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ABSTRACT The Euler deconvolution method belongs to the most popular semi-automated
interpretation techniques in gravimetry and magnetometry. During its application on
real data, it was realised that it can be performed only with the additional constant
term B (background term), because of the regional field components. In the proposed
contribution, the idea of the interference polynomial from the Werner deconvolution
is introduced into the Euler deconvolution algorithm. Its role can be seen on two
levels: a) it helps to deal with the influence of neighbouring anomalies, b) only thanks
to this modification is it possible to obtain real solutions for the correct value of the
structural index of a contact structure in gravimetry (N = -1). On the other hand, the
proposed modification amplifies the instability of the method and either the
smoothing of the input field or the stabilisation of its gradient evaluation must be
realised.

1. Introduction

The interpretation outputs from potential field methods play an important role in geophysical
exploration [e.g. the introduction of independent information into the process of PreSDM in
reflection seismics; e.g. Anderson et al. (2002)]. The Euler deconvolution method belongs to the
most discussed interpretation methods in potential fields over the last ten years. It uses the Euler
homogeneity theorem in an effective way, appling it on functions that describe the anomalous
potential field (gravitational, magnetic) of simple sources. Various authors from the 1950’s and
1960’s (Smelie, 1956; Hood, 1965) have recognized that direct problems, for a variety of simple
sources in gravimetry and magnetometry, are described by means of relatively simple rational
functions, which are homogeneous in the sense of Euler’s theorem. For a homogeneous function
f(x,y,z) (3D-problem) or f(x,z) (2D-problem) the interpretation equation can be written in the
form:

(3D-problem) (1)

(2D-problem) (2)

where x, y and z are the coordinates of the point, where the potential function f (potential or its
higher derivatives) is defined; x0, y0 and z0 are the coordinates of the source; N is the so-called
structural index (sometimes the abbreviation SI is used). The role of the value N during the
application of the method is very important, it describes the type of source, whose contribution
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is recognised in the interpreted data. Thompson (1982) defined it as a measure of the rate of
change with distance of the potential function - but this property definition holds only for point
or line sources, this will be discussed later in the text. The values of N were derived and published
by various authors (e.g.: Thompson, 1982; Reid et al., 1990; Stavrev, 1997; Yaghoobian et al.,
1992), a summary of the sources most used is presented in Table 1. This contribution focuses on
the classical algorithm, where the value of N is assumed to be known, but various approaches on
how to get its value directly during potential field data interpretation also exists (e.g. Fedi and
Florio, 2002).

It follows that from the values presented a relationship between the value N and the number
of infinite dimensions of the model body exists, as well as a constant shift between the values
used for the magnetic and gravity fields. These properties were generalised by Stavrev (1997).
The negative value of the index for the contact model in gravimetry comes directly from this
generalisation and it may look a little bit strange in the light of Thompson’s definition. It would
express a fact that the field is growing with the distance from the body and it is often interpreted
in such a way (e.g. Geosoft, 1994; FitzGerald et al., 2004). This is, in my opinion, a “trap” of this
mentioned definition. Being really rigorous, we have to mention that also the sill and dike models
have a strange index in gravimetry - zero (which would describe, when the field is not changing
with distance). Thompson’s definition holds only for functions f, which can be described by
rational functions of type 1/(rN) - a pole, dipole and lines of poles and dipoles (sphere, vertical
and horizontal cylinder), as was mentioned at the beginning of this text. For the expression of the
direct problem of more complicated bodies (bodies of a sheet form bodies, step, contact), we use
functions of the arctan( ) and/or ln( ) type. It is very interesting that the derivations of the N value
for these bodies give in general values of 0 or even -1. So, in the scope of these facts, it is more
correct to speak about N only as a structural index. Here it is very important to mention that the
gravity field of the contact model is not strictly homogenous in the sense of the Euler theorem
(Pasteka, 2001).

2. Introduction of the interference polynomial

During the realisation of the method, experts have recognised that the method based on the
numerical solution of the Eq. (1) [or Eq. (2)] in a moving window gives appropriate results only
for well-separated anomalies, without any interference or influence of regional components of the

elementary body model
(source type)

number of infinite
dimensions N used in magnetometry N used in gravimetry 

sphere 0 3 2 

pipe (vert. cylinder)  1 (z) 2 1 

horizontal cylinder  1 (x-y) 2 1 

dike (sheet)   2 (z and x-y) 1 0  

sill   2 (x and y) 1 0  

contact   3 (x, y and z) 0 -1  

Table 1 - Values of the structural index N for various anomalous bodies in gravimetry and magnetometry.
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anomalous field. This fact has inspired Thomspon (1982) to the introducing the B term (so called
“background” term) into the right-hand side of the Eqs. (1) and (2):

(3D-problem) (3)

(2D-problem) (4)

The Thompson’s (1982) idea can be enlarged: instead of a constant term, we can take into
account a polynomial of a higher degree:

(5)

