53.56 -0.38 -0.15 0.03 0.05 88.39 BORK 14268M001

11.11 44.12 -0.26 1.33 0.13 0.17 90.02 BRAS 00000M000

10.23 45.56 1.55 -0.58 0.13 0.17 88.95 BRIX 12762M001

-4.50 48.38 0.42 0.36 0.02 0.03 90.96 BRST 10004M004

4.36 50.80 -0.73 -0.36 0.01 0.02 87.85 BRUS 13101M004

26.13 44.46 -0.05 0.58 0.02 0.03 87.36 BUCU 11401M001

12.50 55.74 -0.72 0.94 0.11 0.16 91.27 BUDP 10101M003

19.06 47.48 1.62 -6.18 5.62 7.83 86.15 BUTE 11209M001

11.34 46.50 -2.17 3.07 0.04 0.05 88.74 BZRG 12751M001A

-6.34 39.48 0.61 0.86 0.08 0.09 94.66 CACE 13447M001

8.97 39.14 1.12 1.63 0.02 0.02 94.19 CAGL 12725M003A

8.97 39.14 1.12 1.63 0.02 0.03 94.11 CAGZ 12725M004

13.12 43.11 1.89 4.84 0.03 0.04 88.20 CAME 12754M001

-3.80 43.47 -0.30 1.45 0.04 0.05 94.68 CANT 13438M001

-9.42 38.69 0.83 0.46 0.02 0.03 97.86 CASC 13909S001

12.58 45.48 -0.46 3.22 0.07 0.09 89.77 CAVA 00000M000A

-5.31 35.90 -3.37 1.71 0.08 0.09 97.87 CEUT 13449M001

-0.41 46.13 0.64 0.73 0.04 0.05 92.90 CHIZ 10020M001

9.10 45.80 -0.25 -0.64 0.06 0.08 87.57 COMO 12761M001

16.31 39.20 3.14 2.19 0.33 0.43 81.47 COSE 00000M000

3.32 42.32 0.81 4.24 0.04 0.05 90.76 CREU 13432M001A

-2.64 53.34 0.72 -0.31 0.25 0.35 90.32 DARE 13208S001

4.39 51.99 -0.60 0.48 0.01 0.02 87.44 DELF 13502M004

3.40 50.93 -0.12 0.57 0.01 0.02 88.29 DENT 13112M001

4.60 50.09 -0.28 0.09 0.01 0.02 88.88 DOUR 13113M001

35.39 31.59 -2.82 11.33 0.05 0.07 68.23 DRAG 20710S001

13.73 51.03 0.00 0.97 0.05 0.07 90.11 DRES 14108M001A

Table 2 - Horizontal velocities of European permanent GPS stations, with their estimated error ellipses, after
subtraction of the rigid rotation velocity about the Eurasian Eulerian pole, as estimated in the Nuvel1A NNR Model
(De Mets et al., 1994).
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18.11 42.65 -0.15 4.98 0.04 0.06 83.84 DUBR 11901M001

