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ABSTRACT In this work we present an extension of Biot s theory to describe wave propagation in
elastic and viscoelastic porous solids saturated by two-phase fluids for arbitrarily fixed
confining and pore pressure conditions. As the fluids are immiscible, the model takes
into account capillary forces. Appropriate bulk and pore volume compressibilities are
defined in terms of the coefficients in the stress-strain relations, which lead to a
generalization of the classic effective pressure laws for the case of single-phase fluids.
Using a Lagrangian formulation, the coupled equations of motion for the solid and the
fluid phases are also derived, including dissipative effects due to matrix viscoelasticity
and viscous coupling between the solid and fluid phases, which are used to model the
levels of wave attenuation and dispersion observed in rocks. Four different body waves
can propagate in this type of media, three compressional waves and one shear wave.
The sensitivity of the phase velocities and quality factors to variations in saturation
and effective pressure in a sample of Boise sandstone saturated by a gas-water mixture
is presented and analyzed. Our results suggest that a combined analysis of such
measurable quantities can be used as indicators of the saturation and pressure states of
a hydrocarbon reservoir. 

1. Introduction

The analysis of the variation of seismic and mechanical properties of rocks when the saturant
fluids are varied in their properties and composition is an active area of research in exploration
geophysics, with application in reservoir characterization and engineering and also in petroleum
geomechanics. 

Theoretical formulations for the study of the deformation and elastic wave propagation in
porous rocks with full, partial, multiphase, or segregate fluid saturation have been presented by
different authors (see for example Biot 1956b, 1956c, 1962; Toksöz et al., 1976; Dutta and Odé,
1979; Mochizuki, 1982; Berryman et al., 1988). However, none of these models incorporate the
capillary forces existing when the pore fluids are immiscible. Consequently, the pressure
variations induced by wave propagation in the different fluid phases are considered equal,
neglecting possible changes in capillary pressure. 

In this work we present a general theory for this kind of problems, which at the same time
includes the effects of the ambient overburden pressure and the reference pressures of the
immiscible fluids on the mechanical response of the rock. The theoretical basis was given by
Santos et al. (1990a, 1990b). In addition, generalizing the ideas given in Zimmerman et al. (1986)



and in Zimmerman (1991) for single-phase fluids we define six compressibility coefficients to
quantify the changes in either the pore volume or the bulk volume associated with changes in
confining, wetting fluid and capillary pressures. Using these compressibilities, we established
effective pressure laws for this model, showing that the effective pressure in this case depends not
only on the wetting fluid pressure but also on the changes in capillary pressure. 

For the study of wave propagation processes, two possible sources of energy dissipation are
considered in this theory: Biot-type global flow and linear viscoelasticity. The first one is
included by means of a viscous dissipation density function in the Lagrangian formulation and
involves the relative flow velocities of the two fluids with respect to the solid frame (Santos et al.,
1990a). The second one is incorporated by extending the elastic constitutive relations to the linear
viscoelastic case by means of a correspondence principle (see Biot, 1956a). In this way the real
poroelastic coefficients in the constitutive equations are replaced by complex frequency
dependent poroviscoelastic moduli satisfying the same relations as in the elastic case.
Viscoelastic behaviour is included in order to model the levels of dispersion and attenuation
suffered by the different types of waves when travelling in real rocks. A form of the frequency
correction factors for the mass and viscous coupling coefficients in the equations of motion
needed in the high-frequency range is also presented. Moreover, generalizing a procedure
previously applied to viscoelastic solids by Fabrizio and Morro (1992) and also to porous media
saturated by single-phase fluids by Ravazzoli (1995), in the Appendix we analyze the resultant
moduli using the laws of continuum equilibrium thermodynamics, leading us to establish some
necessary restrictions. Finally, the theory is applied to predict and analyze the influence of the
saturation, pore fluid types, capillarity and effective pressures on the phase velocities and quality
factors in a sample of Boise sandstone. 

2. A modified two-phase Biot model 

Here we review and extend the model presented by Santos et al. (1990a, 1990b) describing
the deformation and propagation of waves in an elastic isotropic, homogeneous, porous solid
saturated by two immiscible fluids such as oil and water or gas and water. This theory is modified
to include explicitly in the formulation the absolute reference pressure of both fluid phases.
Consequently, we derive the stress-strain relations and we define a set of elastic moduli and
compressibilities for this kind of media. 

2.1. Derivation of stress-strain relations 

When two immiscible fluids occupy the voids of a porous solid one of them (depending on
their adhesion tension) tends to preferentially wet the solid surface, spreading over it. In this way
we can distinguish a wetting phase and a non-wetting one, which will be denoted with the
subscripts (or superscripts) “w” and “n”, respectively. Let Sn and Sw denote the averaged wetting
and non-wetting fluid saturations, respectively. Further, let us assume that the two fluid phases
completely saturate the porous part of the bulk material so that Sn + Sw = 1.

Let us, ũn, and ũw denote the averaged absolute displacement vectors for the solid, non-wetting
and wetting phases, respectively. Let φ denote the effective porosity and for l = n, w set 
ul = φ ( ũl - us) and ξ l = −∇ · ul. 
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At a reference initial state, we consider a volume –
Vb of homogeneous bulk material containing

fluid volumes  –
Vn and  –

Vw at pressures  –
Pn and  –

Pw . In such a state we have  –
Vp = –

Vn +  –
Vw , 

–
Sl = –

Vl /
–
Vp , l = n,   w,

–φ = –
Vp / –

Vb .
Note that for uniform porosity  –Snξ n and  –Swξw represent the change in the corresponding fluid

contents per unit volume of bulk material (Santos et al., 1990a). Thus, if ∆Vc
l denotes the part of

the total change in volume ∆Vl = Vl – –Vl due to changes ∆Pl = Pl – –Pl in the corresponding fluid
pressures, since in equilibrium ∇Sl = 0, we see that 

–
Slξ l = (∆Vl – ∆Vc

l ) / –Vb = –φ (∆Vl – ∆Vc
l ) / –Vp ,         l = n,w. (2.1)

Let  Kn = C–1
n and  Kw = C–1

w denote the bulk moduli of the non-wetting and wetting fluids,
respectively, Cn and Cw being the corresponding compressibilities. Then, by definition 

∆Vc
l / –Vl = –∆Pl /Kl ,         l = n,w. (2.2)

Also, neglecting second order terms, ∆Vl = –
Vp ∆Sl +  –Sl ∆Vp ,  l = n,w, and consequently 

ξ l = –φ (∆Sl / –Sl + ∆Vp / –Vp – ∆Vc
l / –Vl),       l = n,w, (2.3)

where ∆Vp denotes the change in pore volume. Setting ξ * = –
Snξ n + –

Swξw, it follows from
Eqs. (2.1) and (2.3) that 

ξ * = –φ (∆Vp – ∆Vc
n – ∆Vc

w ) / –Vp ,      (2.4)

Next, let τij = –τij + ∆τij , i, j = 1, 2, 3, be the total stress tensor of the bulk material, ∆τij being the
change in the total stress with respect to a reference value –τij corresponding to the initial
equilibrium state. In the same way, Pn =

–
Pn + ∆Pn and Pw = –

Pw + ∆Pw denote the absolute pressures
of the fluid phases, ∆Pn and ∆Pw representing small increments in the corresponding pressures
with respect to their reference values  –Pn and  –Pw , and set ∆Sn = Sn –  –Sn = –∆Sw . Recall that Pn

and Pw are related through the capillary relation (see Bear, 1972; Scheidegger, 1974; Peaceman,
1977), which can be regarded as an equation of state for this system: 

Pca(Sn) = Pn – Pw = Pca ( –Sn) + ∆Pca ≥ 0. (2.5)

Then, ignoring terms of the second order in ∆Sn ,

∆Pca ( –Sn + ∆Sn) ≅ P’ca ( –Sn) ∆Sn . (2.6)

The function Pca(Sn) is a positive and strictly increasing function of the variable Sn . Since in
the present analysis we are not considering an imbibition-drainage cycle, it is not necessary to
include hysteresis effects in the capillary pressure curve. 

