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ABSTRACT  The CROP 18 Project (1995-2002) has dealt with the relationships between crustal
structures and geothermal resources in southern Tuscany. The acquisition of a 120 km-
long deep seismic reflection survey is also included in this Project. Here we discuss
the compressional and extensional regimes, both proposed as explanation for the
Neogene-Quaternary structures of southern Tuscany. We also discuss the close
relationship of seismic reflectivity, CROP 18-lines orientation and Pliocene-Present
tectonic structures. The main results are: (a) the extensional framework, which has
been active since the Early-Middle Miocene, explains the structural features and
tectonic evolution of southern Tuscany better than compression; (b) the upper crust of
southern Tuscany is characterised by widespread boudinage; (c) the mid-lower crust is
largely affected by magmatic intrusions; (d) NE-dipping extensional shear zones are
imaged in the upper and lower crust; these are connected through a mid-crustal shear
zone, located at the brittle/ductile transition. These shear zones could act as
preferential pathways for upward migration of metamorphic and magmatic fluids and
mantle elements, now characterising the geothermal fluids of the Larderello area.

1. Introduction

Continental, extensional tectonic environments with high heat flow indicate the presence of
geothermal systems, independently from the geodynamic context in which they are located (e.g.
Muffler and Duffield, 1995; Barbier, 2002). The CROP 18 Project, which includes the acquisition
of deep seismic lines through the most important geothermal areas of Tuscany (Fig. 1), aims at
investigating the relationships between geothermal resources and crustal structures. Southern
Tuscany is characterised by a thin crust [of about 22-24 km: Giese et al., (1981), Nicolich, (1989),
Ponziani et al., (1995)], a thin lithospheric mantle [of about 40 km: Calcagnile and Panza, (1981),
Suhadolc and Panza, (1989)] and high heat flow with local peaks of up to 1000 mW/m2 and 600
mW/m2, corresponding to the Larderello and Mount Amiata geothermal areas, respectively
(Mongelli et al., 1989; Della Vedova et al., 2001; Bellani et al., 2004). These features, also
highlighted by the CROP 03 Project (Pialli et al., 1998) and CROP03 deep seismic reflection
profile (Barchi et al., 1998; Decandia et al., 1998; Lavecchia et al., 2004), underline the
relationship between a thin lithosphere and the occurrence of geothermal resources.
Consequently, a crustal project entirely dedicated to southern Tuscany and its geological features,
named CROP 18 Project, was proposed (Lazzarotto and Liotta, 1994). Furthermore, during the
time-period in which the CROP 18 Project was carried out, new studies in the field (Bonini et al.,
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1994, 2001; Boccaletti et al., 1999) as well as deep (Finetti et al., 2001; Bonini and Sani, 2002)
geological structures explained the tectonic evolution of Tuscany in the framework of a
compressional setting, which was active from the Cretaceous to the Pliocene and/or Pleistocene.
This view challenged the Miocene-Present extensional context invoked to explain the southern
Tuscan structures [Trevisan, (1952), Boccaletti et al., (1971), Locardi and Nicolich (1982),
Lavecchia (1988), Carmignani and Kligfield, (1990), Jolivet et al., (1994), among many others].
In this debate, the CROP 18 Project represented a significant contribution for an ample revision
of and to increase the knowledge on the tectonic evolution of southern Tuscany (Brogi et al.,
2005b). Here we present the main results of the CROP 18 Project: we report the state of the art
on the compression vs. extension interpretation and show a geological interpretation of the CROP
18 seismic reflection survey. Finally we propose a possible link between the continental structures
and the geothermal resources in southern Tuscany.