0.49 40.82 0.57 0.64 0.02 0.02 93.64 EBRE 13410M001

5.68 50.76 -0.68 0.62 0.03 0.04 89.25 EIJS 13533M001A

10.21 42.75 -0.23 1.79 0.04 0.05 87.53 ELBA 12721M002

0.98 42.69 0.26 0.54 0.03 0.04 91.75 ESCO 13435M001

6.76 50.67 0.00 1.60 0.04 0.05 89.08 EUSK 14258M003A

20.32 49.03 -4.87 1.76 0.26 0.37 87.39 GANP 11515M001

8.92 44.42 0.31 1.07 0.02 0.02 90.50 GENO 12712M002

30.50 50.36 -1.55 1.60 0.02 0.03 90.52 GLSV 12356M001

14.79 49.91 0.14 0.84 0.01 0.02 88.14 GOPE 11502M002

6.92 43.75 0.12 0.41 0.00 0.00 90.00 GRAS 10002M006

15.49 47.07 0.54 1.69 0.00 0.00 90.00 GRAZ 11001M002A

14.54 46.05 -0.39 3.40 0.07 0.10 86.84 GSR1 14501M001

7.89 54.17 -0.87 0.71 0.02 0.03 89.67 HELG 14264M001

0.33 50.87 -1.41 -0.11 0.25 0.35 88.42 HERT 13212M010

11.39 47.31 0.27 1.87 0.02 0.03 89.80 HFLK 11006S003A

10.48 53.05 0.60 0.11 0.03 0.04 90.16 HOBU 14202M003

8.29 54.76 -0.61 0.16 0.24 0.36 90.03 HOER 14284M001

-15.20 64.27 2.65 -2.01 0.03 0.04 83.45 HOFN 10204M002A

7.64 45.02 0.49 0.95 0.03 0.03 88.61 IENG 12724S001

12.51 41.83 1.84 4.33 0.08 0.10 88.47 INGR 00000M000

-4.22 57.49 -0.10 -1.11 0.24 0.35 89.00 INVE 13221S001

29.02 41.10 2.20 -1.82 0.03 0.03 82.72 ISTA 20807M001

30.10 62.39 -0.93 0.12 0.02 0.02 97.85 JOEN 10512M001

21.03 52.10 0.21 1.43 0.00 0.00 90.00 JOZ2 12204M002

8.41 49.01 -0.29 0.95 0.05 0.07 89.47 KARL 14216M001A

19.04 50.25 0.52 -2.99 0.22 0.31 87.25 KATO 12219S001

-50.94 66.99 -17.54 -2.58 0.05 0.06 85.20 KELY 43005M001A

21.06 67.88 -1.89 0.54 0.01 0.02 96.18 KIR0 10422M001

20.97 67.86 -2.32 1.61 0.02 0.02 95.64 KIRU 10403M002

8.73 50.22 0.45 2.12 0.04 0.06 88.69 KLOP 14214M002A

5.81 52.18 -0.57 0.98 0.01 0.02 86.61 KOSG 13504M003A

19.92 50.07 -0.83 1.37 0.11 0.16 87.58 KRAW 12218M001

-8.67 37.10 -1.48 1.56 0.07 0.08 163.19 LAGO 13903M001

20.67 53.89 -1.60 1.08 0.02 0.03 91.64 LAMA 12209M001A

12.61 35.50 -2.42 5.45 0.02 0.03 89.54 LAMP 12706M002

9.41 45.86 0.09 4.93 1.54 1.98 91.05 LEC1 12768M001

14.28 48.31 -1.89 0.18 0.33 0.46 87.99 LINZ 11033S001

1.97 42.48 0.05 0.90 0.03 0.04 93.41 LLIV 13436M001

-17.89 28.76 -0.92 1.59 0.13 0.14 129.68 LPAL 81701M001

-1.22 46.16 0.28 0.12 0.09 0.12 94.26 LROC 10023M001

2.62 39.55 0.66 1.15 0.13 0.16 90.60 MALL 13444M001

0.16 48.02 1.36 -0.42 0.02 0.03 89.99 MANS 10091M001

17.26 60.60 -1.27 -0.22 0.01 0.02 91.96 MAR6 10405M002

Table 2 - continued.



