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Abstract - A key issue in seismic hazard modelling is determining seismicity
parameters for each source zone in a given model. The three main parameters are
the activity rate, the b-value (slope of the Gutenberg-Richter magnitude-frequency
curve), and the maximum magnitude. Procedures for estimating these vary from
study to study; in recent years the application of maximum likelihood methods,
with or without priors, seems to be the most favoured approach. A new approach is
presented here, based on Monte Carlo methods, which solves for all three
parameters simultaneously. The conceptual basis is as follows: there exists some
“true” set of values for a, b and Mmax that governs the long-term occurrence of
earthquakes in a zone. Take three values for a, b and Mmax at random and use them
to generate a synthetic earthquake catalogue, subject to the same historical
constraints as the real catalogue. Is the resulting synthetic catalogue similar to the
real one? If so, the a, b and Mmaxvalues are credible. If not, try again. If one repeats
the exercise a very large number of times, one easily builds up a weighted
distribution of credible values for a, b and Mmax that can be converted directly into
a logic tree structure. The method is entirely data-driven, and imposes no
preconceived assumptions on the shape of the uncertainty distribution. Also the
method tests implicitly whether the Gutenberg-Richter model itself is credible for
that data set. If it turns out to be the case that no values for a, b and Mmax can
provide a good approximation to the observed data, then a different seismicity
model is called for.
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1. Intr oduction

Many details of seismic hazard methodology are not widely discussed in the literature; in
fact they are often not discussed at all, except in the context of project reports that are difficult
to access for the general reader, or the manuals that accompany some seismic hazard software. It
is often the case that journal papers on seismic hazard pass over technical issues in order to
concentrate discussion on the seismotectonics and the results; while commercial hazard studies,
which may contain fuller details on every aspect of the methodology, are usually inaccessible
and cannot be referenced. 

The purpose of this paper is to discuss certain issues relating to how earthquake recurrence
is generally modelled in seismic hazard studies, and to present a new method for estimating the
key parameters. It is assumed throughout this paper that earthquake occurrence can reasonably
modelled as a Poisson process within any individual seismic source zone. This assumption is
normally made in probabilistic seismic hazard assessment (PSHA). Contrary hypotheses are
another topic altogether.

2. Magnitude frequency relations in PSHA

Since the PSHAmethod was first outlined by Cornell (1968), it has been common to
characterise seismicity within any source zone in terms of the familiar Gutenberg-Richter (G-R)
equation

Log N = a + b M, (1)

where N is the number of earthquakes per year exceeding magnitude M and a and b are
constants. The value a is a measure of the activity rate, while b is the slope controlling the
relative frequency of large earthquakes to small ones. 

A problem arises in considering possible uncertainty in the data. For any source zone, the
available earthquake data may be restricted to a period of a few hundred years or less, and in
general, the lower the seismicity, the more it is the case that the seismicity observed in the
historical period may not be representative of the long-term seismicity. There are three options
for modelling this uncertainty in the PSHAprocess:
1. ignore it;
2. use a logic tree approach;
3. model the uncertainty as a continuous function of the modelled parameters.

Option 1 is implicitly adopted in cases where the software used has no facility for addressing
such uncertainty. Option 2 is widely used; logic trees were first proposed by Coppersmith and
Youngs (1986); a recent example of the application of the method is found in Wahlström and
Grünthal (2001). Option 3 is less common, but removes the necessity of making partly
subjective decisions about the weighting to be applied to different branches of the logic tree
(Musson, 2000). An example of option 3 would be to consider the uncertainty to follow a normal
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distribution about the estimated value and to draw many samples from this distribution using
Monte Carlo methods. This approach can be mimicked using a logic tree with enough branches.
For the purposes of this discussion it will be assumed that the logic tree method is in use.

There are three key parameters that control seismicity recurrence, the a and b parameters in
Eq. (1), and the maximum magnitude value (Mmax) at which the equation is truncated. Here it is
assumed for the purposes of discussion that Eq. (1) is truncated abruptly at Mmax; there are other
options available, but these do not materially affect the arguments in this paper.

Existing methods for estimating the a and b values and associated uncertainties can be
classed under three groups.

The first practice involves mostly the application of expert judgement. Several candidate b values
may be proposed (for example, measured value in the zone, measured value in a larger region
containing the zone, measured values from different time periods) and assigned arbitrary weights.

The second practice is to use simple statistical measures of uncertainty on the measured a
andb values, such as the standard error of the regression.