2. Geological framenwork

The Northern Apennines originated from the collision (Cretaceous-Early Miocene) between
the Adria microplate and the European plate, represented by the Sardinia-Corsica Massif. This
process determined the stacking of several tectonic units (Fig. 2) which are, from the top: (1) The
Ligurian Units, which include the Ligurian and the Subligurian Complexes. These are
respectively composed of: remnants of Jurassic oceanic crust and its related Jurassic-Cretaceous
sedimentary cover; (2) Cretaceous-Oligocene flysches. These complexes were thrust eastwards
over the Tuscan Nappe during Late Oligocene-Early Miocene times; (3) The Tuscan Nappe
derives from the internal Tuscan domain and includes sedimentary rocks ranging from Late
Triassic evaporites to Jurassic carbonate platform, Cretaceous-Oligocene pelagic sediments and
Late Oligocene-Early Miocene turbidites. During the Late Oligocene-Early Miocene, the Tuscan
Nappe, with the Ligurian Units at the top, detached themselves from the Late Triassic evaporite
level and thrust themselves over the external Tuscan domain, giving rise to the metamorphic
Tuscan Nappe (external zone).

In Tuscany, the substratum of the Ligurian Units and Tuscan Nappe is known through
fieldwork and the drilling of deep wells in the Middle Tuscan Range and in the Larderello and
Mount Amiata geothermal fields (Fig. 1). The substratum is composed of two units (Fig. 3): the
upper unit is referred to as the Monticiano-Roccastrada Unit, made up of the Metamorphic Late
Triassic-Eocene Tuscan Nappe (Montagnola Senese area, Fig. 1), Triassic quartz
metaconglomerates, quartzites and phyllites (Verrucano Group Auct.), Palaeozoic phyllites and
micaschists, and the lower one corresponds to the Gneiss Complex. 

After the emplacement of the tectonic units, extension affected the inner Northern Apennines
(i.e. northern Tyrrhenian Basin and southern Tuscany) from the Early-Middle Miocene period
(Jolivet et al., 1990; Carmignani and Kligfield, 1990; Carmignani et al., 1994, 1995; Rossetti et
al., 1999; Brunet et al., 2000). Extension is coeval with magmatism from Late Miocene, deriving
from mixing of crustal and mantle sources (Serri et al., 1993). Boreholes in the Larderello area
encountered felsic dykes and granitoids ranging between 3.8 and 1.0 Ma in age (Dini et al.,
2005). This extensional framework is thoroughly argued by Finetti et al. (2001) and Bonini and
Sani (2002 and references therein). Their point of view will be discussed later on. Since the
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Middle Pliocene, southern Tuscany has been affected by rapid surface uplift (Bartolini et al.,
1983; Dallmeyer and Liotta, 1998).

3. Geological features in the upper crust

The present-day upper crust (i.e., the crust characterised by dominant frictional deformation)
is made up of: a) metamorphic and sedimentary rocks deriving from the inner Northern
Apennines palaeogeographic domains; b) Middle-Late Miocene and Early-Middle Pliocene post-
collisional sediments; c) magmatic rocks, emplaced from the Late Miocene to 1 Ma ago. We
present the main structures affecting the upper crust considering that compression developed in
the Cretaceous-Early Miocene time span, while extension, in the Miocene - Present time range.

The compressional structures are related to the stacking of the tectonic units belonging to the
Northern Apennine palaeogeographic domains. In the tectonic units from the Tuscan domain,
Late Oligocene-Early Miocene embricated thrusts affected both the already folded metamorphic
rocks (Costantini et al., 1988; Elter and Pandeli, 1990; Bertini et al., 1991; Giorgetti et al., 1998;
Liotta, 2002) and sedimentary successions (Brogi, 2004; Brogi et al., 2005a, 2005b). 

All the previous structures that developed were deformed by extensional tectonics which
affected the inner Northern Apennines since Early-Middle Miocene (Jolivet et al., 1990;
Carmignani and Kligfield, 1990; Carmignani et al., 1994, 1995; Rossetti et al., 1999; Brunet et
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al., 2000). Although extension is a continuous process through time, three different events were
recognised, in the Larderello area (Baldi et al., 1994; Dallmeyer and Liotta, 1998). The first and
second extensional events determined the thinning of the Ligurian Units, the boudinage of the
Tuscan Nappe and of the Verrucano Group. In the gap between boudins, the Ligurian Units, the
highest units in the orogenic tectonic pile, overlie the Late Triassic evaporites, structurally sited
at the base of the Tuscan Nappe and/or the Palaeozoic phyllites, positioned at the base of the
Verrucano Group (Fig. 4). 