468

Boll. Geof. Teor. Appl., 47, 455-479 Caporali 

15.69 40.00 -2.79 -2.18 0.43 0.55 80.03 MARA 00000M000

5.35 43.28 -0.08 0.89 0.03 0.05 90.00 MARS 10073M008

-15.63 27.76 -1.87 2.25 0.03 0.03 128.43 MAS1 31303M002

16.70 40.65 0.32 6.30 0.02 0.02 61.45 MATE 12734M008A

13.44 45.92 -0.96 2.84 1.00 1.32 78.48 MDEA 12765M001

37.22 56.03 -1.00 1.60 0.03 0.04 94.75 MDVO 12309M002A

11.65 44.52 1.78 3.08 0.01 0.01 89.59 MEDI 12711M003

11.16 46.67 -0.13 0.09 0.00 0.00 90.00 MERA 00000M000A

24.40 60.22 -0.62 0.01 0.01 0.02 97.27 METS 10503S011

31.97 46.97 -0.61 1.42 0.12 0.16 87.18 MIKL 12335M001

12.58 38.01 -1.87 5.88 0.06 0.07 86.34 MILO 00000M000

2.59 48.84 -1.26 1.50 0.03 0.04 90.66 MLVL 10092M001

17.27 48.37 -0.33 1.82 0.02 0.03 89.62 MOPI 11507M001

-1.69 55.21 1.34 1.06 0.13 0.19 89.63 MORP 13299S001

12.99 46.24 -0.97 2.74 0.66 0.88 86.98 MPRA 12764M001

11.65 44.52 4.14 -5.24 4.49 6.08 90.61 MSEL 12711M008

-5.54 50.10 -2.23 5.62 0.91 1.28 91.66 NEWL 13273M103

33.40 35.14 -7.08 6.33 0.02 0.02 67.93 NICO 14302M001

14.99 36.88 -1.41 6.46 0.04 0.05 80.16 NOT1 12717M004

14.99 36.88 -1.40 6.44 0.04 0.05 80.50 NOTO 12717M003A

8.61 45.45 0.41 1.41 0.05 0.07 88.13 NOVA 00000M000

-0.34 51.42 -0.59 -0.86 0.04 0.06 89.58 NPLD 13234M003

44.50 40.23 2.23 10.07 0.04 0.04 84.83 NSSP 12312M001

11.87 78.93 -2.04 -0.54 0.02 0.03 89.09 NYA1 10317M003

22.14 47.84 0.49 0.18 0.13 0.18 87.42 NYIR 11208M001

11.28 48.09 0.05 1.24 0.03 0.04 89.14 OBER 14208M001A

11.28 48.08 0.05 1.24 0.03 0.04 89.13 OBET 14208M004

11.93 57.40 -1.39 -0.04 0.01 0.02 89.63 ONSA 10402M004

20.79 41.13 0.92 -0.62 0.04 0.05 79.03 ORID 15601M001

20.67 46.56 -0.20 2.78 0.08 0.11 86.33 OROS 11207M001A

18.68 45.56 0.02 1.92 0.03 0.04 86.17 OSJE 11902M001

10.37 59.74 -3.38 0.68 0.03 0.05 90.33 OSLS 10307M001

11.90 45.41 -0.10 3.05 0.03 0.04 88.04 PADO 12750S001

11.46 47.21 -0.03 1.39 0.05 0.07 88.29 PATK 11029S001

9.14 45.20 4.43 -0.33 0.16 0.21 87.61 PAVI 00000M000B

-25.66 37.75 -1.96 0.37 0.07 0.08 170.93 PDEL 31906M004

19.28 47.79 0.28 1.45 0.01 0.02 88.94 PENC 11206M006A

9.78 47.52 0.95 1.36 0.04 0.05 87.74 PFAN 11005S002A

-4.11 50.44 -4.17 -3.05 1.80 2.48 91.87 PLYM 13229S001

34.54 49.60 -1.51 2.40 0.06 0.08 88.58 POLV 12336M001

13.07 52.38 -0.65 0.90 0.00 0.00 90.00 POTS 14106M003

11.10 43.89 0.59 2.57 0.05 0.06 90.36 PRAT 12760M001

10.46 52.30 0.10 0.61 0.06 0.08 88.25 PTBB 14234M001A

13.84 44.89 0.11 3.72 0.60 0.79 85.98 PULA 11903S001

Table 2 - continued.
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-46.05 60.72 -19.55 0.79 0.12 0.18 92.26 QAQ1 43007M001