The third practice is to use a maximum likelihood function to estimate the probability
distribution of a and b jointly (as in Weichert, 1980; Veneziano and van Dyke, 1985; Johnston et
al., 1994). This method is much more rigorous than the previous two.

The estimation of Mmax and its uncertainty is usually treated as a separate issue, independent
of Eq. (1). Methods for estimating Mmax include various statistical measures [see especially Kijko
and Graham (1998)], taking the largest historical magnitude and adding a safety margin, using
geological criteria (Wells and Coppersmith, 1994; Abrahamson, 2000), extrapolating from largest
observed events in similar tectonic environments, and so on. It is not the purpose of this paper to
review these methods; Mmax is only of concern so far as it influences, or is influenced by, Eq. (1).

The correlation between Mmax and the G-R a and b values is not intuitive, but exists, if
weakly. The argument is as follows. Consider an area with 500 years of observed seismicity,
with no earthquakes M.>.5.5. How likely is it that earthquakes up to M.=.6.5 are possible, but by
chance, none occurred in the historical period? If the activity rate is low and the b value has a
steep slope, the probability of an earthquake 5.6.<.M.<.6.5 is small, so it is reasonable that such
an event might not have been observed by chance. If the activity rate is high and the b value has
a gentle slope, the probability of an earthquake 5.6.<.M.<.6.5 in 500 years is much higher, and it
becomes unlikely that this did not happen just by chance, therefore it is relatively unlikely that
Mmax is large. This works both ways; if one assumes that Mmax is an independently-determined
parameter, a high Mmax value tends to lead to estimates of steeper b values. If one takes the b
value as independent, lower values of b imply lower values of Mmax.

Since one cannot easily affirm which value is independent, the ideal method would
determine both jointly. Such a method will now be described (though it can be admitted that
since the Mmax correlation with a and b is usually weak, the effects of ignoring it in practice are
not overly significant).

In the following discussion, the objective is to assess the probability distribution of values
for a, b and Mmax for a single zone in a model. In a full hazard study, the analysis would be
repeated for each zone independently. The results are properties of the zones in the model,
irrespective of any chosen site for which the hazard is to be assessed.
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3. Recurrence parameterdetermination through simulation

Given that, for any seismic source zone, the future occurrence of earthquakes is controlled by
the three parameters a, b and Mmax, it is assumed that there must be “true” values for these three
parameters that represent the long-term recurrence rates over several thousand years. For the sake
of simplicity in the discussion that follows, it will be assumed that a study is being conducted in
which a single source zone is involved, for which recurrence statistics need to be computed. For a
more complex model, the analysis would just be extended to each zone in the model in turn.

The observed seismicity of the zone over the past 500 years is one possible outcome
(assuming Poisson behaviour) of the operation of these true values over 500 years. The
observed seismicity in the zone over the next 50 years (lifetime of the structure for which hazard
is to be assessed) will be another such outcome. If it were possible to know the true values of
the long-term parameters, one could compute the true hazard probabilities. Since it is not
possible to know the true values, it is necessary to compute the hazard by including the
probability that the true values correspond to certain sets of possible values.

The essence of the method described here is to canvas a very large number of possible sets
of values (a, b and Mmax “triplets”) and examine whether they are credible candidates for the
true values. This can be done by forward simulation. Given a particular set of values, what
results might have been obtained in the historical period if those were the true values? This can
easily be found by making a synthetic earthquake catalogue based on the test values and
comparing it to the true catalogue. 

At this point it is necessary to raise the question of historical completeness constraints. For
any earthquake catalogue, as is well known, one can divide up the length of it into discrete
periods according to estimates of completeness with respect to magnitude.

For the illustrative example in this paper, it is assumed for a hypothetical source zone that
the completeness is as shown in Table 1. This means that for the first 100 years of the catalogue
(starting in 1100 AD) one expects that only very large earthquakes (7.5 or over) would
necessarily be reported. For the next 450 years, one can be sure that all earthquakes above 6.0 M
are present. And so on. In order to assess recurrence parameters optimally, one needs to use only
those events that satisfy each completeness threshold. “Empty” periods can still be used. If there
are no earthquakes present =.6.0.M between 1200-1649, this is still useful information that can
be used to constrain the results.

The earthquakes that satisfy the completeness constraints can be divided up into magnitude
bins and listed as the discrete number of events in each magnitude interval. The aim is to find
triplets of a, b and Mmax that generate a similar number of events in each magnitude bin, given
the same historical constraints.

