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Abstract - The procedures that generate probability statements are called
probability generators (or simply generators). In this paper, we consider the
generators that yield the magnitude distribution function FM in the frame of the
probabilistic seismic hazard analysis at a site. From an engineering point of view,
the behaviour of FM in the range of strong earthquakes is of decisive importance.
In general, however, the statistical validation of a generator in the range of interest
is not feasible because of the limited number of occurrences of strong earthquakes.
In spite of this, in this paper we show that a simple empirical generator of FM can
be statistically validated from an engineering point of view thanks to: 1) a new
approach to the comparison between competing generators, and 2) the comparison,
following this new approach, of the empirical generator with a particular class of
generators based on mathematical models.

1. Introduction

Following Lind (1996), we call “probability generators” or simply “generators” those
procedures (algorithms, models, methods, etc.) that generate probability statements. In
particular, a generator may yield a probability distribution function (which is equivalent to an
infinity of probability statements) or simply an elementary (“point”) probability statement.

When dealing with seismic hazard at a site, the generator of the magnitude distribution FM

(m; ϑ) of the earthquakes that can significantly affect the site, plays an important role. From
now on, a distribution FM with known vector of parameters ϑ will be briefly indicated with an
upper index (e.g. Fi); on the other hand, a distribution that contains free parameters will be
called a “model” and indicated with a lower index (e.g. Fi). A generator must yield a completely
defined Fi.
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Grandori (1991) and Lind (1996) discuss the difficulties that interfere with obtaining the
statistical validation of a probability generator in detail. These difficulties may become
insurmountable in the case of some practical applications. Consider, for instance, the evaluation
of the peak ground acceleration (PGA) with a 500-year return period at a given site. Call a this
quantity, which is a synthetic measure of local hazard, and, is generally suggested by seismic
codes as an appropriate value for the design of ordinary buildings. The quantity a is dominated
by the magnitude distribution of strong earthquakes, while the statistical data on these events are
scarce. It follows that the available data are generally not sufficient for the statistical validation
of the generator of a magnitude distribution Fi, as well as for a significant comparison between
different generators, even if they lead (coeteris paribus) to important differences in the
evaluation of a (see for instance Kagan, 1993; Wu et al., 1995).

The condition coeteris paribusmeans that, in the comparison between generators of
magnitude distribution, all other elements that contribute to the evaluation of a at the considered
site (like the distribution of the earthquakes in space and time, and the attenuation law) are
supposed to be known and independent of the type of generator. As a consequence, if a
magnitude distribution function Fi is defined (both form and parameters), then a known
procedure Z, applied to Fi, gives the value of a at the site:

ai = Z (Fi). (1)

When the statistical validation of plausible generators of magnitude distribution is not
feasible because of a limited number of occurrences of strong earthquakes, Kagan (1993)
suggests that “in practical evaluations of seismic risk a range of results should be presented to
display possible alternatives. These calculations should be performed using various models of
size distribution with indication of possible variations of parameter estimates”. In other words, a
scenario of both epistemic and aleatory uncertainties should be displayed.

As far as the comparison between competing generators is concerned, it has been observed
(Grandori et al. 1997, 1998) that to shift the attention from the fitting of catalogue data to the
expected error in the estimate of a opens new statistical prospects.

Precisely, call Fo the true magnitude distribution, ao the true value of a, and So a random
sample drawn from Fo (the data of the catalogue constitute an So). The generator Gi of a
distribution Fi leads, through Eq. (1), to an estimate âi of the quantity a. We define the
“credibility” of the generator Gi the probability ∆o

i that, starting from the information contained
in one random sample So, the generator Gi leads to estimate a with an error smaller than a given
limit; say, for instance, less than 20%:

∆o
i = P{[ ao – âi ≤ 0.2 ao}. (2)

Note that, in the case of two competing generators Gγ and Gs, the fact ∆o
γ.>.∆o

s does not mean
that, compared with Gs, the generator Gγ leads to a magnitude distribution in some way “closer”
to Fo. It means that, compared with Gs, the generator Gγ leads to an estimate of a closer to ao in
probabilistic terms.
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It is appropriate, here, to lay the stress on the limits of the above-mentioned credibility. In
fact, ∆o

i refers to a specific quantity at a given site; it is far from being a characteristic of the
generator Gi as such. Moreover, and above all, can the credibility ∆o

i be helpful given that the
real distribution Fo is not known? The answer is: yes, at least in some problems.