-6.85 34.00 -2.75 2.42 0.06 0.06 107.55 RABT 35001M002

34.76 30.60 -4.10 10.48 0.03 0.03 73.54 RAMO 20703S001

5.14 50.00 -0.36 0.38 0.19 0.27 89.29 REDU 13102M001

-21.96 64.14 -19.03 4.49 0.02 0.02 68.95 REYK 10202M001

24.06 56.95 -1.09 0.55 0.02 0.02 93.36 RIGA 12302M002

11.04 45.89 -0.40 0.09 1.01 1.33 92.32 ROVE 00000M000

11.78 45.09 -2.78 0.59 1.59 2.09 91.59 ROVI 12769M001

14.34 47.52 -1.34 0.41 0.18 0.24 86.50 RTMN 00000M000

13.64 54.51 -2.16 2.03 0.24 0.35 89.01 SASS 14281M001

13.11 47.80 -0.43 1.57 0.06 0.08 88.82 SBGZ 11031S001A

12.29 45.23 -1.76 2.19 0.07 0.09 89.72 SFEL 00000M000A

-6.21 36.46 -2.46 1.37 0.02 0.02 105.75 SFER 13402M004

4.68 45.88 0.21 0.44 0.05 0.06 88.99 SJDV 10090M001A

4.68 45.88 0.20 0.44 0.05 0.06 89.01 SJDV 10090M001C

21.05 64.88 -1.12 0.52 0.24 0.37 89.57 SKE0 10426M001

9.56 55.64 -0.99 0.17 0.18 0.27 90.06 SMID 10114M001

26.39 67.42 -1.59 0.52 0.02 0.02 98.84 SODA 10513M001

23.39 42.56 0.80 -0.31 0.02 0.02 86.07 SOFI 11101M002

12.89 57.72 -0.98 -0.39 0.09 0.14 90.40 SPT0 10425M001

18.41 43.87 0.98 2.81 0.06 0.07 83.58 SRJV 11801S001A

5.60 59.02 -1.40 -0.16 0.03 0.05 86.71 STAS 10330M001

15.63 48.20 -0.48 0.92 0.05 0.07 94.26 STPO 00000M000

9.74 56.84 -0.50 0.18 0.18 0.26 90.04 SULD 10113M001

24.01 49.84 -0.52 1.86 0.06 0.09 86.66 SULP 12366M001

29.78 60.53 -0.45 -0.08 0.03 0.03 89.23 SVTL 12350M001

17.28 40.53 0.56 12.42 1.60 1.97 83.31 TARS 12773S001

5.22 53.36 0.69 -0.75 0.03 0.04 88.74 TERS 13534M001A

15.65 38.11 -0.04 6.44 0.09 0.11 82.04 TGRC 00000M000B

-68.83 76.54 -14.88 -5.78 0.15 0.17 108.04 THU3 43001M002

15.72 40.60 0.30 7.64 0.12 0.14 84.37 TITO 00000M000

1.48 43.56 0.23 0.37 0.03 0.04 89.85 TLSE 10003M009

39.78 40.99 -0.77 4.84 0.03 0.04 81.14 TRAB 20808M001

10.32 63.37 -1.96 0.95 0.03 0.05 88.18 TRDS 10331M001

11.12 46.07 -0.63 1.03 0.09 0.12 89.14 TREN 12753M001B

13.76 45.71 -1.76 3.52 0.72 0.95 88.08 TRIE 00000M000

18.94 69.66 -1.29 1.68 0.02 0.03 93.01 TRO1 10302M006

16.59 49.21 -0.15 1.45 0.06 0.08 86.20 TUBO 11503M001

24.07 35.53 -20.35 -23.67 4.35 5.12 84.24 TUC2 12617M003

12.36 43.12 -0.43 2.70 0.04 0.05 89.00 UNPG 12752M001A

11.88 45.41 -0.06 3.07 0.03 0.04 88.10 UPAD 12750M002A

21.77 62.96 -1.11 -0.13 0.01 0.02 94.34 VAAS 10511M001

-0.34 39.48 1.05 0.98 0.06 0.07 96.20 VALE 13439M001

31.03 70.34 -1.41 0.12 0.04 0.05 99.14 VARS 10322M002

Table 2 - continued.
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(16)

A positive strain-rate implies an increasing relative velocity between two nearby points, and hence
an extension. Likewise, a negative eigenvalue indicates compression. Areas subject to expansion or
contraction are also possible. In such case, the two eigenvalues are both respectively negative or
positive. The maximum shear strain is finally given by the difference of the absolute values of the
two eigenvalues. We shall however adopt the convention that compression has a positive strain rate
and extension a negative strain-rate later.