In the Late Miocene, continental to marine sediments deposited in the tectonic depressions
deriving from the boudinage process. The Late Miocene structures and sediments were later
dissected by the Pliocene-Present normal faults of the third extensional event (Fig. 4). In the
Larderello area, three Pliocene-Present different systems of NE-dipping normal faults, soling out
at the present brittle/ductile transition, have been recognised (Brogi et al., 2003). Their damage
zones are interpreted as the main structural pathways (Bellani et al., 2004) for the flow of hot
geothermal fluids consisting of meteoric water with minor contribution of magmatic and
metamorphic fluids and isotopic elements from the mantle (D’Amore and Bolognesi, 1994;
Minissale et al., 2000;  Magro et al., 2003).
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4. Geological features in the middle and lower crust

Information on the middle and lower crust  (i.e. those parts of the crust typified by dominant
brittle/plastic and plastic deformation, respectively) derives mainly from seismic reflection lines,
acquired for the geothermal exploration (Batini et al., 1978; Gianelli et al., 1988; Cameli et al.,
1993) and for the CROP 03 Project (Pialli et al., 1998).
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The seismic reflection lines show a clear distinction between a poorly reflective upper and a
highly reflective mid-lower crust (Cameli et al., 1993, 1998). The top of the reflective crust is
marked by a discontinuous reflector (Fig. 5) of high amplitude, referred to as the K-horizon
(Batini et al., 1978), which has local bright spot features (Batini et al., 1985). This horizon often
bounds a seismic facies characterised by reflectors with high-contrast of acoustic impedance and
with a typical lozenge shape geometry (Fig. 5) both in migrated and unmigrated seismic sections
(Cameli et al., 1998). These seismic features, firstly recognised in the geothermal areas of
Tuscany (Batini et al., 1978), resulted of regional pertinence after the CROP 03 reflection seismic
line acquisition (Liotta et al., 1998). The K-horizon, located regionally at a depth of 8-10 km,
shows a culmination in the Larderello and Mount Amiata areas where it ranges between 3 and 6
km. Pliocene-Quaternary normal faults appear to be rooted in the K-horizon (Fig. 5). At the
intersection between normal faults and the K-horizon, this marker and the reflections below, lose
their peculiar reflectivity (Brogi et al., 2003). The depth distribution of local seismicity in the
Larderello and Mount Amiata geothermal areas shows a peak at the K-horizon depth, followed
by a very steep decrease with increasing depth, with almost all events having focal depth < 8 km
(Cameli et al., 1998; Liotta and Ranalli, 1999). The K-horizon appears to be related to a critical
temperature of about 450° + 50°C (Liotta and Ranalli, 1999).  The origin of the reflectivity at the
K-horizon and in the zone below has been discussed by several authors [see Gianelli et al., (1997)
for a review]. The occurrence of fluids can explain the observed high contrast in acoustic
impedance. This, joined with temperature data, hypocentral distributions and rheological
predictions (Liotta and Ranalli, 1999) led to the explanation that the K-horizon was the top of an
active shear zone, located at the brittle/ductile transition (Cameli et al., 1993, 1998; Liotta and
Ranalli, 1999; Vanorio et al., 2004). 