The symbols Srw and Srn will denote the residual wetting and non-wetting fluid saturations,
respectively. The saturation Srn is the amount of nonwetting fluid that remains in the pores when
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the capillary pressure tends to zero and Srw (also called irreducible saturation) is the remaining
wetting fluid when the capillary pressure reaches its maximum value. 

We assume that both fluids are allowed to move inside the pore space, so that Srn < Sn < 1– Srw

(see Collins, 1961; Bear, 1972; Scheidegger, 1974; Peaceman, 1977). 
Let us consider a volume Ω of bulk material of boundary ∂Ω in static equilibrium state under

the action of the surface forces f s
i , f n

i , f w
i , i = 1, 2, 3, acting on the solid and fluid parts of ∂Ω per

unit area of bulk material. These forces can be written in the form (Santos et al., 1990a) 

f s
i = [τij + –φ (Sn Pn + Sw Pw)δij]νj f l

i = –φ Sl Plδijνj ,           l = n,w, (2.7) 

where δij denotes the Kronecker symbol and νj is the unit normal to ∂Ω. 
If W* = W*(∆τij , ∆Pn , ∆Pw) represents the complementary strain energy density of the system,

then its complementary potential energy v* is given by (see Fung, 1965; Santos et al., 1990a) 

v* =#
Ω

W*dx –#
∂Ω

( f s
i u s

i + f n
i  ũn

i + f w
i ũw

i  )dσ, (2.8) 

where dx denotes an infinitesimal volume and dσ a surface element in the boundary ∂Ω. Here
and in what follows summation convention is used, i.e., sum on repeated indices is applied. 

The principle of complementary virtual work for our system can be stated in the form (Santos
et al., 1990a): 

#
Ω

δW*dx =#
∂Ω

( δf s
i u s

i + δf n
i  un

i + δf w
i uw

i  )dσ
(2.9) 

–#
Ω

[δλ (∆Pn – ∆Pw – ∆Pca ) + λ (δ∆Pn – δ∆Pw – δ∆Pca ) ]dx,

where δ denotes virtual changes and λ is a Lagrange multiplier used to introduce the capillary
relation as a constraint. Neglecting second order terms in the different increments and using
Eq. (2.6), it can be shown that 

δf n
i  = – –φ 3 –

Snδ∆Pn +  –Pn
δ∆Pca 4 δijνj ,     δf w

i = – –φ 3 –
Swδ∆Pw +  –Pw

δ∆Pca 4 δijνj ,P’ca ( –Sn) P’ca ( –Sn)

δf s
i = – –φ 3 –

Snδ∆Pn +  –Swδ∆Pw + Pca ( –Sn) δ∆Pca 4 δijνj + δ∆τijνj . (2.10)
P’ca ( –Sn)

Transforming the surface integral in Eq. (2.9) into a volume integral by means of Gauss theorem,
using Eqs. (2.10), and following the argument given by Santos et al. (1990a) it can be shown that 

δW*= εijδ∆τij + (–
Snξ n – λ)δ∆Pn + ( –

Swξw + λ)δ∆Pw + (βξ n + λ + (ξ n – ξw)ζ)δ∆Pca , (2.11)

where β = Pca(
–
Sn)/P’ca (–

Sn), ζ = –
Pw /P’ca (–

Sn). Assuming that δW* is an exact differential of the variables
∆τij , ∆Pn , ∆Pw , and ∆Pca , the complementary strain energy W* is equal to the strain energy W, and
using the capillary relation (2.5) in (2.11) we obtain 
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W = 2
1 {εij ∆τij + ξ n [( –

Sn + β + ζ)δ∆Pn – (β + ζ)∆Pw] + ξw[( –
Sw + ζ)∆Pw – ζ∆Pn]}

(2.12)
= 2

1 {∆τijεij + [( –
Sn + β + ζ)ξ n – ζξw]∆Pn + [( –

Sw + ζ)ξw – (β + ζ)ξ n]∆Pw}.

Restricting the analysis to the linear range, for the isotropic elastic case we obtain the
following stress-strain relations: 

i) ∆τij = 2N εij + δij (λceb – B1ξ n – B2ξw) ,

ii) ∆Tn = ( –
Sn + β + ζ)∆Pn – ( β + ζ)∆Pw = – B1eb + M1ξ n + M3ξw, (2.13) 

iii) ∆Tw = ( –
Sw + ζ)∆Pw – ζ∆Pn = – B2eb + M3ξ n + M2ξw,

where the magnitudes ∆τij , ∆Tn and ∆Tw represent the generalized forces for our system, εij

denotes the strain tensor, and eb = εii = ∆Vb / –
Vb . According to Gassmann (1951), we take N

identical to the shear modulus of the dry rock Nm. This is also in agreement with the result
obtained by Berryman (1999) and implies that the viscous fluids do not transmit shear
deformations to the solid. Also, λc = Kc – 2

3
N in 3D and λc = Kc – N in 2D, with Kc = Cc

–1 being
the undrained or closed bulk modulus, computed as in Santos et al. (1990b): 

Kc = Ks(Km + Ξ)/(Ks + Ξ),         Ξ = Kf (Km – Ks)/(
–φ (Kf – Ks)), 

Kf = α (γ –
Sn Cn + –

Sw Cw)–1,         α = 1 + ( –
Sn + β)(γ – 1), (2.14)

γ = (1 + P’ca (–
Sn) –

Sn
–
Sw Cw) (1 + P’ca (–

Sn) –
Sn

–
Sw Cn)

–1, 

where Km = Cm
–1 and Ks = Cs

–1 denote the bulk modulus of the empty matrix and the solid grains,
respectively. In the equations above, Kf = Cf

–1 defines an effective bulk modulus for a two �phase
fluid taking into account capillary forces. Here we are assuming that the solid matrix is composed
of a homogeneous material. In the case of mixed mineralogy an effective average coefficient for
Ks can be used (see Mavko et al., 1998). The remaining coefficients can be obtained by using the
following relations: 

B1 = χKc[(––
Sn + β)γ – β + (γ – 1)ζ] , B2 = χKc[(––

Sw + (1 – γ)ζ] ,

M1 = –M3 – B1Cmη–1, M2 = (rB2 + ζ)q–1, M3 = –M2 – B2Cmη–1, (2.15)

where

χ = [η + –φ (Cm – Cc)]{α [η + –φ (Cm – Cf)]}–1, q = –φ (Cn + 1/P’ca ( –
Sn) –

Sn
–
Sw),

r = (––
Sn + β)Cs + (Cc – Cm)[qB2 + (––

Sn + β)(1 – Cs Cc
–1)], η = Cs – Cm . 

The inverse relations of (2.13) giving the generalized strains εij , ( –
Sn + β + ζ)ξ n – ζξw, and

( –
Sw + ζ)ξw – (β + ζ)ξ n as linear functions of ∆τij , ∆Pn, and ∆Pw are: 

i) εij = 1/(2N )∆τij + δij (D∆τ – F1∆Pn – F2∆Pw) ,

ii) ( –
Sn + β + ζ)ξ n – ζξw = –F1∆τ + H1∆Pn + H3∆Pw , (2.16) 

iii) ( –
Sw + ζ)ξw – (β + ζ)ξ n = –F2∆τ + H3∆Pn + H2∆Pw .
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In the equations above ∆τ = ∆τii and D, F1, F2, H1, H2, H3 are elastic coefficients (Santos et
al., 1990a). 