The covariance of the scattered velocities at the data points maps, linearly, into a covariance of the
strain rate tensor in geographical coordinates. Linearization of Eq. (16) relative to small uncertainties
in the normal and shear components of the strain rate yields the required uncertainties in the principal
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12.33 45.44 -0.11 2.88 0.03 0.03 88.73 VENE 12741M001A

16.56 64.70 -2.14 0.46 0.01 0.02 93.10 VIL0 10424M001

13.85 46.61 -0.02 1.12 0.04 0.06 92.93 VILH 00000M000

-3.95 40.44 0.47 0.15 0.00 0.00 90.00 VILL 13406M001

18.37 57.65 -1.05 -0.01 0.01 0.02 91.52 VIS0 10423M001

25.30 54.65 -1.13 1.96 0.05 0.07 95.00 VLNS 10801M001

15.27 40.23 -22.59 -9.65 0.11 0.13 84.29 VLUC 00000M000A

11.91 45.38 -0.44 2.73 0.07 0.09 89.54 VOLT 00000M000A

5.25 50.69 -0.09 0.11 0.02 0.03 89.41 WARE 13114M001A

12.10 54.17 -1.45 1.61 0.28 0.41 89.65 WARN 14277M002

12.88 49.14 0.11 0.94 0.02 0.02 92.12 WETT 14201M009

16.37 48.22 -0.56 -1.30 0.07 0.09 94.25 WIEN 00000M000A

17.06 51.11 -1.41 1.13 0.01 0.02 89.30 WROC 12217M001

6.60 52.91 -0.68 0.85 0.02 0.02 90.37 WSRT 13506M005

12.88 49.14 0.01 0.99 0.02 0.02 92.04 WTZR 14201M010A

-3.09 40.52 0.19 0.66 0.03 0.04 96.24 YEBE 13420M001

41.57 43.79 -0.08 3.73 0.02 0.03 82.44 ZECK 12351M001

7.47 46.88 0.29 0.85 0.00 0.00 90.00 ZIMM 14001M004A

7.47 46.88 0.29 0.85 0.00 0.00 90.00 ZIMM 14001M004B

7.47 46.88 0.29 0.85 0.00 0.00 90.00 ZIMM 14001M004C

12.97 46.56 -0.98 1.01 0.12 0.16 89.88 ZOUF 12763M001

36.76 55.70 -0.74 1.07 0.02 0.03 93.91 ZWEN 12330M001

19.21 49.69 -0.49 1.77 0.21 0.29 87.39 ZYWI 12220S001

Table 2 - continued.
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strain rates and in the azimuth. Hence, the collocation algorithm enables principal values of the strain
rate and the azimuth to be interpolated rigorously, and the uncertainties to be estimated in a formal
sense from the nominal values and full covariance of the input, scattered velocities.

The scattered velocities are shown in Fig. 4, together with their interpolation at a regular grid of 2
degree spacing, to obtain a general look of the estimated European kinematics inferred from GPS data.

5. Constraining an idealized earthquake cycle with geodetic data

The surface strain which is implied by the geodetic data, possibly in conjunction with InSAR data,
is considered of great interest in earthquake research and mitigation of the earthquake hazard. It is,
therefore, important to develop simple models to understand in detail how one can fit the geodetic
information into a picture which already contains seismological and structural data. The simplest
model is that of a slider block (Fig. 5). The surface of contact dips at an angle δ = 90° – θ relative to
the horizontal, and the two blocks are subject to a horizontal deviatoric stress ∆σxx. In the following
subsections we review the static and dynamic information which can be predicted with such a simple
model.

Fig. 5 - Idealized slider block model.
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5.1. Static analysis

We intend to determine here the maximum value of the horizontal deviatoric stress at which the
sliding instability occurs along the fault plane, using the classical theory of Anderson, as described
in Turcotte and Schubert (2002). To this purpose (see Fig. 5), we introduce the normal σn and
tangential τ stresses, relative to the fault plane, and the angle of the fault plane relative to the vertical
θ = 90° – δ. Then:

(17)

where pw is the pore pressure that opposes to the lithostatic load. We define the onset of the
instability in terms of the Amonton law, i.e. when the tangential stress equals the normal stress
times the coefficient of static friction fs. This criterion is legitimate for temperatures low enough
for the concept of friction to be applied. According to Amonton’s law instability occurs when
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Fig. 6 - Velocities of permanent GPS stations and fault geometries in the central eastern Alps. Error ellipses are 1σ
confidence. 
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(18)

where the upper sign refers to thrust faults and the lower sign to normal faults.
To compute the displacement along the fault, say in the u direction, we assume that the

deformation at the fault surface is elastic, with a shear modulus µ. We further assume that the
rupture area is a square of side A1/2. This enables us to relate the tangential stress to the
displacement in terms of the Hooke law:

(19)