First, it is necessary to define a parameter space for a, b and Mmax which will define the
limits of the values to be investigated. This can be as broad as desired. If very wide bounds are
used (for example: b lies between -0.1 and -2.1) then the extreme values will simply not show in
the final results if they are unrealistic. If very narrow bounds are used then some realistic values
may be excluded. It is possible (and often necessary) to make a test run and then change the
parameter space on the basis of the results, better to capture the distribution of probable values.
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The length of each synthetic catalogue that will be generated in the analysis will be the same
as the length of the historical catalogue, and it will mimic the historical restrictions of the real
catalogue. Thus, working from Table 1, if the historical catalogue starts with a 100 year period
in which only events ≥.7.5 are known, then each synthetic catalogue will start with a similar 100
period in which all events <.7.5 are assumed to be lost, and so on for each time period.

Given this information, each synthetic catalogue is constructed from a randomly-chosen a, b
and Mmax triplet using Monte Carlo simulation and assuming a Poisson process. Events less than
the minimum reported magnitude restriction for each “historical” period are discarded. The
number of earthquakes in the resulting synthetic catalogue is then counted.

Table 2 shows a worked example using the historical information in Table 1. The numbers
of historical events are 7, 6, 3 and 1 in half-magnitude bins starting at M.=.4. Take a set of
random values for a, b and Mmax. The first random set is a.=.2.43, b.=.-0.95, Mmax.=.6.8. A
synthetic catalogue is generated for these values, and the results for the first four magnitude
bins, when the events are counted, are 2, 1, 4, 0. This is not a good approximation to the
historical result. This can be partly due to the fact that the triplet values are not close to the true
values, but may also be due to chance factors in one simulation. Since a very large number of
simulations will be conducted, this is not a problem.

The second set of values is a.=.2.97, b.=.-0.97, Mmax.=.6.4. This time the results are 8, 6, 3,
0, which is a much better fit.

Ideally one would like to generate exactly the historical outcome, but even with only
seventeen earthquakes, the number of permutations of the exact magnitude distribution is so
large that one has to accept a certain degree of error. In any case, the historical values are not
completely certain, as there is some possible error in individual magnitude values than might

Dates Completeness
1100-1199 7.5
1200-1649 6.0
1650-1849 5.0
1850-1869 4.5
1870-2000 4.0

Table 1 - Notional completeness periods for an earthquake data set, used in the worked example.

Magnitude # Events Trial 1 Discrepancy Trial 2 Discrepancy
4.0 - 4.4 7 2 5 8 1
4.5 - 4.9 6 1 5 6 0
5.0 - 5.4 3 4 1 3 0
5.5 - 5.9 1 0 1 0 1
6.0 - 6.4 0 0 0 0 0
6.5 - 6.9 0 0 0 0 0
7.0 - 7.4 0 0 0 0 0
7.5 - 8.0 0 0 0 0 0

12 2

Table 2 - Data set used in the worked example (number of events satisfying completeness thresholds) and the result
of two trials with random values for a, b and Mmax.
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carry them across from one bin to another. Practical experience shows that a 15% tolerance
factor is reasonable, in terms of the sum of discrepancies in each magnitude bin. As Table 2
shows, the overall error for Trial 1 is twelve (70.6.%) and for Trial 2 is two (11.8.%). A further
refinement to the method is to require that the number of events match the historical total
number of events. In this case, if the historical result is 7, 6, 3 and 1, then 8, 6, 3 and 0 is an
acceptable match, but 5, 6, 3 and 1 is not. This improves precision at the expense of extra
computing time.

It is assumed in this demonstration that there is no prior information about any of the three
parameters, in which case the random values selected are picked from a flat distribution within
the predefined limits. Alternatively, the model can easily be modified to include a weighted
prior by introducing some other distribution of values (e.g. Gaussian about a given mean value)
from which random samples are to be chosen. Furthermore, such an approach can be applied to
one, two or three of the parameters, using any combination of distributions and weights.

A further refinement of this method is required to estimate Mmaxproperly. It could be that the
total discrepancy is one, but that one corresponds to a magnitude 7 event in the synthetic
catalogue where the historical maximum was only 5.5. In such cases, where Mmax (synthetic) >
Mmax (observed), the trial is automatically considered a failure.