In Grandori et al. (2003b) the comparison between two generators G1 and G2 is considered,
with reference to an Italian site, given the catalogue of the earthquakes in the zone during the
last 300 years. Two hypotheses are on the table:

a) ∆o
1 > ∆o

2 and     b) ∆o
2 > ∆o

1 (3)

In the above paper, it is shown that the application of Eq. (2) with many different conjectural
Fo can lead to the evaluation of the relative likelihood La/Lb of the two hypotheses a) and b).

In the present paper, the comparison between generators, with Eq. (2), is carried out
following a particular technique; the result is, in practice, the statistical validation of a simple
generator applied to the hazard analysis at the same Italian site previously considered. We do
not claim that the simple generator and the technique leading to its statistical validation would
be effective for any other site. We will merely describe the numerical experiments that show the
effectiveness of the procedure “at least” in the considered case.

A straightforward presentation of the first pilot - experiment is the description of a simulated
competition between experts who support different generators.

2. The competition between experts

The competition ground is shown in Fig. 1. The goal is the evaluation of the quantity a at
the Alfa site.

Fig. 1 - The competition ground.
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The distribution of the earthquakes in space and time, the attenuation law, the mean annual
number of events n and the number ν of events contained in the catalogue are known. The
competitors are supplied with all these elements, so that only the magnitude distribution is
needed in order to evaluate the quantity a with Eq. (1).

Actually, the Jury knows, too, the true magnitude distribution Fo, both form Fo and
parameters b and m1 (see Fig. 2) for M.>.4; smaller magnitudes are neglected. So the Jury can:
1) calculate the true value ao, and 2) draw from the true magnitude distribution as many size-ν
random samples So as wanted. Each So is one of the possible real catalogues given that the real
distribution is Fo. 
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Fig. 2 - The true magnitude distribution.

However, the competitors are not supplied with the form Fo or with the parameters b and m1;
they are requested to answer the following question: “How would you estimate the quantity a on
the basis of the information contained in just one of the random samples So?”

The first competitor is a famous champion, who carried off the prize in many similar
competitions. This is due to the fact that, thanks to a special supernatural talent, he “divines” the
real form Fo, which can be classified as the “right” model.

Then, the answer of the first competitor is: “From the random sample So I estimate, by
maximum likelihood, the parameters of the mathematical model Fo. So, I obtain a completely
defined magnitude distribution F̂ and, from Eq. (1), the requested estimate âo of the quantity a”.
Note that the generator adopted by the first competitor is composed of the right model and of
the method used for the estimate of the parameters; we will call it the “right model generator”.

The Jury repeats the application of this procedure with one thousand random samples So,
thus obtaining the relative frequency of the event { ao.–.âo .≤.0.2 ao}; i.e. (with good
approximation) the credibility ∆o

o of the right model generator. The numerical result is:

∆o
o = P {  ao.–.âo .≤.0.2 ao} = 0.63. (4)

f0

m0 m1

b=1.2   m0 =4.0   m1 =7.0

e(–b ⋅ m) –e(–b ⋅ m1)

e(–b ⋅ m0) –e(–b ⋅ m1)
F0 =1 –
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1 2 3 4
m1 b ao ∆o

o ∆o
* ϕ* ∆o

ϕ
0.8 .41 .74 .64 1.26 .77

7.4 1.0 .36 .63 .54 1.25 .65
1.2 .31 .53 .49 1.23 .55
0.8 .33 .73 .72 1.24 .80

7.0 1.0 .30 .68 .68 1.23 .77
1.2 .27 .63 .67 1.23 .74
0.8 .27 .85 .88 1.23 .89

6.6 1.0 .25 .78 .86 1.22 .88
1.2 .23 .70 .80 1.22 .86

average .70 .70 1.23 .77

Table 1- Truncated exponential distribution.

A second competitor does not have special talents; moreover, he does not like mathematical
models. His naïve answer is: “From the sample So I derive the cumulative frequency polygon,
which provides a completely defined empirical distribution F*; from this distribution I derive an
estimate a

*
, which is my estimate of the quantity a”.

By repeating this procedure with one thousand random samples, the Jury obtains the
credibility of this “polygon generator”:

∆o
*

= P {  ao.–.â
*
 .≤.0.2 ao} = 0.67. (5)

The results of the competition show that, unexpectedly, the credibility ∆o
*

of the empirical
generator is of the same order as the credibility ∆o

o of the generator based on the “right”
mathematical model; i.e. the two procedures are affected by the same aleatory uncertainty.

However, the procedure based on a mathematical model (in the absence of special
supernatural talents) is also affected by an epistemic uncertainty which is difficult to control.