2.2. Definition of bulk and pore compressibilities 

Here we show that the model presented above enables us to establish a theory for the
compressibilities of the system. For the analysis that follows we consider that the variable Pc

(applied external pressure) plays the role of the confining or overburden pressure supported by
the porous saturated sample at a given (fixed) depth.

First we proceed to derive expressions for eb and ep = ∆Vp / –Vp that will be used to define the
compressibilities for the saturated material. Consider tensional changes ∆τij such that ∆τij = 0 for
i ≠ j and 

∆τ11 = ∆τ22 = ∆τ33 = ∆τ/3 = –∆Pc ,          ∆Pc > 0. (2.17) 

Note that from Eqs. (2.2), (2.4) and (2.16i) we can express eb and ep in the form: 

eb = (3D + 1/2N)∆τ – 3F1∆Pn – 3F2∆Pw (2.18) 

ep = ξ */ –φ + ∆Vc
p / –Vp = ξ */ –φ – –

Sn Cn∆Pn –  –Sw Cw∆Pw (2.19) 

Next, adding (2.16ii) and (2.16iii) we obtain 

ξ * = –(F1 + F2)∆τ + (H1 + H3)∆Pn + (H2 + H3)∆Pw . (2.20) 

Using the relations (3D + 1/2N) = Cm/3,   F1 = ( –
Sn + β)η/3,   F2 = ( –

Sw – β)η/3, [see Santos et
al. (1990b), pp. 1432] and combining Eqs. (2.17), (2.20) and the capillary relation ∆Pn �– ∆Pw =
∆Pca , Eqs. (2.18) and (2.19) become 

eb = –Cm∆Pc – η∆Pw – ( –
Sn + β)η∆Pca , (2.21) 

ep = (η / –φ )∆Pc + ([H1 + H2 + 2H3]/
–φ – –

Sn Cn –  –Sw Cw)∆Pw + (2.22)
+ ([H1 + H3]/

–φ – –
Sn Cn)∆Pca .

Since there are two volumes Vb and Vp and three different pressures (Pc, Pw , Pca) that may vary
independently, from (2.21)-(2.22) we see that a set of six compressibilities can be defined as: 

(2.23)

(2.24)

(2.25)

(2.26)
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(2.27)

(2.28)

Then, Eqs. (2.21) and �(2.22) can be stated in differential form as follows:

eb = –Cbc(Pc , Pw , Pca)dPc + Cbw(Pc , Pw , Pca)dPw + Cbca(Pc , Pw , Pca)dPca (2.29)

ep = –Cpc(Pc , Pw , Pca)dPc + Cpw(Pc , Pw , Pca)dPw + Cpca(Pc , Pw , Pca)dPca (2.30)

The coefficients Cbc, Cbw and Cpc are similar to those defined in Zimmerman et al. (1986) and
Zimmerman (1991) for the case of single-phase fluids with analogous interpretation and
applications. The remaining coefficients Cbca, Cpw and Cpca are strongly dependent on the
saturation state and capillary pressure. This means that the changes in such variables can also
modify the pore and bulk volumes.

Next note that from Eqs. (2.23), (2.24) and (2.26) we deduce that 

i) Cbw = Cbc – Cs ,           ii) Cbw = –φ Cpc . (2.31) 

Eqs. (2.31i) and (231ii) correspond to Eqs. (2.5) and (2.6) in Zimmerman (1991). This shows
the equivalence of the variable Pw and the “pore pressure” Pp used in such reference and that Cbw

plays the role of the compressibility Cbp in Zimmerman et al. (1986) and in Zimmerman (1991). 

3. Effective pressure law for elastic bulk volume deformations 

The infinitesimal pore and bulk strains found in the preceding subsection correspond to
pressure changes small enough so that the different compressibilities involved can be considered
independent of pressures during the process. That analysis would be appropriate for elastic wave
propagation problems. However, for other physical problems, the total integrated strain is
required (Zimmerman, 1991). Examples of such situations are the studies of subsidence and
formation compaction due to pore fluid migration from hydrocarbon or groundwater reservoirs,
the evaluation of the increase (decrease) in the pore volume of a rock due to a finite increase
(decrease) in the pressure of the pore fluids and the estimation of the true in-situ porosity of a
formation from laboratory measurements (usually made at zero confining pressure). It is a well
established fact that most of the mechanical and transport properties of cracked or porous media
subjected to both external and internal pressures depend on effective pressure. This is a very
important concept since the forementioned properties remain the same at a constant effective
pressure, even though the confining and pore fluid pressures are varied. Important contributions
to the formulation and analysis of effective stress rules, from both the theoretical and
experimental points of view, were presented by different authors, as for example Terzaghi (1936),
Geertsma (1957), Nur and Byerlee (1971), Christensen and Wang (1985), Zimmerman (1991),
Berryman (1992), Gangi and Carlson (1996) and Prasad and Manghnani (1997). Next we will
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show that the equations obtained in section 2.2. lead us to an extension of the effective pressure
coefficients obtained by Zimmerman (1991) for uniform pore pressure systems, when capillary
forces are considered. Assuming that eb and ep are exact differentials of the variables Pc , Pw and
Pca and that Cs is constant, from Eqs. (2.29) and (2.24) we get 

(3.1) 

(3.2) 

Consequently Cbc = Cbc(Pc – Pw , Pca) , and from Eq. (2.25) we also have that 

Cbca = Cbca(Pc – Pw , Pca) = ( –
Sn + β)(Cbc(Pc – Pw , Pca) –Cs) . (3.3) 

Next, following Zimmerman (1991), to obtain the total strain through any given process we
integrate relations (2.29) and (2.30). To perform the integration in the (Pc , Pw , Pca) state variables,
we move along the following paths: 

Path 1:  (0, 0, Pca(Sn
*)) → (Pc ,0, Pca(Sn

*))

Path 2:  (Pc ,0, Pca(Sn
*)) → (Pc ,

–
Pw , Pca(Sn

*))

Path 3:  (Pc , 
–
Pw , Pca(Sn

*)) → (Pc ,
–
Pw , Pca(Sn)).

The symbol Sn
* denotes an unstrained reference saturation state within the range Srn < Sn

* < 
1 – Srw . For the Path 1, the sample is subjected to an external pressure Pc and the wetting fluid
pressure is held at Pw = 0, while the non-wetting fluid is held at the reference pressure  –Pn = Pca(Sn

*)
so that both pressures are constant during the experiment. Then from Eq. (2.29) the integrated
strain Eb

1 along this path results 

Eb
1 = −#

0

Pc

Cbc(P1 – 0, Pca(Sn
*) )dP1

Next, for the Path 2, the external pressure Pc is held constant while both fluids receive an equal
increment in pressure from 0 to  –Pw . In this way there is no change in capillary pressure. The
resulting bulk deformation during this process Eb

2 is 

Eb
2 =#

0 

–
Pw

[Cbc(Pc – P2 , Pca(Sn
*) ) – Cs]dP2 = −#

Pc

Pc−
–
Pw

Cbc(P, Pca(Sn
*) )dP – Cs

–
Pw .