The procedure is repeated millions of times if necessary, until a large number (say 5,000) of
successes has been registered, and the associated triplet values noted. The distribution of values
in the aggregated successes gives the probability distribution for the true recurrence parameters.
For practical purposes, some binning of results is necessary. In this example, activity rates have
been grouped in bins 0.2 in width, b values 0.1 in width, and Mmax in quarter magnitude units. If
one bin contains 36 successful tries, then the probability that these are the true values is 36/5000
= 0.007. In this particular experiment, the best triplet set generated 139 successes, giving a
weight of 0.0278 for the triplet a.=.2.6, b.=.-0.9, Mmax.=.5.8 (incidentally, the best fit values
measured by traditional maximum likelihood method from the data at the outset of the
experiment were a.=.2.66, b.=.-0.92). The triplet a.=.2.0, b.=.-0.7, Mmax.=.7.0, on the other hand,
scored one success and therefore has weight 0.0002. 

Note that there is an assumption here that the values that have most success in generating
the historical results are the ones most likely to be the true ones. An analogy can be given:
consider a situation where you are informed that several dice have been rolled and the result was
eleven. You are asked to guess the number of dice. Possible answers range from two to eleven.
The best answer is three. Rolling two dice will normally result in lower numbers (eleven is
difficult to roll), and rolling more than three dice is likely to result in higher numbers, up to the
point where the odds against rolling eleven on eleven dice are 1 in 3.6.×.108. While it is possible
to roll eleven on, say, eight dice, it would be a rare event, and it is the nature of rare events that
they are, basically, rare. Similarly, it is possible that the observed outcome of the seismicity of
the historical period was a freak occurrence (and the true values were a low-scoring triplet) but
it is not probable. And PSHAis based on probabilities.

It could also be objected that the historical outcome is only one possible output of the “true”
values, which is used in this method to estimate the probability distribution of those values;
however, if the historical outcome had been different (as it might well have been) then the same
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analysis will yield different results. This neglects the fact that the method takes into account the
probability that a significantly different historical outcome could have resulted from the true
values. By testing enough triplets to saturate the parameter space, and examining all the possible
outcomes, the method elicits the required probability distribution in the end through sheer brute
force.

Thus, the weights derived for each triplet value are, in fact, the probabilities that these
triplets are the true values.

It may seem strange that one synthetic catalogue only should be generated at each step when
a triplet value is tested. Obviously, each triplet could generate an infinite number of possible
outcomes. The method works because of the very large number of samples used, and any triplet
(or a close approximation) may be sampled many times. An alternative approach, which works
just as well, is to progress systematically through triplets within a range of values, and test each
1,000 times, noting how often the outcome approximated to the historical result. The net effect
is identical to the procedure outlined above. 

In this exercise the total number of triplets assigned non-zero weights was 198. This leads to
a logic tree for the zone in question with 198 branches. This may seem a large number, but a
modern hazard program on a powerful PC should be able to cope. It is necessary, of course, that
the program be capable of handling joint values for a, b and Mmax.

Since it is difficult to present the full three-dimensional results, the probabilities have been
deconvolved by extracting the Mmax results. In Table 3, the weights for the different a/b pairs are
shown, and Fig. 1 presents the weights for Mmax. These have been assessed in bins one quarter of
a magnitude unit wide, but the scale shows one decimal place.

4. Discussion

This method has several characteristic features. Firstly, it is the only method using a
truncated linear model that determines all three parameters jointly, which has to be considered

b
a 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 weights

-0.7 0.0150 0.0006 0.0156
-0.8 0.0494 0.0710 0.0288 0.0012 0.1504
-0.9 0.0006 0.0126 0.0592 0.0910 0.0458 0.0048 0.2140
-1.0 0.0002 0.0008 0.0140 0.0676 0.1090 0.0484 0.0046 0.2446
-1.1 0.0012 0.0094 0.0672 0.0892 0.0588 0.0032 0.2290
-1.2 0.0002 0.0074 0.0546 0.0772 0.1394
-1.3 0.0002 0.0068 0.0070

weights 0.0650 0.0844 0.0888 0.1062 0.1146 0.1232 0.1158 0.1012 0.1136 0.0872

Table 3 - Results of the worked example. The values along the top are the a values (log number of events above
magnitude zero per year) and the values down the left hand side are the b values. Values in the centre of the matrix
are the weight for each a/b combination for the final logic tree (if Mmax is treated separately). The values down the
right side and along the bottom are the sum of weights for each b value and activity rate, allowing one to see the
individual distribution of these parameters.
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an advantage even if the Mmax correlation is not strong. It has always been possible to determine
all three parameters jointly using an asymptotic model, such as the double-truncated exponential
model, but the author’s experience of such models is that the resulting Mmax values tend to be
highly controlled by the largest observed value in the catalogue.