(6)

where A0, A1, … are coefficients of the interference polynomial.
The idea of introducing this polynomial was adopted from the well known Werner

deconvolution (Werner, 1953; Hartman et al., 1971). This method is built on the recognition of
the anomalous effect of a dike in the profile magnetic field ∆T [Hartman et al. (1971), Eq. 1,
p. 902). The introduction of a polynomial of higher degree, together with the magnetic field, in
the interpretation equation [Hartman et al. (1971), Eq. 5, p. 904], helped to improve the stability
and clustering of the solutions. The role of the polynomial was to “describe” the effects of close
overlapping (interfering) anomalies and, therefore, it was named the interference polynomial. The
introduction of such a polynomial into the Euler deconvolution algorithm (instead of a constant
background term) should improve the clustering of the solutions in the case of several closed
sources. In Fig. 1, the reader can see the Euler depth estimations for three thick dikes (with
relatively intensively overlapping/interfering anomalous fields). Solutions, with an adopted
polynomial of 2 degrees, give better focused clusters of estimates and also the depth information
is more correct (e.g. in Fig. 1a: the case of the right-hand side edge of the central dike). In
general, we can see that the depth solutions for the dike models are slightly deeper (Figs. 1a, 1d)
than the real position of their upper edges. This is caused by the fact that the structural index 1
was derived for thin dikes (the central and right-hand positioned dikes in Fig. 1 have greater
widths by comparison to the depth of their upper boundaries) and for a thicker sheet a lower value
of the structural index would be more appropriate. It is important to mention that by comparison
to the Werner deconvolution, in the case of the Euler deconvolution, the polynomial was added
only to the right-hand side of the interpretation equation.
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Fig. 1 - Comparison of Euler depth estimates for the modelled magnetic field of three dikes (used structural index
N = 1) using the algorithm with and without the interference polynomial: a) input data – synthetic ∆T field without
additional noise, b) input data – synthetic ∆T field with additional 1% white noise (solutions without smoothing the
input gradients), c) input data – synthetic ∆T field with additional 1% white noise (solutions with smoothed input
gradients by means of regularisation algorithm) and d) only selected solutions from the case (c) with the standard
deviations of the depth estimates lower than 20% of the maximum one. The size of the used moving window was equal
for all presented results: 15 profile points.
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Fig. 2 - Euler depth estimates for the modelled gravity field of an inclined contact (used structural index N = -1) using
the algorithm with and without the interference polynomial: a) input data – synthetic ∆g field without additional noise,
b) input data – synthetic ∆g field with additional 1% white noise (solutions without smoothing the input gradients), c)
input data – synthetic ∆g field with additional 1% white noise (solutions with smoothed input gradients by means of
regularisation algorithm) and d) only selected solutions from the case (c) with the standard deviations of the depth
estimates lower than 20% of the maximum one. The size of the used moving window was for the cases (a) and (b) 20
profile points and for (c) and (d) 50 profile points.
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Later on, during the realisation of model studies, it was realised that when we use the negative
value N = -1 for the recognition of the contact or step structure in gravity data (Pasteka, 2001),
we have to adopt the interference polynomial with higher orders (from model studies, it follows
that the first or second order degree gives best results). This fact is displayed in Fig. 2a, where
the results of the application of the Euler algorithm with various degrees of the adopted
interference polynomial (0, 1 and 2 degree) are shown. It can be clearly seen that the correct
focusing of the solutions at the position of the upper edge of the contact is completed, when we
adopt the interference polynomial of 2 degree (for higher degrees the solutions became more
unstable and defocused - not shown in Fig. 2). 

The form of the interpretation equation with the interference polynomial unifies various forms
of this equation: the first simple version [Eqs. (1) and (2)], without the “background” B term on
the right-hand side (e.g. Hood, 1965), where A0 = A1 = … = 0; Thompson’s version with the B
term [Eqs. (3) and (4)], where A0 = NB and A1 = A2 = … = 0 and in the end also the modified
equation for the contact structure in magnetometry (Reid et al., 1990):

(7)

where A is a constant, incorporating amplitude, strike and dip factors. Here we can define it by
comparing with Eq. 5: A0 = A, A1 = A2 = … = 0 and of course N = 0.