Anyhow, for a few cents, the second competitor takes off with the prize.
Now a question arises: is the result ∆o

*
.≅ .∆o

o just an accident? In order to find an answer, we
repeated the comparison between the two generators with different conjectural “true” values of
the parameters b, m1. The comparisons of Table 1 (columns 1 and 2) show that, for the
considered site, and if the true Fo is an exponential truncated distribution, the result ∆o

*
.≅ .∆o

o is
systematic, with small fluctuations in the range of plausible couples of parameters.

3. The modified polygon generator

A second question is: can the polygon generator be improved? The answer is: yes, in more
than one way.

A first way is described in Grandori et al. (2003a).
A simpler way of increasing the credibility of the polygon generator is based on the

evaluation, for each sample, of the 0.9 percentile ξ *
0.9 of its empirical distribution F* . A

numerical analysis shows that, for all the couples of parameters of Table 1, the mean value (over
one thousand samples) of the adimensional percentile
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Fig. 3 - The characteristic type magnitude distribution.

ϕ
*

= ξ*
0.9 / µ

*
(6)

(µ
*

is the mean of the sample) is rather stable and close to 1.23.
Generally speaking, a sample with a high value of ϕ

*
leads to overestimating the quantity a

and viceversa. Then, we assumed a modified estimate â!
*

instead of â
*

in the following cases:
â!

*
= 0.8 â

*
if ϕ

*
> 1.28.

â!
*

= 1.2 â
*

if ϕ
*

< 1.18.
The credibility ∆o

ϕ of this modified generator is always higher than both ∆o
o and ∆o

*
(Table 1,

column 4).
A first conclusion. Suppose that for the considered site a traditional best-fit analysis led to

the choice of the truncated exponential model for magnitude distribution. To adopt the modified
polygon generator, as an alternative, would lead to a higher credibility even if the truth were
exactly an exponential truncated distribution.

4. About the statistical validation of the modified polygon generator

Suppose now that, following Kagan’s (1993) suggestion quoted in the introduction, the
decision is to display the results that would be obtained by adopting, besides the exponential
distribution, two further conjectural “true” distributions as possible alternatives; precisely:

1) a double exponential distribution

Fo = 1 – exp [exp β (mo – u) – exp β (m – u)]; (7)

f0

m0 m1 m2

b

p1-p
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β u ao ∆o
o ∆o

* ϕ* ∆o
ϕ

– 0.0 .23 .64 .69 1.21 .74
0.32 – 0.8 .32 .56 .48 1.22 .51

– 1.6 .48 .48 .39 1.27 .46
– 0.8 .21 .65 .71 1.17 .81

0.30 – 0.0 .29 .57 .50 1.22 .53
– 0.8 .42 .51 .40 1.25 .46
– 1.6 .20 .66 .70 1.19 .81

0.28 – 0.8 .27 .57 .55 1.22 .58
– 0.0 .38 .49 .39 1.24 .42

average .57 .53 1.22 .59

Table 2- Double exponential distribution.

m1 m2 ao ∆o
o ∆o

* ϕ* ∆o
ϕ

6.6 .24 .68 .83 1.22 .88
5.6 7.0 .30 .65 .63 1.23 .69

7.4 .37 .51 .50 1.24 .57
6.6 .27 .78 .86 1.23 .88

5.9 7.0 .31 .72 .68 1.23 .75
7.4 .39 .56 .53 1.24 .61
6.6 .30 .80 .90 1.24 .90

6.2 7.0 .35 .81 .79 1.25 .80
7.4 .42 .61 .64 1.26 .68

average .68 .71 1.24 .75

Table 3- Characteristic type distribution b = 1, p = 0.1 “right model” with true b and m1.

2) a characteristic type distribution as shown in Fig. 3, with four parameters (the relative
frequency p of characteristic magnitudes, the b value of the exponential part of the distribution,
m1 and m2).

Tables 2 and 3 show, for each case, the comparison between the modified polygon generator
and the right model generator. Note that in the last case the right model, besides the right
mathematical form, has the right parameters b and m1; i.e. the values of ∆o

o are actually
optimistic.

Again, on the average ∆o
*

is of the same order as ∆o
o, while ∆o

ϕ is larger than ∆o
o.

At this point, we would venture a second more general conclusion. If, for the magnitude
distributions that are considered plausible for the site, and for a wide fan of plausible
parameters, the credibility of the modified polygon generator is always of the same order, or
even larger, than the one of the right model generators (as in the case of our Italian site), then
the modified polygon generator can be considered, in practice, as statistically validated.
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