Secondly, it is very much data driven and objective in nature. The principal human
intervention is in setting the limits for the values of the parameter triplets within which random
values will be taken. This can be done as an iterative procedure. There is no setting of priors,
which might be considered to be introducing a subjective judgement. On the other hand, the
absence of priors means that if the data are very poorly constrained, then one has to live with a
high degree of uncertainty in the results (it can be argued that this is realistic). There is still the
issue of the decisions made as to the historical completeness periods; this is an inevitable source
of subjectivity, discussed in Musson (2002).

Thirdly, this method is unique in that it determines also the number of branches required in
the logic tree to capture the full uncertainty (subject to the coarseness of the aggregation). If the
results are highly constrained to a narrow range of values, the logic tree that is output will have
relatively few branches.

Fourthly, the method also provides a test of whether the G-R model is actually appropriate.
In some cases it will be found to be more or less impossible to generate successful results for
any value triplets, even after millions of tries. This is an indicative warning that a linear model
is simply not an adequate fit to the data. In such a case, forcing a linear fit will arguably
invalidate the hazard results, because the hazard model will be such that, since it cannot
reproduce the historical outcome, it is unlikely that the future outcome will correspond to it
either. 

Given such an indication, one should consider applying some other model, of which a
characteristic earthquake model is most likely to be the best alternative. The principle of the
method shown here can easily be adapted to other seismicity models besides the G-R.

Fig. 1 - Distribution of Mmaxas a series of probabilities (weights) for values at quarter-magnitude intervals (expressed
to one decimal place).
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As for disadvantages, there are two. Firstly, even using a tolerance factor, for large models
in active seismic areas the calculation of the results can be time-consuming. Increasing the
tolerance factor speeds up the computation at the expense of increasing the diversity of the
results. The basic shape of the results, and the central values, are not affected. The value of 15.%
proposed and used in the example is derived from experience as being an expedient value in the
trade-off between running time and precision of results.

The second is that the results are subject to small fluctuations due to chance. In Fig. 1, the
last column is very slightly higher than the preceding one, which is an artefact.

The shape of the Mmax distribution curve in Fig. 1 is typical, and is similar to what would be
obtained from a maximum likelihood assessment with no prior distribution. Both this method
and the maximum likelihood approach seek to answer the question, “If there is no earthquake
greater than x in y hundred years, how likely is that to be a chance occurrence?”

It will be noted in Table 3 that the results are subject to a marked diagonal pattern,
indicating a very strong correlation between a and b. This requires some comment, as it relates
to a topic not often discussed. 

The reason for the correlation is evident, and the strength of it is due to the fact that the a
values are expressed in terms of Eq. (1), i.e. a is the log of the number of earthquakes per year
exceeding zero magnitude. In such a case, any variation of b is anchored around an a value
located on the y-axis itself. Keeping a constant and changing b means that increasing
(steepening) the b value causes the recurrence curve to underpredict all the data points, while
decreasing the b value has the opposite effect. In order to increase b and still have the curve
intersect the data, it is necessary to increasea as well. 

The situation is not so extreme if, as is so often the case with hazard programs descended
from EQRISK (McGuire, 1976), the activity rate is expressed not as in Eq. (1), but as the
absolute number of events per year exceeding the hazard minimum magnitude value (which we
can call M.=.4 for the sake of argument; in general practice values range from 3.7 to 5.0). In
this case, there is still a correlation between a and b, but it is weaker, because the fulcrum about
which the recurrence curve rotates as b varies is located at M.=.4 and not M.=.0, and therefore
the curve stays closer to the data. It is still the case that ignoring the correlation will lead to
pathological cases if higher activity rates are combined with lower b values, or vice versa, a
point made by Budnitz et al. (1999) in connection with a study by Bernreuter et al. (1989). This
is shown in Fig. 2. Other studies could be adduced where this correlation has not been taken
into account, with undesirable consequences. References in the general literature to this
correlation existing are rare, even though it is well known to expert hazard practitioners from
experience.

In Table 4, the results in Table 3 are recalculated using 4.0 as the base magnitude for the
activity rate (still expressed in logarithms). There is still a significant diagonal element,
although it is not as strong as in Table 3. It will also be noted, comparing the two tables, that in
Table 3 the value of b is well constrained buta is not, while in Table 4, a is well constrained but
b is not. Table 3 is perhaps an extreme case, but this trade-off occurs over the whole range of
magnitudes at which activity rate may be expressed, and the shape of the uncertainty in either
parameter is a function of this value.