As regards the reflectivity of the deeper levels (i.e. the lower crust), three different hypotheses
can be considered: a) occurrence of mafic sills in the metamorphic rocks; b) occurrence of shear
zones with mylonite rocks; or c) occurrence of fluids (Hamilton, 1987; Deemer and Huric, 1994;
Blundell, 1990; Mooney and Meissner, 1992; Gianelli et al., 1997; Liotta and Ranalli, 1999). All
these phenomena can interact in an extensional tectonic setting in order to give the observed
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reflectivity. The CROP03 survey images NE-dipping extensional crustal shear zones affecting
the mid-lower crust of southern Tuscany (Barchi et al., 1998; Decandia et al., 1998; Lavecchia
et al., 2004). The base of the lower crust and the crust-mantle transition is well imaged in the
commercial seismic reflection lines. Generally, the base of the lower crust reflectivity is
assumed to represent the Moho discontinuity (Barnes, 1994; Allmendinger et al., 1987;
Blundell, 1990; Mooney and Meissner, 1992). Following this interpretation, the base of the
Tuscan crust appears to be located at about 24 km in the CROP 03 survey (Barchi et al., 1998;
Decandia et al., 1998), in agreement with previous seismic refraction results (Giese et al., 1981;
Ponziani et al., 1995). 

5. Extension vs. compression regime during the Neogene-Quaternary

Neogene-Pliocene (or Neogene-Pleistocene) out-of-sequence thrusting (Fig. 6) are invoked by
some authors to explain the superimposition of the Ligurian Units on the Triassic evaporites
(Boccaletti and Sani, 1998; Bonini, 1999; Bonini and Sani, 2002; Finetti et al., 2001). In this
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view, the Late Tortonian-Pliocene basins are interpreted as thrust-top basins. 
Obviously, the out-of-sequence thrusting implies thickening of the crust and, consequently, the

tectonic omission of the Tuscan Nappe sequence would be a minor effect. Although this evolution
model makes an explanation for the widespread Pliocene-Quaternary magmatism difficult,
Finetti et al. (2001) suggested that an originally thin lithosphere, inherited from the Triassic-
Jurassic rifting, coupled with thermal erosion could explain the present Tuscan crust and
lithosphere thicknesses. Bonini and Sani (2002), in addition to the reconstruction given by Finetti
et al. (2001), do not exclude the occurrence of Messinian-Quaternary normal faults in southern
Tuscany. However, these minor extensional structures are explained as an accommodation of
thrust anticlines or as effects of  the eastward advance and westward retreat of the northern
Apennine thrust front. 

Brogi et al. (2005c, 2005d) argued against the inheritance of an original crustal thinning; these
authors, in considering Finetti et al.’s (2001) Middle Miocene-Pliocene lithospheric faults,
geometrically estimated that a crustal antiformal stack 60 km thick should have been formed.

Thermal erosion is defined by the upward movement of the 1200°C isotherm, due to heating
from the asthenosphere. Thermal erosion implies extension, and therefore according to Finetti et
al.’s (2001) interpretation it would have been active only since the Pliocene. Heating from the
asthenosphere can be modelled approximately using the heat transfer equation [i.e. parallel slab
model: Carslaw and Jager, (1959)], given the thickness of the lithosphere at the end of the
collisional stage, that is Pliocene, according to Finetti et al. (2001). These authors do not suggest
any value for this parameter; however, even considering a thin lithosphere (60 km, i.e. half the
thickness of a normal thermal lithosphere) and heated by a plume producing a sudden 300°C
increase of basal temperature, thermal erosion alone is not able to determine the present
lithospheric thickness, in the Pliocene-Present time span (Table 1 and Fig. 7). It derives that
orogenic extension is necessary. However, estimations on the Pliocene-Present extensional strain
rate indicate that it is very low (Bertini et al., 1991; Carmignani et al., 1994; Liotta, 1996;
Dallmeyer and Liotta, 1998) and not sufficient to produce significant crustal thinning. The same
point of view is shared by Finetti et al. (2001) who, apart from the seismogenetic Altotiberina
structure (Boncio and Lavecchia, 2000), do not indicate other important normal faults.
Consequently, orogenic extension must be considered active before the Pliocene.