The very important fact, occurring during the generalisation of the Euler deconvolution
algorithm by means of the introduction of the interference polynomial is unfortunately a growth
of the instability of the interpretation equation. Simple tests with randomly distributed (white)
noise, added to the synthetic data (Figs. 1b and 2b) have shown that a very small level of it (only
1%) has caused great problems to the method – the solutions became unfocused and shallower
(accompanied by a large amount of erroneous solutions). Also the standard deviation of the depth
estimates (obtained from the LSQ-algorithm) and condition number [or singularity ratio, e.g.
FitzGerald et al. (2004)] increase their values with the increasing order of the interference
polynomial (Tables 2 and 3). The utilisation of standard deviations of the depth estimates is well
known in geophysical literature and was introduced by Thompson (1982). The condition number
(singularity ratio) is an important stability parameter, obtained from the SVD algorithm (e.g.
Press et al., 1986); its higher values detect a numerical instability of the solved system of linear
equations [discussed and utilised by Mushayandebvu et al. (2003), FitzGerald et al. (2004)],
connected often with erroneous solutions. A preliminary smoothing of the input data,
stabilisation of the derivative evaluation or the system of linear equations solution became
inevitable. As it can be seen in Figs. 1c and 2c, the introduction of smoothed-regularised
derivatives (Pasteka and Richter, 2002) has made the focusing of the solutions much better, but
there are still great errors – e.g. the false clusters approximation with the x-coordinates 4300 m
and 13600 m in Fig. 1c or the shallow depths of the best clustered solutions in Fig. 2c (error close
to 40%). When we do not display all the solutions, but only those whose standard deviation depth
estimate is lower than 10-20% of the maximum one (in Figs. 1d and 2d this level was 20%; in
Figs. 3a and 3b it was 5%), we get better focused results (closer to the real positions of the
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sources). This rule is very close to that of Cooper (2004), based on the acceptation of the first 5-
10% of the solutions that fit the Euler interpretation equation. The approach presented here (i.e.
to take the solutions, which have the lower standard deviations) gave good results during model
studies and practical data applications, where sources with similar values of structural indices are
expected. This rule often gives better results, than the ratio of the standard deviation to the
obtained depth estimate, as is often done in various software implementations of the method, (e.g.
Geosoft, 1994). 

As a typical example of the application of the modified Euler deconvolution algorithm (with
the adopted interference polynomial) in combination with the rule of the lower standard deviation
(of the depth estimate) acceptation an UXO-detection magnetometry dataset interpretation was
selected. Grid of high-definition ∆T field (square of 20 x 20 m, x-spacing: 0.1 m, y-spacing: 0.1
m) from the Zelezna Studienka site (SW-Slovakia) shows several isolated “strong” anomalies
(Fig. 3), typical for the occurrence of unexploded ordnance objects (UXO), but also several
smaller anomalies, connected with fragments of exploded objects (the locality was an old
German ammunition deposit from the World War II). After realisation of the 3D Euler
deconvolution with the interference polynomial adoption, an analysis of the clustering for various
levels of standard deviation of the depth estimate was realised. It was found that an acceptance
level of 5% from the maximum standard deviation gives well focused clusters in the case of the
most important anomalies (higher than the threshold of 5 nT). It can be seen that the clusters of
solutions are better focused in the case of a 2nd degree polynomial adoption (Fig. 3b) than in the
case of the classical “B-term” version of the algorithm (Fig. 3a). The depths obtained were, with
a 10-15% error, in agreement with the real positions (varying from 0.2 to 1.1 m) of excavated
objects (mainly complete 81 mm mortars were found).

degree of the interference
polynomial

median value of the standard
deviation of the depth solution [m]

median value of the  condition
number [ ]

0 3.5 19.1  101

1 6.5 7.8  105

2 16.6 4.1  1010

degree of the interference
polynomial

median value of the standard
deviation of the depth solution [m]

median value of the condition
number [ ]

0 24.8 2.7 102

1 326.8 6.7 104

2 982.9 1.1 107

Table 2 - Median values of the standard deviation of the depth solution (obtained from LSQ-algorithm) and condition
number (obtained from SVD-algorithm) for the 2D Euler deconvolution of synthetic magnetic data from Fig.1a with
various degrees of the introduced interference polynomial.

Table 3 - Median values of the standard deviation of the depth solution (obtained from LSQ-algorithm) and condition
number (obtained from SVD-algorithm) for the 2D Euler deconvolution of synthetic gravity data from Fig. 2a with
various degrees of the introduced interference polynomial.
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Fig. 3 - Results of the 3D Euler deconvolution algorithm applied on high-definition magnetometry grid of 20 x 20 m
size (ranging from -14.24 to 58.05 nT) (used structural index N = 3): a) results for the constant background term
(classical algorithm); b) results for the adopted 2nd degree interference polynomial. The size of the used moving
window was 5 x 5 grid nodes. Calculations were realised with smoothed input gradients by means of regularisation
algorithm. In both cases solutions with standard deviations of the depth estimation lower than 5% of the maximum one
have been displayed.
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3. Conclusions

Introduction of the interference polynomial into the Euler deconvolution algorithm has shown
its benefits and traps. From the theoretical point of view it is the only known method (for the
author), on how to get numerically correct solutions for the contact structure in gravimetry (when
the input field is ∆g). The solutions obtained without the interference polynomial create serious
“artifacts” and their positions are often completely wrong (e.g. Fig. 2a – horizontal position was
approx. 38 m instead of 50 m). On the other hand, the introduction of the interference polynomial
has caused a dramatic increase in the instability of the whole method. Simple model results with
a 1% level of randomly distributed (white) noise have shown that the results of the method are
erroneous and defocused (Figs. 1b and 2b). Improvement of the situation can be achieved by
introducing the smoothed-regularised derivatives (Pasteka, Richter, 2002) and a minimum level
of standard deviation in the depth estimate for accepted solutions (Figs. 1d, 2d, 3). Results from
the application to practical data (high-definition UXO-magnetometry) shows good properties of
such an approach – better focused clusters of solutions have been obtained for a higher degree of
the adopted interference polynomial. Despite these encouraging results, a more detailed analysis
of this instability and a search for other stable algorithms should be realised in the future.
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