Finally for the Path 3 experiment the wetting fluid pressure is held at the pressure –Pw while the
non-wetting fluid pressure is incremented from Pca(Sn

*) to Pca(
–
Sn) . This results in an increment in

capillary pressure with constant  –Pw and Pc with bulk volume deformation Eb
3 : 

Eb
3 =# Pca( –

Sn) 
Cbca(Pc –  –Pw ,P3)dP3 .

Pca(Sn
*)
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The total strain Eb is then given by the sum: Eb = Eb
1 + Eb

2 + Eb
3. 

Next, following Zimmerman (1991), we proceed to define the “secant” compressibilities –Cbc

and  –Cbca to obtain an effective stress form of the total strain Eb . Set R (Pca) = Pca(
–
Sn) –�Pca(Sn

*) and
let 

1–
Cbc (Pc , Pca(

–
Sn) ) = –– #

0

Pc

Cbc(P, Pca(
–
Sn) )dP,

Pc

1–
Cbca (Pc – –Pw , Pca(Sn

*), Pca(
–
Sn) ) = –––––  # Pca( –

Sn)
Cbca(Pc – –Pw , P3)dP3R (Pca) Pca(Sn

*)

1= –––––  #
–
Sn

[s + β(s)][Cbc(Pc – –Pw , Pca(s) – Cs] P’ca (s)ds,
R (Pca) Sn

*

where we have used Eq. (2.25) and the fact that P3 = P3(s) where the variable s takes values in the
saturation range [Sn

*, –
Sn] and P3(s) is the capillary pressure function. Then we see that the elastic

deformation Eb of the bulk volume can be written in terms of an effective pressure Pef
b in the form 

Eb . – –Cbc (Pc – –Pw , Pca(Sn
*))(Pc – –Pw) – Cs

–
Pw

+ –
Cbca (Pc – –Pw , Pca(Sn

*), Pca(
–
Sn) )R (Pca) = – –Cbc (Pc – –Pw , Pca(Sn

*))Pef
b , (3.4)

where 

Pef
b = Pc – –nb1

–
Pw – –nb2R (Pca) , (3.5) 

–nb1 = 1 – Cs y –
Cbc(Pc – –Pw , Pca(Sn

*)) , (3.6) 

–nb2 = –
Cbca(Pc – –Pw , Pca(Sn

*), Pca(
–
Sn) ) y –

Cbc(Pc – –Pw , Pca(Sn
*)) . (3.7) 

It is therefore seen that, the effect of the confining pressure is not only counteracted by the
wetting fluid pressure (as may be expected) but also by a new term related to the capillary
pressure change during the deformation process. A similar expression can be obtained for the
total elastic deformation Pef

p of the pore volume Vp. We do not include it here for brevity. 

4. The equations of motion

First we will get an expression for the complementary potential energy density vd
* of the

system. Consider a perturbation of the system from the equilibrium state. According to Eq. (2.8)

δv* =#
Ω

δvd
*dx =#

Ω
δW*dx –#

∂Ω
(us

iδ f s
i + ũn

i δ f n
i  + ũw

i  δ f w
i )dσ . (4.1) 

Using Eqs. (2.10) and (2.11), we obtain 
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∂∆τij ∂ ∂δv* =#
Ω

{– us
iδ ––––– + ui

nδ –– δ ∆Tn + ui
wδ –– δ ∆Tw + λδ[∆Pca – (∆Pn – ∆Pw)]}dx .∂xj ∂xi ∂xi

As stated previously, since we are in the linear case, the complementary strain energy W*
equals the strain energy W and consequently the same holds for their corresponding densities
vd

* = vd , (Fung, 1965; Santos et al., 1990a). Then, assuming that vd is an exact differential we
have 

∂∆τij ∂∆Tn ∂∆Twvd = – us
i ––––– + ui

n ––––– + ui
w ––––– + λ (∆Pc – (∆Pn – ∆Pw)). (4.2) ∂xj ∂xi ∂xi

Thus, if u = (us
i , ui

n, ui
w) = (uj), 1 ≤ i ≤ 3, 1 ≤ j ≤ 9, are chosen as generalized coordinates and

assuming that the system is conservative we get 

∂vd ∂∆τij ∂vd ∂∆Tn ∂vd ∂∆Tw––– = − –––– ,      ––– = –––– , ––– = –––– ,     1 ≤ i ≤ 3 (4.3) ∂us
i ∂xj ∂ui

n ∂xi ∂ui
w ∂xi

Next, following Santos et al. (1990a), in the isotropic case the kinetic energy density Ec and
the dissipation density function D have the form 

1 ∂us
i ∂us

i ∂us
i ∂ui

n ∂us
i ∂ui

w

Ec = –– ρ –––  ––– + ρnSn –––  ––– + ρwSw –––  ––– 
2 ∂ t ∂ t ∂ t ∂ t ∂ t ∂ t

(4.4)
1 ∂ui

n ∂ui
n 1 ∂ui

w ∂ui
w ∂ui

n ∂ui
w

Ec + –– gn
c –––  ––– + –– gw

c –––  ––– + gc
nw –––  ––– , 

2 ∂ t ∂ t 2 ∂ t ∂ t ∂ t ∂ t

1 ∂ui
n ∂ui

n ∂ui
w ∂ui

w ∂ui
n ∂ui

w

Dc = –– (dn
c –––  ––– + dw

c –––  ––– − dc
nw –––  ––– ) , (4.5)

2 ∂ t ∂ t ∂ t ∂ t ∂ t ∂ t

where ρw and ρn are the mass densities of the wetting and the non-wetting fluids and ρ is the
density of the bulk material, i.e., ρ = (1 – φ–)ρs + –

Snρn + –
Swρw, with ρs being the mass density of

the solid grains. Also, the mass coupling coefficients gn
c, gw

c , gc
nw represent the inertial effects

associated with dynamic interactions among the three phases, while the coefficients dn
c, dw

c , dc
nw

include the viscous coupling between the solid and fluid phases. They can be computed by the
formulae (see Santos et al., 1990a, 1990b) 

gl
c = Gρl

–
Sl /φ

–,       dl
c = µl(

–
Sl )2A l ,      l = n, w, (4.6)

gc
nw = eG (ρnρw

–
Sn

–
Sw)1–2 /φ–,       dc

nw = (µnµw)1–2 –
Sn

–
Sw Krnw /A , (4.7)

The factor G is known as a structure factor and is related to the tortuosity of the pore space; it can
be estimated as follows (Berryman, 1981): G = 1_

2 (1+ 1_
φ). The constants µn ,µw are the non-wetting

and wetting fluid viscosities, respectively. Also, A = K (KrnKrw –�K2
rnw), An = Krw /A , Aw = Krn /A ,

with K, Krn , Krw and Krnw denoting the absolute and relative permeabilities, respectively. The
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relative permeabilities are assumed to be functions of the non-wetting saturation Sn (Bear, 1972;
Scheidegger, 1974; Peaceman, 1977). 
REMARK. Note that Eq. (4.5) contains an additional viscous coupling coefficients dc

nw taking into
account the viscous drag between the immiscible fluids. This effect was not present in the original
formulation in Santos et al. (1990a). 
Finally, the Lagrange formulation of the equations of motion is given by