Another point against a dominant compressional setting derives from the superimposition of
the Ligurian Units on the Triassic evaporites and/or Palaeozoic phyllites. If the Tuscan Nappe
omission were from out-of-sequence thrusting, the complete tectonic pile should be preserved at
both the western and eastern boundaries of the tectonic depression (Fig. 8A) deriving from the
thrust evolution (Fig. 6). By contrast, if boudinage determined the Tuscan Nappe omission, the
western or eastern border of such a tectonic depression (depending on the sense of boudinage
asymmetry) must be characterised by tectonic omission (Fig. 8B), such as for the case of southern
Tuscany (Figs. 8C and 8D). 

6. The CROP 18 seismic lines

The CROP 18 seismic survey represented, therefore, an opportunity to investigate the deep
structures of Tuscany and to contribute to the reconstruction of the tectonic evolution of the inner
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Northern Apennines. Below, we give our interpretation of the CROP 18 seismic survey, as already
presented in Brogi et al. (2005c, 2005d). This interpretation accepts the extensional framework,
since extension offers a better explanation for the geological structures and the tectonic evolution
of southern Tuscany.

The CROP 18 survey (Cameli, 1994) was acquired during 1995 and it is divided into two
transects, named CROP 18A and CROP 18B (Fig. 1) which are roughly NNW-SSE oriented.
These were recently reprocessed down to 10 s TWT reaching the crust-mantle transition (Accaino
et al., 2005a, 2005b). 
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Upper crust Lower crust Lithosperic mantle

Thickness (km) 10 10 40

K (W m-1 °C-1) 2.5 2.1 3.0

A (   W m-3) 1.4 0.4 0.006

TC (MJ m-3 °C-1) 2.24 2.24 3.30

Table 1 - Geometry and thermal parameters for the geotherms shown in Fig. 7. Symbols: K - thermal conductivity; A
- heat production; TC - thermal capacity (after Brogi et al., 2005d)
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Their geological interpretation was based on: a) geological cross-sections constructed along
the traces of the seismic lines; b) data from deep boreholes close to the traces of the seismic
profiles; c) commercial seismic profiles acquired for geothermal exploitation and crossing the
CROP 18 lines. Since CROP 18A passes through the core of the Larderello geothermal area,
where many geological and geophysical data are available, its geological interpretation is better
constrained than that of the CROP 18B line. The line drawings of the unmigrated CROP 18
transects are shown in Figs. 9 and 10. The occurrence of out-of-plane, anomalous, events and sets
of diffractions are considered useful in recognising lateral and/or vertical inhomogeneities, as
expected in the Tuscan geothermal province, typified by systems of normal faults, widespread
magmatism and fluids in fractured layers. Conversion from time to depth was obtained by taking
into account the migrated sections and applying the average velocity fields (Accaino et al.,
2005b) given in Fig. 11. The deriving geological sections are shown in Fig.  12. More information
on data processing, velocity analyses, depth conversion, migrated sections and geological data is
in Accaino et al. (2005a, 2005b), Tinivella et al. (2005) and Brogi et al. (2005b).

D

C

Monte Amiata

1 Km
SW NE

0,5

0

- 0,5

- 1

1

1,5

0,5

0

- 0,5

- 1

1

1,5Ligurian Units

0

- 0,5

1

1 Km

0,5

0

- 0,5

1

SW NE

Ligurian Units

Metamorphic rocks

Tuscan Nappe:
carbonate succession

Tuscan Nappe:
terrigenous succession

Neogene sediments

Ligurian and
Subligurian Units

Volcanic rocks

Tuscan Nappe:
evaporite succession

Miocene normal faults

Pliocene-Quaternary
normal faults

West East

A

Late Triassic evaporites

Ligurian Complex

Subligurian Complex

Tuscan Nappe
carbonate succession

Tuscan Nappe
pelagic and turbiditic succession

West East

B

Late Triassic evaporites

Km

Km

0,5

Tectonic depression

Tectonic depression

Tectonic
depression

Tectonic depression

Tectonic depression

Fig. 8 - A) Enlargement of the tectonic depression given in Fig. 6, cartoon 4. Note that the out-of-sequence evolution
implies preservation of the tectonic units pile on the shoulders of the syntectonic basin; B) idealised tectonic depression
derived by asymmetric boudinage with top-to-east sense of shear. In contrast to (A), the western border of this tectonic
depression is characterised by omission of tectonic units; note the cutoff relationship between the lower stratigraphic
units of the Tuscan Nappe and the tectonic boundary, located at the base of the Ligurian Units. (C-D) Geological cross-
sections from the Larderello and Mount Amiata geothermal areas, respectively. The structural relationships, as
reconstructed from borehole and field data, are those shown in (B) [after Lazzarotto, (1967) and Calamai et al., (1970),
redrawn; Brogi et al., (2005c)].