It follows that the instability takes place when the displacement along the fault has reached a
limit value:

(20)

5.2. Dynamical analysis

In this section, we attempt to model the motion of the slider from the epoch t=0 at which the
sliding instability occurs and the epoch at which the slider stops. We assume that the acceleration
of the slider along the fault plane is caused by the algebraic sum of the restoring elastic stress and
a constant dynamic friction, again proportional to the normal critical stress, i.e. the one
corresponding to the maximum deviatoric stress. The equation of motion is then

(21)

where fd is the coefficient of dynamic friction. The solution of this equation of motion satisfying
a first boundary condition of zero velocity at t = 0 is of the type:

(22)

The second boundary condition u(0) = us defines the amplitude of the elastic rebound:

(23)

The rebound lasts from t = 0 to the time at which the velocity is again zero, that is:

(24)

The corresponding displacement is: 
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Fig. 7 - Velocity field (a), strain rate (b) and fault plane solutions in the past 30 years (c) in Friuli, inferred from
geodetic data. Fault plane solutions detailed in Table 3.

a

b

c
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(25)

This corresponds to a scalar seismic moment: 

(26)

and a shear stress drop: 

(27)

The shear stress remaining in the rocks after the slip event has occurred is the difference
between the total available shear stress [Eq. (19)] corresponding to a limit displacement given by
Eq. (20), and the shear stress drop [Eq. (27)]:

(28)

This residual shear stress on the fault plane corresponds to a residual deviatoric stress in the
horizontal direction:
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lon lat strike1 dip1 slip1 strike2 dip2 slip2 M0 exp epoch

13.17 46.33 284 18 119 74 74 81 6.33 25 050676

12.63 45.8 298 24 117 89 69 79 1.41 24 091677

17.33 44.86 152 55 -169 55 81 -36 3.9 24 081381

10.62 44.86 217 53 47 94 54 132 1.46 24 101596

13.50 46.39 218 67 -4 309 87 -157 3.5 24 041298

12.00 44.31 55 39 83 245 51 96 4.76 23 051000

8.48 44.87 130 44 -97 321 46 -83 2.75 23 082100

11.17 46.66 210 69 16 114 75 159 1.57 23 071701

11.22 44.26 264 31 98 74 60 85 1.026 24 091403

13.12 46.47 327 38 -158 219 77 -54 11.96 22 021402

13.63 46.34 237 43 27 126 72 129 8.73 23 071204

10.62 45.62 246 24 113 42 68 80 4.26 23 112404

Table 3 - Fault plane solutions of the largest Eastern Alps earthquakes in the last 30 years (sources:
http://www.ingv.it/seismoglo/RCMT/; http://www.seismology.harvard.edu/projects/CMT/). Epicentral coordinates in
degrees, strike dip and slip angles of the two planes in degrees, Seismic moment basis and exponent in units of 10-7

Nm.
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5.3. Interseismic analysis

In a plane-stress approximation the critical deviatoric stress ∆σxx in an area subject to a
uniform strain rate and preloaded by a deviatoric stress σxx

(0), for example a remnant of a previous
seismic event, is obtained after a time ∆t counted from the last epoch of onset of the instability:

(30)

E and ν are the Young modulus and Poisson ratio respectively, and µ = E/[2(1+ν)]. The process
of stress accumulation on a fault plane may involve a number of random, smaller events which
drain from the strain rate and hence lengthen the time required to reach the critical deviatoric
stress. For example, if we are interested in the time required to reach the deviatoric stress of an
earthquake of magnitude larger than 6, then we have to subtract from the total, ‘steady state’
geodetic strain rate the average strain rate which is drained by earthquakes of magnitude smaller
or equal to 6 in the same area and time interval. The remaining strain rate should of course
account for the main shocks and the fore/after shocks as well. This average strain rate can be
estimated by the Kostrov formula by considering the sum of the scalar moments of the
earthquakes of magnitude not larger than 6 in the fracture area A, over a reference interval ∆t:

(31)

Hence, the strain rate to be considered in Eq. (30) is the difference between the geodetic strain
rate inferred from GPS and the Kostrov strain rate defined by Eq. (31).