d ∂Ec ∂D ∂vd––– (–––) + ––– = – ––– ,  1 ≤ j ≤ 9 (4.8) 
dt ∂ ⋅uj ∂ ⋅uj ∂uj

5. Inclusion of viscoelastic dissipation 

So far, the only source of energy dissipation considered in the equations of motion is
associated with the viscous solid-fluid interaction (global flow effect) given by Eq. (4.5), since
the solid phase was assumed to be perfectly elastic. However, it is well known that wave
dispersion and attenuation phenomena in real saturated rocks are higher than those associated
with viscodynamic effects (Stoll and Bryan, 1970; Mochizuki, 1982; Carcione, 2001). This is
mainly due to the complexity of pore shapes, heterogeneities in the physical properties and in the
distribution of the fluids, the intrinsic anelasticity of the frame and any other process associated
to solid-fluid interactions. These factors can be included in the formulation by means of the
theory of viscoelasticity. The theoretical basis for this generalization was given by Biot (1956a,
1962), who developed the general theory of deformation of porous materials saturated by viscous
fluids when the solid phase exhibits linear viscoelastic behaviour. Using principles of irreversible
thermodynamics he established a general operational relationship between generalized forces Qi

and observed coordinates qi, of the form Qi = Tijqj , where Tij is a symmetric matrix. In this way
Biot obtained a general correspondence rule between the elastic and viscoelastic formulations in
the domain of the Laplace transform and showed that formally all the relations are identical. The
poroviscoelastic formulation obtained in this way was later applied by different authors for the
study of wave propagation problems (see Stoll and Bryan, 1970; Stoll, 1974; Keller, 1989;
Rasolofosaon, 1991). It follows from Eqs. (2.13) that the eight generalized forces of our model
are related to the variables ξn, ξw and εij by means of a symmetric matrix, whose elements are
functions of the elastic coefficients. Thus, if we assume that the solid phase shows linear
viscoelastic behaviour, we are able to extend the constitutive relations (2.13) by simply replacing
the real elastic moduli N, λc, B1, B2, M1, M2, M3 by appropriate viscoelastic operators. Using
Fourier transform in time (instead of Laplace), we can state these relations in the space frequency
domain as follows: 

i) ∆^τij(ω) = 2^N(ω)ε^ij(ω) + δij[
^λc(ω)^eb(ω) − ^

B1(ω)^ξ n(ω) − ^
B2(ω)^ξw(ω)], 

ii) ∆^Tn(ω) = −^B1(ω)^eb(ω) + ^
M1(ω)^ξ n(ω) + ^

M3(ω)^ξw(ω), (5.1) 

iii) ∆^Tw(ω) = −^B2(ω)^eb(ω) + ^
M3(ω)^ξ n(ω) + ^

M2(ω)^ξw(ω), 

where ω = 2π f is the angular frequency, ^N, ^λc, �^B1, 
^
B2, 

^
M1, 

^
M2, 

^
M3 are complex frequency

dependent poroviscoelastic moduli and the hat denotes time Fourier transform. A similar
extension can be done for the strain-stress relations (2.16). 
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By definition, viscoelastic behaviour is characterized by the time dependent relationship
between stresses and strains (memory effect). This can be clearly appreciated formulating
Eqs. (5.1) in the time domain. To obtain expressions analogous to the Boltzmann’s integral
formulation in viscoelasticity, first we need to introduce the stress relaxation functions RJ (t), J =
N, λc, B1, B2, M1, M2, M3, whose time derivatives ṘJ (t) are related to the complex moduli in
Eqs. (5.1) as stated in Eq. (5.3) below. These relaxation functions characterize the response of the
system when step-like strains are applied. In order to preserve the causality of the model it is
necessary to assume that all the relaxation functions are zero for times t < 0, so that the stress at
time t cannot be influenced by future strains. Taking this into account in the inverse Fourier
integrals of Eqs. (5.1) and integrating by parts assuming that εij(−∞) = ξn(−∞) = ξw(−∞) = 0, Eqs.
(5.1) can be stated in the space-time domain as follows: 

i) ∆τij(t) = 2RN(0+)εij(t) + δij[Rλc(0+)eb(t) − RB1
(0+)ξn(t) − RB2

(0+)ξw(t)]

+2#
0

∞

ṘN(s)εij(t − s)ds + δij#
0

∞

[ Ṙλc(s)eb(t − s) − ṘB1
(s)ξn(t − s) − ṘB2

(s)ξw(t − s)]ds,

ii) ∆Tn(t) = −RB1
(0+)eb(t) + RM1

(0+)ξn(t) + RM3
(0+)ξw(t)

+#
0

∞

[− ṘB1
(s)eb(t − s) + ṘM1

(s)ξn(t − s) + ṘM3
(s)ξw(t − s)]ds, (5.2)

iii) ∆Tw(t) = −RB2
(0+)eb(t) + RM3

(0+)ξn(t) + RM2
(0+)ξw(t)

+#
0

∞

[− ṘB2
(s)eb(t − s) + ṘM3

(s)ξn(t − s) + ṘM2
(s)ξw(t − s)]ds.

In general, the notation Rj(0+) denotes limt→0+ Rj(t). Let 
⋅
FS(ω) and 

⋅
FC(ω) be the half-range

Fourier sine and cosine transforms of the function 
⋅
f (t). Then, the following frequency-domain

relations between complex moduli and relaxation functions can be shown: 

^
J(ω) = ^JR(ω) + i^JI (ω) = RJ (0+) + ṘJ

C(ω) − i ṘJ
S(ω) , (5.3)

where J stands for N, λc , B1, B2, M1, M2, M3 . 
As pointed out in Zimmerman (1991), although the derivatives appearing in the different

compressibilities (2.23)-(2.28) can be also defined for irreversible deformation processes, such
coefficients are generally computed only for purely elastic cases. Then for consistency, the
compressibilities of the model could be extended to the present case by considering the relaxed
limits (i.e. limω→0 or lim t→∞) of the complex moduli appearing in Eq. (5.3). In the Appendix
we give a set of restrictions imposed by the Laws of Thermodynamics on the imaginary parts of
the coefficients in Eqs. (5.1). 

6. The equations of motion for the full frequency range

It is known that, for single �phase fluids, the viscous and mass coupling coefficients become
frequency dependent in the high frequency range (see Biot, 1956c; Johnston et al., 1987,
Carcione, 2001). This effect is associated with the departure of the flow from the laminar
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Poiseuille type at the pore scale, which occurs for frequencies greater than some characteristic
value. Since we have two immiscible fluids flowing within the poral space and three relative
permeability functions, following the ideas in Berryman et al. (1988), we define for this model
three characteristic frequencies of the form 

ωc
l = –

Sl µlφ
–A l / (Gρl), l = n, w, (6.1)

ωc
nw = φ–(µnµw)

1
2 ( –

Sn
–
Sw)

1
2 Krnw /(eAG(ρnρw)1–2 ). (6.2)

These frequencies are obtained by equating the inertial and viscous drag terms associated with
each fluid phase and using Eqs. (4.6) and (4.7). For frequencies bigger than the minimum of the
three characteristic frequencies defined above, the mass and viscous coupling coefficients are
defined as follows: 

gl(ω) = gl
c + µl(

–
Sl )2A l FI (θl)/ω , l = n, w, (6.3)

gnw(ω) = gc
nw + (µnµw)

1
2

–
Sn

–
SwKrnw FI (θnw)/(ωA) , (6.4)

dl(ω) = dl
c FR (θl) l = n, w, nw , (6.5) 

The complex valued frequency dependent function F(θj) = FR(θj) + iFI (θj), j = n, w, nw in 
Eqs. (6.3)-(6.5) is the “universal” frequency correction function defined by Biot (1956c) for
single phase fluids: 