412

Boll. Geof. Teor. Appl., 47, 401-423 Brogi and Liotta

0

2

4

6

8

 s
 T

W
T s TW

T

0

2

4

6

8

10 20 30 40 Km

MPQMRU2

MRU2
MRU2

TN2

GC

a

b

c

CROP 18B  overlap

s TW
T

0

2

4

6

8

0

2

4

6

8

 s
 T

W
T

L
MRU3

TN1
LLMPQ

L

MR

MR

MR

MR

MRU1

TN2
MRU2

NNW SSE

A

B

LAGO GEOTHERMAL AREA

Serrazzano
Basin

Fig. 4a

Fig. 9 - Line drawing of the unmigrated CROP 18A line (A) and its geological interpretation (B). The datum plane is
200 m above sea-level. Boreholes and intersections (black triangles) with previously acquired seismic lines are shown.
The inclined wells are deviated. The stratigraphic and tectonic boundaries are shown by thin black lines. The thick grey
line shows the K-horizon which was clearly identified considering also the intersection with other seismic lines; the
dashed grey line shows the supposed lateral extension of the K-horizon. a, b and c denote the reflection groups located
below the K-horizon. Symbols such as in Fig. 3. The cross pattern denotes intrusive magmatic bodies. The crust-mantle
transition is marked by the dotted line, and is located taking into consideration also data from seismic refraction lines
(Giese et al., 1981; Ponziani et al., 1995). 



413

Crustal structures of southern Tuscany  Boll. Geof. Teor. Appl., 47, 401-423

7. The CROP 18A transect

This profile shows a scarcely reflective upper part where discontinuous reflections occur (Fig.
9). A reduced reflectivity is displayed in the northernmost part of the profile down to about 1.5 s
TWT (≈ 3 km, Fig. 12A), where an area with homogeneous and low contrast of acoustic
impedance (i.e. transparent area) is displayed. Although the transparency may be linked to
technical reasons, local geothermal boreholes encountered Pliocene felsic magmatic rocks which
strongly suggest an interesting correlation between granitoids, known as isotropic rocks, and the
transparency in the seismic reflection data (Matthews, 1987). Similar considerations are also
proposed for the other transparencies in the section, where gravimetric (Ricceri and Stea, 1993;
Baldi et al., 1995), teleiseismic (Foley et al., 1992; Batini et al., 1995) or magnetotelluric studies
(Fiordelisi et al., 1995) suggest the occurrence of magmatic bodies at depth (Figs. 9 and 12A). The
K-horizon is indicated by weak amplitudes and is, laterally very discontinouous. Its identification
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and location was obtained by considering intersections with previously acquired commercial
seismic lines. On the whole, the K-horizon ranges between 1.5 and 2 sTWT (Fig. 9) corresponding
to about 3-5 km (Fig. 12A). In the central part of the profile, where the highest heat flux in the
Larderello area is recorded (Bellani et al., 2004), the K-horizon reaches its shallower depth (Lago
geothermal area, Figs. 9 and 12A). Three groups of prominent reflections are displayed below the
K-horizon, between 2 and 4.5 s TWT. The shallower group (b, in Fig. 9) consists of northwest
subparallel reflections better organised in the migrated section. The other two groups (a and c, Fig.
9) are located in the northern and southern parts of the profile and are typified by high-amplitude,
flat-to-gently dipping, short reflections and correlated over small distances. 