The residual deviatoric stress leftover by the previous sliding instability depends on a dip
angle, seismic moment, rupture area, dynamic friction, hypocentral depth and other parameters
which need not to be equal to that of the current earthquake. We will examine here the case in
which the only parameter allowed to differ from one earthquake to the next is the dip angle. Under
this assumption, we have [see Eq. (29)] that the last earthquake took place at a dip angle 90°-θ(0)

and left a deviatoric stress:

(32)

It follows from Eq. (30) that the deviatoric stress to be built from one event to the next is

(33)

The repeat time is obtained from Eqs. (30) and (33), taking into account Eq. (31) for
computing the effective strain rate. 

We address the recurrence of consecutive instabilities along the same plane, that is θ = θ(0).
The angle of minimum stress satisfies the condition tan2θ = ±1/fs . It follows that the estimated
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recurrence time of two identical slip events along the same plane is:

(34)

Hence, the recurrence time basically depends on the shear stress drop (27) projected on the
horizontal. The strain rate is assumed negative for extension and positive for compression, which
ensures a positive accumulation time. This is the same regardless of the compressional/ extensional
stress regime, while the deviatoric stress ∆σxx does depend on the regime. Fig. 5b shows Eq. (34) for
two values of the strain rate, 20 and 35 nstrain/yr, which should be typical for Friuli. We have further
assumed M0 = 6.33 1018 Nm and A = 325 106 m2, which should be typical for the May 6, 1976 event
(Galadini et al., 2005). Unfortunately, there is no historical earthquake that may be considered a
predecessor of the 1976 event, so that Eq. (34) is not very useful in this case. 

One can however extend Eq. (33) to the case in which an event at some location and time leaves
a residual stress which is then propagated in space and time according to some mechanism, such as
viscoelastic diffusion with respect to some underlying viscous channel. Then, depending on the
diffusion coefficient, stress can propagate from one area to the other, and help in activating it.

Fig. 6 describes the fault pattern superimposed on the kinematics in the Friuli area, which comes
from the analysis of time series of permanent GPS stations. Fig. 7 represents the velocity field, the
strain rate field and the fault plane solutions of the events listed in Table 3. Finally, Fig. 8 gives the

∆t
M

A E

M f

A E

s=
±

−
≥ ±

+ −
• •

0
3 2

2
0

2

3 2

2

2

1 1 1
/ /sin

.
θ

υ

ε

υ

ε

Fig. 8 - Structural geology and a sliding block model: (a)vertical profile, from Galadini et al. (2005); (b) sliding wedge
geometry highlighting the deviatoric stress, an elastic shear stress acting on the sliding plane, the lithostatic body force
and the fault plane solution of the May 6, 1976 event given in Table 3. Note that the eigenvector is nearly horizontal
where the deviatoric stress is applied, and turns to high dip angle close to the sliding surface, in agreement with the
fault plane solution.
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vertical profile of the area activated with the 1976 earthquakes (Galadini et al., 2005), the
corresponding idealization with the sliding block model and, finally, a finite element simulation
showing how the strain direction, depending on the friction on the interface, may dip at a larger angle
at depth than at the surface. 

6. Conclusion

The analysis of long-time series of displacements of permanent GPS stations yields rigorous
velocity data and associated uncertainty, which can be interpolated to a grid of velocities and
eigenvectors of the strain rate tensor by least squares collocation, keeping control of the error.
Consequently, depending on the local concentration of stations and period of activity it is now
possible to monitor surface-strain accumulation with an accuracy on average of the order 10%. We
require structural and geophysical data of the same accuracy in seismogenic areas, and a model of
stress build-up and release that can make use of these data. As a first attempt, we have used the
classical Anderson theory of faulting to develop a simple analytical framework in which the geodetic
strain rate is combined with the frictional dynamics of a sliding wedge on an inclined interface.
Considering such very crude predictions confronts us with some important questions: to which extent
the parameters of the model, such as dip angle of the fault, friction coefficient, rupture area, elastic
constants, pore fluid pressure, hypocentral depth… are well constrained? Are there any pairs of event
which may be considered one the replica of the other? Do we have any mean to transfer elastic stress
aseismically between two neighbouring areas? As the geodetic data keep improving in accuracy and
spatial resolution, the importance of seismic profiling and of the measurement of stress in rocks
appears crucial in making even simple theoretical models truly useful.
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