1 θT(θ) ber’(θ) + ibei’(θ)
F(θ) = – ––––––––– ,       T(θ) = –––––––––––––– ,

4 1 − 2_
iθ 

T(θ) ber(θ) + ibei(θ)

with ber(θ) and bei(θ) being the Kelvin functions of the first kind and zero order. The arguments θj

for F(θj), j = n, w, nw in Eqs. (6.3)-(6.5) can be estimated as in Biot (1956c) and Santos et al. (1992):

(6.6) 

where A0 denotes the Kozeny-Carman constant (see Bear 1972; Hovem and Ingram 1979). 
Next, combine Eq. (4.8) with Eqs. (4.3), (4.4), (4.5) and (5.1) and assume that Sn is

independent of time [see Santos et al. (1990a) for the argument justifying this assumption].
For a spatially homogeneous medium, the Eqs. of motion (4.8) formulated in the space-

frequency domain take the following form: 

−ω2 (ρ^us + ρn
–
Sn

^un + ρw
–
Sw

^uw) = (^Kc + 43 
^
N )∇∇ ⋅ ^us − ^

N ∇ × ∇ × ^us + ^B1∇(∇ ⋅ ^un) + ^B2∇(∇ ⋅ ^uw)

−ω2 (ρn
–
Sn

^us + gn
^un + gnw

^uw) + iωdn
^un − iωdnw

^uw = ^B1∇(∇ ⋅ ^us) + ^M1∇(∇ ⋅ ^un) + ^M3∇(∇ ⋅ ^uw) 

−ω2 (ρw
–
Sw

^us + gnw
^un + gw

^uw) + iωdw
^uw − iωdnw

^un = ^B2∇(∇ ⋅ ^us) + ^M3∇(∇ ⋅ ^un) + ^M2∇(∇ ⋅ ^uw).

(6.7)
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Taking into account the fact that FR(θ) →1 and FI (θ)/ω → 0 as ω → 0, we may regard Eqs. (6.7)
as the general form of the equations of motion for frequencies ranging from the seismic to the
ultrasonic range. 

The plane wave analysis performed in Santos et al. (1990a) shows that in these type of media,
three different compressional waves (Type I, Type II and Type III) and one shear wave (or S-wave)
can propagate. The Type-I and S waves behave similarly to the classical P and S waves
propagating in elastic or viscoelastic isotropic solids and they are associated to the motion of both
solid and fluids moving nearly in phase. The Type-II and Type-III are slow waves strongly
attenuated in the low frequency range, as will be confirmed in the next section. The first one is
analogous to the classical Biot’s slow wave [observed in laboratory experiments by Plona (1980)],
with the two fluids moving nearly in phase and in opposite phase with the solid. For the Type III
waves, both fluids move in nearly opposite phase with each other (Santos et al., 2004). This is a
new mode not present in the case of single-phase fluids. The particle displacements associated to
the different wave modes propagating in linear poroviscoelastic media saturated by single phase
fluids were analyzed rigorously by Rasolofosaon (1991), who demonstrated their elliptical
polarization. 

Denoting by k j, j = I, II, III, S, the complex wavenumbers, the phase velocities C and quality
factors Q are obtained by using the formulae: 

Cj = ω /Re(kj),          Qj = − Re(kj)/2Im(kj), (6.8)

7. Application to a real sandstone 

We use the model to analyze the combined effects of saturation and effective pressure on the
attributes of the different waves propagating in a sample of Boise sandstone, a well consolidated
feldespathic graywacke (see Mann and Fatt, 1960; King, 1966). Its material properties are
φ– = 0.25, K = 1400 10−15 m2, Ks = 34.5 GPa and ρs = 2550 kg/m3. To introduce the variation of
the matrix properties with effective pressure, we obtained the dependence of the shear and bulk
dry-rock moduli Nm(Pc) and Km(Pc) versus confining pressure by assuming that for each Pc the
velocities measured by King (1966) correspond to the elastic isotropic approximation. Then, we
performed exponential-type regressions of the form: 

f −1(Pc) = y0 + A1 exp (−(Pc − P0)/t1) + A2 exp (−(Pc − P0)/t2), (7.1)

where f stands for Nm or Km. The regression coefficients are given in Table 1. Since for the dry
sample the effective pressure equals the confining pressure, to obtain the elastic properties of the
skeleton for a given combination of confining and fluid pressures, we simply replace Pc by the
effective pressure Pb

ef [given by Eq. (3.5)] in Eq. (7.1). As explained in Section 2.1., the overall
shear modulus N is taken equal to Nm . 

P0 y0 A1 t1 A2 t2

(Km)−1 0.536626645088 0.092089 0.01766 7.634 0.01828 38.53

(Nm)−1 4.427347752235 0.1011300 0.01200 1.925 0.01259 23.71

Table 1 - Coefficients of Eq. (7.1) for Boise sandstone. For pressures given in MPa the moduli result in GPa.
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The capillary pressure function Pca(Sn) and the relative permeability functions Krn(Sn) and
Krw(Sn) needed to describe our system are taken to be (see Douglas et al., 1993): 

Pca(Sn) = A{1/(Sn + Srw − 1)2 − S2
rn /[Sn (1 − Srn − Srw)]2} , 

Krn(Sn) = [1 − (1 − Sn)/(1 − Srn)]
2 ,  Krw(Sn) = [(1 − Sn− Srw)/(1 − Srw)]2 . (7.2)

These relations are based on laboratory experiments performed on different porous rocks

during imbibition and drainage processes (neglecting hysteresis effects). We chose Srw = Srn =
0.05, and A = 30 kPa. In the absence of proper experimental data, the coupling permeability

function Krnw(Sn) used in this work is assumed to be Krnw(Sn) = √eKrn(Sn) Krw(Sn). The parameter

e in Eqs. (4.7) and the definition of Krnw is equal to 0.1, as in Santos et al. (1990b). The whole

set of poroelastic moduli is computed using Eqs. (2.14) and (2.15). 
The viscoelastic behaviour is introduced using the phenomenological model defined by Liu et

al. (1976), consisting in a continuous superposition of Zener elements or relaxation times. This
results in a linear causal model, with an almost constant quality factor and approximately linear
attenuation over a desired frequency band. These properties are very useful for applications in oil
prospecting and seismology (Carcione, 2001). As discussed in Liu et al. (1976), the distribution
of relaxation times represents many different physical relaxation mechanisms. Using this model
we make the shear and undrained modulus complex and frequency dependent, while all the other
coefficients remain real. Then, the complex moduli ^Kc = ^Kc (ω, Pb

ef , –
Sn) and ^

N = ^N (ω, Pb
ef ) are

computed as 

Kc
r(Pb

ef , –
Sn) N r(Pb

ef )^
Kc = ––––––––––––––––––––– , ^N = ––––––––––––––––––– . (7.3) 

RKc
(ω, Pb

ef ) − iTKc
(ω, Pb

ef ) RN (ω, Pb
ef ) − iTN (ω, Pb

ef )

The real coefficients Kc
r(Pb

ef ) and N r(Pb
ef ) denote the relaxed closed bulk and shear moduli,

respectively. They are chosen so that the high frequency limits of Eqs. (7.3) match the values of
N (Pb

ef ) and Kc(Pb
ef , –

Sn) obtained from Eqs. (7.1) and (2.14), respectively. The frequency dependent
functions Rl and Tl , l = Kc , N, associated with a continuous spectrum of relaxation times,
characterize the viscoelastic behaviour and are given by (see Liu et al., 1976; Carcione, 2001) 

1 1 + ω2T 2
1,l

Rl (ω, Pb
ef ) = 1 − ––––––––  ln ––––––––– , (7.4) 

π^Ql (Pb
ef ) 1 + ω2T 2

2,l

2 ω(T1,l − T2,l)
Tl (ω, Pb

ef ) =  ––––––––  tan−1 ––––––––––– ,       l = Kc , N. (7.5) 
π^Ql (Pb

ef ) 1 + ω2T1,l T2,l

The parameters in Eqs. (7.4) and (7.5) are taken such that the resulting quality factors Ql =
Tl /Rl are approximately equal to the reference values ^Ql in the range of frequencies where the
model is applied. To introduce in our model the dependence of the quality factors on effective
pressure (Winkler and Nur, 1979), we varied the coefficients ^QKc

and  ^QN from 40 (for the
minimum effective pressure) to 60 (for the maximum) and from 48 to 75, respectively. These
values were chosen taking into account the fact that for partially saturated rocks the quality factor
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for shear deformations is greater than the associated to compressional deformations (Winkler and
Nur, 1979). For simplicity any possible dependence of such coefficients on saturation was
disregarded. For the computations we take T1,l = − 1

2π10 s, T2,l = − 1
2π109 s, for l = Kc , N.