The base of the crust is not well imaged although discontinuous packages of high-amplitude
reflections (7-9 s TWT, 22-24 km, Figs. 9 and 12A) may relate to the crust-mantle transition,
according to refraction seismic data (Giese et al., 1981; Ponziani et al., 1995).
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8. The CROP 18B transect

As in the CROP18A transect, the upper part of this profile is typified by a weak reflectivity.
A wide area with low contrast in acoustic impedance (Fig. 10) is located between 1 and 2 s TWT
(1.5-3.5 km, Fig. 12B) at the NW end of the section. This seismic signature accounts for
granitoids at depth (Figs. 10 and 12B), as suggested by the outcrops of Pliocene volcanic and
granitic rocks located close to the CROP 18B line (Fig. 1), in the Roccastrada area (Borsi et al.,
1965). Similar considerations are possible in the southernmost part of the section (about 1.5 - 2.5
sTWT, Fig. 10). Other areas with low contrast of acoustic impedance are located at mid-lower
crustal levels: these are explained as magmatic bodies, probably emplaced during the Pliocene-
Quaternary time span (Figs. 10 and 12B). The K-horizon ranges in depth between 2 and 3.5 s
TWT (about 4-7 km, Figs. 10 and 12B), showing a deeper location below the Cinigiano-
Baccinello Miocene Basin (Figs. 1, 10, 12B). The K-horizon has weak reflecting amplitudes in
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the northwestern part of the section where it was identified mainly by means of the overlap with
the CROP 18A transect (Figs. 1 and 10). By contrast, in the southeastern part of the section,
underneath the Mt. Amiata geothermal area, the K-horizon shows a prominent reflectivity (Fig.
10). Here, below the K-horizon, highly reflective groups of reflections are located (Fig. 10), both
in the unmigrated and migrated profiles. At deeper levels, other groups of reflections are defined
by northwestward dipping packages of high-amplitude and poor subparallel reflections (d, e, f
and g in Fig. 10). After migration, these groups are better organised, more inclined to the north
and slightly moved to the south. The base of the crust is highlighted by rather discontinuous
groups of strong reflections at about 7-8 s TWT (about 20-22 km, Figs. 10 and 12B). 

9. Discussion

The reflectivity of the CROP18 lines is similar to that of other crustal lines acquired in
geothermal provinces affected by crustal extension. These seismic lines generally display poor
reflectivity in the upper crust and, by contrast, high degrees of reflectivity in the mid-lower crust.
The partition between these two seismic facies is usually clear. This is the case of the Rhine
Graben (Mayer et al., 1997) and the Colorado area (Hamilton, 1987; Lucchitta, 1990), but it is
also the case of southern Tuscany, where the boundary between the upper and mid-lower crust is
marked by the K-horizon, as shown by commercial profiles (Cameli et al., 1993) and by the CROP
03 crustal seismic line (Liotta et al., 1998). By contrast, the CROP 18 lines show widespread poor
reflectivity, apart from groups of good reflections at depth (a-g in Figs.  9 and 10). 
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The geological interpretation of both CROP 18 transects shows that the upper part of the crust
is characterised by isolated geological bodies of  the Tuscan Nappe and Verrucano Group. This
information, joined with the CROP 03 results (Decandia et al., 1998), field and borehole data
(Calamai et al., 1970; Lazzarotto and Mazzanti, 1978; Lazzarotto, 1967; Bertini et al., 1991)
indicate that the boudinage is a regional feature in southern Tuscany. 

As regards the CROP 18A line, the poor reflectivity may be linked to the direction of the
seismic profile which crosses one of the most important extensional shear zones of the Larderello
area (Fig. 5). This shear zone is seismically characterised by NE-dipping weak reflections, by the
loss of K-horizon reflectivity and of the lozenge-shape markers (Fig. 5). Assuming trapped fluids
as the origin for the seismic signature at the brittle-ductile transition, the loss of reflectivity can
be explained by fluid escape, throughout the brittle shear zone (Brogi et al., 2003). 