As a matter of interest, if the activity rate is calculated as the number of earthquakes per
year exceeding M.=.5, the correlation reverses itself, and a higher activity rate requires a lower
(less steep) b value. The fact is, that for any earthquake data set, there exists a sort of centre of
gravity in the G-R plot, which can be denoted as Mmid. In this case Mmid is about 4.3. The further
is the magnitude at which activity rate is calculated from 4.3, the stronger will be the
correlation, and the direction of the correlation depends on whether the value is larger or smaller
than 4.3 (see Fig. 3). If the activity rate is calculated at the centre of gravity value, then the
correlation disappears altogether, and a and b can be treated as independent variables. This can
sometimes be useful to know. For instance, in cases where a logic tree is not used, but a and b
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Fig. 2 - Sample G-R plot showing the reality of three variations each on activity rate and slope, applied independently.
The two lines marked with dots are particularly degenerate cases, and do not intersect with the data at all.

b
a -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 weights

-0.7 0.0002 0.0022 0.0284 0.0412 0.0032 0.0752
-0.8 0.0002 0.0048 0.0376 0.0714 0.0076 0.1216
-0.9 0.0002 0.0034 0.0522 0.0980 0.0178 0.0004 0.1720
-1.0 0.0004 0.0038 0.0430 0.1168 0.0274 0.1914
-1.1 0.0028 0.0404 0.1114 0.0340 0.0004 0.1890
-1.2 0.0018 0.0308 0.0890 0.0262 0.0004 0.1482
-1.3 0.0014 0.0172 0.0618 0.0222 0.1026

weights 0.001 0.0202 0.2496 0.5896 0.1384 0.0012 1.0000

Table 4- As Table 3, but the results have been calculated for the log number of events above magnitude 4.0. 
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Fig. 3 - Illustration of why the direction of the a/b correlation changes as a function of the magnitude at which
activity rate is expressed.
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are sampled from distributions, ensuring that recurrence relationships are calculated with respect
to the centre of gravity point allows one to ignore the a and b correlation with impunity. Also,
measuring the activity rate at this value minimises the uncertainty in a, but maximises the
uncertainty in b.

Table 5 is an extension of Table 4, and addresses the issue of the sensitivity of the results to
the number of trials. This table shows the mean, the standard deviation of the mean, and the
confidence level of the mean at a significance of 5%, for each parameter, as the result of the
analysis of 100, 250, 500, 1000 and 5000 successes. The actual values of the parameters are
quite stable, although unsurprisingly, the confidence improves as the number of analysed values
increases. Note that these are the overall mean values, and different from the values of the

N b value a value Mmax

mean sd Conf mean sd Conf mean sd Conf
0100 -1.012 0.123 0.025 1.054 0.164 0.033 06.189 0.593 0.118
0250 -1.010 0.120 0.015 01.033 0.173 0.022 06.181 0.562 0.070
0500 -1.015 0.119 0.010 01.018 0.177 0.016 06.159 0.551 0.048
1000 -1.026 0.123 0.008 1.008 0.174 0.011 6.142 0.553 0.034
5000 -1.030 0.123 0.003 1.016 0.174 0.005 6.154 0.559 0.015

Table 5 - Mean values for parameters (compare to Table 4), as obtained with different numbers of successes. The
standard deviation and the 95% confidence in the mean is also shown. 
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highest scoring single triplet - the difference being akin to the difference between mean and
modal values. Table 4 is a better description of the distribution of probabilities of different
values of a and b than is using a mean and standard deviation. The number of actual trials
needed to obtain the preferred number of successes, as mentioned before, is a function of the
tolerance level and the extent to which the data are “well-behaved” with respect to the model.
With the test data set used in this study, if only two misfit values are tolerated, the total number
of trials needed is roughly four times greater than if three misfits are allowed. If only one misfit
is allowed, the number needed is six times greater again. For different data sets, the proportions
may vary.

5. Conclusions

This paper has demonstrated a method for computing the parameters of earthquake
recurrence for seismic hazard zones as a series of triplet values with associated probabilities that
these values are the unknowable true values that govern long-term seismicity in the zone. These
probabilities are also the weights that should be used in a logic tree formulation of the
uncertainty in the hazard parameters. The method generates the entire part of the logic tree
concerning recurrence, objectively determining the number of branches required to capture fully
the uncertainty in the parameters for the zone in question.

This method is useful to apply, therefore, in cases where it is desired to incorporate the full
uncertainty in these parameters, and where it is desired to maximise the objectiveness of the
procedures used.
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