The value of the Kozeny-Carman constant A0 in Eqs. (6.6) is equal to 5. This same formulation
was recently applied by the authors in Carcione et al. (2004), Santos et al. (2004) for numerical
simulation of wave fronts and satisfies the restrictions imposed by the Laws of Thermodynamics
(see the Appendix). 

According to Eqs. (6.1) and (6.2) the characteristic angular frequencies at 10 % gas saturation
are about ωc

n = 430 kHz, ωc
w = 89 kHz and ωc

nw = 182 kHz. 
For the following experiments the sample is subjected to a fixed confining pressure of 60 MPa

and the pore space is assumed to be filled with water (as the wetting phase) and a hydrocarbon
gas. Their properties are: ρw = 1000 kg/m3, µw = 0.01 N s/m2, Kw = 2.223 GPa, ρn = 100 kg/m3,
µn = 0.00015 N s/m2, Kn = 0.022 GPa. To obtain plots vs. effective pressure, the reference pressure
of the water was varied within the range 25 MPa ≤ –

Pw ≤ 60 MPa, keeping constant saturation

Fig. 1 - a) Comparison between effective pressure, wetting differential pressure and Gangi-Carlson’s type law for Sn =
0.4. b) Behaviour of nb1 and nb2 coefficients versus Pw for different saturation states. c) Bulk effective pressure vs. non-
wetting saturation for different wetting pressure states. 
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states, while for the curves vs. saturation we take 0.05 < –
Sn < 0.95, maintaining fixed values of

–
Pw . Fig. 1a shows the bulk effective pressure (Pb

ef ) given by Eq. (3.5) versus wetting fluid pressure
for 40% gas saturation. We compare our results with other estimates, such as the wetting-
differential pressure, defined as Pwd = Pc

–
Pw and a general law proposed by Gangi and Carlson

(1996) of the form: 

Pef
G = Pc − nG

–
Pw ,   with nG = n0 − n1

–
Pwd , n0 = 1,    n1 = 0.014 MPa−1. 

Significant differences can be observed in almost all the pressure range. As expected, the
increase in wetting fluid pressure causes a reduction in the effective pressure acting on the solid
matrix, producing a “softening” effect in the sandstone. Fig. 1b illustrates the coefficients nb1 and
nb2 given in Eqs. (3.6) and (3.7) versus 

–
Pw for different saturation states. We observe that when 

–
Pw

approaches Pc (i.e., near the fracture limit), nb1→1 and nb2→0, and Pb
ef → Pwd (since  

–
Cbc→ ∞ for

–
Pw → Pc). Unlike the “classic” nb1 coefficient, nb2 is strongly dependent on saturation. To analyze
the influence of the capillary forces on the bulk effective pressure, in Fig. 1c we plot Pb

ef vs. non-
wetting saturation for different values of

–
Pw . It can be observed that the curves are almost constant

with saturation, except near the irreducible water saturation, where they show an abrupt decrease.
This behaviour should be carefully investigated with appropriate laboratory measurements. 

Next we analyze the behaviour of the phase velocities and quality factors [using Eqs. (6.8)]
for the different wave propagation modes in the ultrasonic frequency range (for f = 1 MHz). In
Fig. 2a we plot the phase velocity of the Type I compressional wave vs. Pb

ef for 10, 40 and 90%
gas saturation. According to Eqs. (7.2) the capillary pressures at these saturation states are 3.226
KPa, 9.859 KPa and 1.2 MPa, respectively. The marked increase observed in the velocity with
effective pressure reflects the change in the elastic properties of the skeleton with effective
pressure given by Eq. (7.1), and is mainly associated with the closure of microcracks, low aspect
ratio pores and loose grain contacts, which increase the stiffness of the rock. For very low
effective pressures this velocity shows a significant decrease, an effect usually observed in

Fig. 2 - Phase velocity of Type I - P waves for a frequency f = 1MHz: a) vs. Pef
b for some fixed saturations and b) vs.

non-wetting saturation  
–
Sn for different fixed wetting pressures. 
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formations with very high pore pressures (i.e. overpressured), and also predicted by different
theories (see Toksöz et al., 1976; Carcione and Gangi, 2000).

At these pressure conditions the velocity is not sensitive to saturation, a behaviour that was
also checked with an isostress fluid mixture model (i.e. a classical Biot model). Similar results
were presented by Toksöz et al. (1976) for this sandstone (see Fig. 12 in that paper). We also study
the dependence of the Type I - P wave velocity on non-wetting saturation for fixed wetting
pressures  

–
Pw = 30 MPa, 40 MPa and 50 MPa and this is shown in Fig. 2b. The effective pressures

for these experiments are about 37, 30 and 22 MPa, respectively. As can be observed this velocity
reflects the combined effects of the variations in the poroviscoelastic moduli, the effective
pressure law and in the bulk density with saturation. The absolute minimum corresponds to the

Fig. 3 - Phase velocity of shear waves for a frequency f = 1MHz: a) vs. Pef
b for some fixed saturations and b) vs. non-

wetting saturation  
–
Sn for different fixed wetting pressures. 

Fig. 4 - Phase velocities of Type II - P waves for a frequency f = 1MHz: a) vs. Pef
b for some fixed saturations and b) vs.

non-wetting saturation  
–
Sn for different fixed wetting pressures. 
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effect observed in the effective pressure near the residual water saturation. A quite similar
behaviour is observed in Fig. 3, where we plot the phase velocity of shear waves vs. effective
pressure and vs. saturation. Next we analyze the dependence of phase velocities of the slow waves
with saturation and effective pressure. From Figs. 4 and 5 we observe that Type II and Type III-
P wave velocities are clearly more sensitive to saturation also showing a strong dependence on
effective pressure. 

The quality factors for the Type I -P and shear waves vs. Pb
ef , are shown in Fig. 6. As observed

in the phase velocities, these coefficients show an important monotonic increase with effective
pressure, in agreement with the observations made by different authors (see Tao et al., 1995;
Schön, 1996; Carcione and Gangi, 2000). The quality factors associated to the slow waves are
shown in Fig. 7. Except at intermediate saturations, the QII coefficient shows only slight
variations with pressure changes, being more sensitive to saturation. The type III quality factor
QIII shows a stronger dependence on these variables. 

Fig. 5 - Phase velocities of Type III - P waves for a frequency f = 1MHz: a) vs. Pef
b for somefixed saturations and b) vs.

non-wetting saturation  
–
Sn for different fixed wetting pressures. 

Fig. 6 - Quality Factors of Type I - P and shear waves vs. Pef
b for different saturations. 
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Fig. 7 - Quality Factors of Type II and III - P and shear waves vs. Pef
b for different saturations. 