Since CROP 18A is oriented approximately along the shear zone strike, it derives that its
reflectivity results necessarly scarce down to the brittle/ductile transition (Figs. 9 and 13).

Similar seismic features characterise the CROP 18B line. In the central part of this section,
the loss of the K-horizon reflectivity is related to the intersection with a crustal shear zone,
affecting the lower part of the crust and highlighted by the CROP 03 survey (Figs. 13 and 14).
The loss of K-horizon reflectivity on the CROP 03 plane makes it difficult to locate this seismic
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marker on the CROP 18B plane. Consequently, the lateral extension of the K-horizon (dashed line
in Fig. 10) is weakly constrained and its depth might be greater (reasonably down to 0.5 TWTs
below the dashed line) in the central part of the CROP 18B line.

In contrast, the typical K-horizon seismic facies, characterised by bright spot features, is
displayed in the central-southern part of the profile where the plane of the survey changes
direction (Figs. 1, 10 and 13). 

The nature of the deep reflections (a-g, in Figs.  9 and 10),  Tinivella et al. (2005) and Accaino
et al. (2005b), based on Amplitude Versus Offset analyses and seismic velocity models, suggest
that these could be related to fluids and/or lithological contrasts. Both possibilities are suitable in
the framework of a highly extended continental crust. In this tectonic framework, trapped fluids
in shear zones or mafic intrusions from the mantle could explain the observed deep reflectivity.
Furthermore, Tinivella et al. (2005) indicate possible vertical channels of magmatic intrusions
crossing the lower crust and emplaced in the upper crust. 

The crust-mantle transition is not well imaged in the CROP 18 lines, probably for its along-
strike orientation. 

10. Conclusions

The continental crust of southern Tuscany is assumed to be affected by extensional tectonics
since Early-Middle Miocene, being alternative hypotheses unable to explain geological features
of the first order, such as the present crust and lithospheric mantle thicknesses.

Previous studies on the CROP 03 survey highlighted crustal shear zones affecting both the
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upper and mid-lower crust of southern Tuscany (Barchi et al., 1998; Decandia et al., 1998;
Lavecchia et al., 2004). The crustal brittle shear zones of the Larderello area are characterised by
a fair reflectivity, down to the brittle/ductile transition (Brogi et al., 2003). Since the CROP 18A
plane crosscuts along strike one of these shear zones, its reflectivity is generally weak.
Consequently also the K-horizon, that is usually a clear mid-crustal marker, results discontinuous
and difficult to detect without information from commercial seismic reflection lines, differently
oriented and intersecting the CROP 18A plane. The relationship among brittle shear zone,
reflectivity and orientation of the CROP18A line is sketched in Fig. 13.

CROP 18B, as previously mentioned, shows a similar weak reflectivity in its northern sector,
partly related to magmatic bodies at depth. No other seismic reflection lines investigate this part
of southern Tuscany. However, the CROP 18B reflectivity is influenced by the intersection with
the mid-lower crust shear zone, displayed in the CROP 03 line, and typified by a fair seismic
signature (Fig. 13 and 14). 

In conclusion, the integration between the CROP 18 and 03 lines permitted us to recognise
two levels of crustal shear zones, located above and below the brittle-ductile transition,
respectively (Fig. 15).  Bellani et al. (2004) suggested that preferential pathways for the flow of
mixed meteoric and deep fluids of magmatic and metamorphic origin can be localised in the
brittle shear zone of the Larderello area. The occurrence of isotopic mantle elements within the
geothermal fluids (Magro et al., 2003) implies channels for their upward migration. The deep
shear zones in the crust of southern Tuscany can represent possible pathways from the lower to
the upper crust through the brittle/ductile transition, operating as a crustal shear zone. Finally, the
occurrence of crustal widespread magmatism (Brogi et al., 2005c, 2005d; Tinivella et al., 2005)
can provide the best mechanism to transfer heat from depth to shallower crustal levels. If shear
zones interact with deep magmatic melts, a further source for mantle elements will be provided.
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