Fig. 8 - Behaviour of phase velocities of Type II and Type III- P waves versus effective pressure and vs. linear frequency
f (in log. scale) for 40% gas saturation (Sn = 0.40.) 
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It is also interesting to analyze the frequency dependence of the slow P - wave velocities and
quality factors under different effective pressures. This is shown in the surface plots
corresponding to Figs. 8 and 9, where the linear frequency f varies from 1 Hz to 107 Hz (in
logarithmic scale) and Sn = 0.4. It is observed that these slow compressional modes have very low
velocities and quality factors in the low frequency range, with a marked increase with frequency.
This indicates that these waves are observable only at very high frequencies (like those used for
ultrasonic testing of rock samples in laboratory). This is also in agreement with previous results
(Santos et al., 1990b), indicating that the dispersive character of the slow waves is not really
influenced by the pressure conditions of the reservoir. The third slow compressional wave was
numerically simulated in some recent works by Carcione et al. (2004), Santos et al. (2004). 

Fig. 9 - Behaviour of quality factors of Type II and Type III- P waves versus effective pressure vs. linear frequency f
(in logscale) for 40% gas saturation (Sn = 0.40.)
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8. Conclusions 

In this work we developed a theory to study the processes of deformation and wave
propagation in porous solids saturated by two immiscible fluids. The model allows the inclusion
of many parameters such as porosity, permeability, lithology, pore fluid types, saturation state,
confining pressure, fluid pressures and the capillary pressure vs. saturation curve, which are very
important in different fields such as rock physics, interpretation of laboratory data and reservoir
characterization. 

We derived the elastic stress-strain relations, introducing appropriate elastic moduli.
Generalizing a classic approach we defined a set of compressibilities and established a new
effective pressure law for elastic bulk volume deformations. Its behaviour is consistent with other
estimates and models the well known effect of decreasing of seismic velocities observed in
overpressured formations. Although the –nb2 coefficient is strongly dependent on the saturation
state, except near the irreducible water saturation, the capillary forces do not produce important
changes on effective pressure. The procedure can be readily extended to analyze pore volume
deformations. 

The equations of motion, valid from the seismic to the ultrasonic range, were formulated in
the space-frequency domain, taking into account attenuation and dispersion effects associated to
frequency dependent viscodynamic effects and viscoelasticity. Using the principles of continuum
thermodynamics we generalized some inequalities valid for single-phase viscoelastic media and
established restrictions to the poroviscoelastic moduli. 

The model was applied to study the influence of saturation and variable fluid pressures on
dilatational and shear wave velocities and the corresponding quality factors in a sample of Boise
sandstone saturated by water and gas. The wave velocities are very sensitive to effective pressure
and in particular, those of the Type II and Type III waves are strongly dependent on saturation
state. This is also observed in the corresponding quality factors. This suggests that combined
analysis of phase velocities and quality factors can be used as indicators of the saturation and
pressure states of a reservoir rock. The results relative to Type I and shear waves are in good
agreement with published experimental and theoretical works. Those corresponding to the slow
waves should be checked in the laboratory and we hope this will motivate further experimental
work in this subject. 

The different results presented in this work demonstrate that in transition zones within
hydrocarbon reservoirs, where in general two (or more) immiscible fluids saturate the pore space,
a three-phase model allows for a more accurate description and interpretation of its acoustic
response. In particular, a quantitative analysis of the amount of energy converted from fast P and
S waves to slow waves at the heterogeneities present in this kind of media would be important
and will be the subject of future publications. 

Aknowledgements. This work was partially supported by CONICET, Argentina (PIP 0363/98). 

Appendix.  Thermodynamic restrictions 

Here we derive a set of restrictions imposed by the Laws of Thermodynamics on the imaginary
parts of the coefficients in Eqs. (5.1). It will be assumed that the principles of continuum
thermodynamics are valid for our system at the macroscopic scale. A different approach was
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presented by De la Cruz et al. (1993), based on the energy balance equations in the solid and the
fluid phases and using averaging techniques. Combining the first and second laws of
thermodynamics and using a generalization of the argument given in Fabrizio and Morro (1992)
for viscoelastic materials and in Ravazzoli (1995) for poroviscoelastic solids saturated by single-
phase fluids, for any isothermic cycle of period 2π/ω the following inequality must hold: 

#
0

2π/ω
(∆τij 

·εij + ∆Tn
·ξ n + ∆Tw

·ξw) dt ≥ 0 (A1)

Next, we choose εij, ξ n and ξ w in Eq. (A1) and in the stress-strain relations (5.2) to be of the
form εij = Aij (cosωt + sinωt), ξ l = ξ l(cosωt + sinωt), ω ≥ 0, where Aij is a symmetric matrix. 
Set eA = Aii and note that eb(t) ≡ εii = eA(cosωt + sinωt). A lengthy calculation yields 

eA
2 ⋅
RS

λc(ω) + ⋅
RS

N (ω)AijAij − 2ξ neA
⋅
RS

B1
(ω) − 2ξweA

⋅
RS

B2
(ω)

+ (ξ n)2 ⋅
RS

M1
(ω) + (ξw)2 ⋅

RS
M2

(ω) + 2ξ nξw ⋅
RS

M3
(ω) ≤ 0,    ω ≥ 0, (A2)

which is an extension of Graffi’s inequality for this type of media (see Fabrizio and Morro, 1992).
Setting �^KcI(ω) = ^λcI(ω) + 2_

3
^
NI(ω) and combining Eq. (5.3) and the identity 

2AijAij = 2–
3

[eA
2 + (A11 − A22)2 + (A11 − A33)2 + (A22 − A33)2] + 4 (A2

12 + A2
13 + A2

23),

we see that Eq. (A2) can be stated in the form 

eA
2^KcI(ω) − 2ξ neA

^
B1I(ω) − 2ξweA

^
B2I(ω) + (ξ n)2^M1I(ω) + (ξw)2^M2I(ω) 

+ 2ξ nξw^M3I(ω) + 4 [(A2
12 + A2

13 + A2
23)

+ 2–
3

[(A11 − A22)2 + (A11 − A33)2 + (A22 − A33)2]]^NI(ω) ≥ 0,    ω ≥ 0. (A3)

Next we consider the case of a hydrostatic compression, i.e., Aij = 0, i ≠ j and A11 = A22 = A33.
From Eq. (A3) we get 

→
Zt ^PI(ω)

→
Zt ≥ 0,    ω ≥ 0, (A4) 

where
→
Zt = (eA , ξ n, ξw) and the symmetric matrix ^

PI is defined by ^
PI 11 = ^

KcI , ^PI 22 = ^M1I , 
^
PI 33 =

^
M2I ,

^
PI 12 = −^B1I ,

^
PI 13 = −^B2I ,

^
PI 23 = ^M3I .

Next for a pure shear oscillation, i.e, Aij ≠ 0, i ≠ j and A11 = A22 = A33 = 0 and ξ n
1 = ξw

1 = 0, from
Eq. (A3) we have 

^
NI(ω) ≥ 0,    ω ≥ 0. (A5) 

Inequalities (A4) and (A5) are the thermodynamic restrictions imposed on the imaginary parts
of the complex frequency dependent coefficients in the stress-strain relations (5.1). 
REMARK. The equality in Eqs. (A4) and (A5) holds if and only if ω = 0, i.e., the system behaves as
elastic at zero frequency. This results from Eq. (5.3) and the definitions of the half-range Fourier
sine and cosine transforms. 
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