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Abstract - This paper is a short review of recent methods of ray tracing with 
particular regard to the ones used in seismic transmission tomography. Some 
aspects are described with their main characteristics and drawbacks. The main 
aspects of Linear Traveltime Interpolation algorithm and its implementation is 
described in the case of a transversely isotropic medium also by the results of a 
synthetic model. Covariance matrices are used as a tool for the choice of the grid 
distribution of the investigated area. Some particular features are discussed and two 
case histories are shown considering both the cases of isotropic and transversely 
isotropic medium.

1. Introduction

Ray tracing approaches, to evaluate the path of the seismic ray, were developed by many 
authors (Bois et al., 1971; Cerveny et al., 1977; Julian and Gubbins, 1977; Lytle and Dines, 
1980; Vidale, 1988, 1990; Saito, 1989, 1990; Moser, 1991; Asakawa and Kawanaka, 1993). 
In the last few years, ray tracing techniques were applied in seismic tomography to evaluate 
the field velocity of the investigated area. Generally, the tomographic technique considers a 
2D cell section where a constant velocity is assumed in each cell. Because the conventional 
ray tracing approaches are difficult to apply to cell model structures, new techniques were 
developed for isotropic (Vidale, 1988, 1990; Moser, 1991; Matsuoka and Ezaka, 1992; Asakawa 
and Kawanaka, 1993) and anisotropic (Cerveny, 1972; Chapman and Pratt, 1992; Pratt and 
Chapman, 1992; Faria and Stoffa, 1994) models. 

Conventional methods like bending and shooting, show drawbacks in the case of high 
contrast velocities in grid or cell models of the investigated area. 
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The shooting method uses the given initial position and direction of ray to converge to a 
desired position (Bois et al., 1971; Julian and Gubbins, 1977). The source position is taken as an 
initial point then the rays are shot from this point under different angles αi. An iterative loop is 
used to find the ray that crosses the geophone location.

When shooting is applied to a cell structure model it has many disadvantages as follows:
1.	 head waves are not generally included; because paths of rays are assumed first, an infinite 

number of paths have to be considered if we are going to take into account head waves;
2.	 one path is generally assumed for each source and receiver; in this method, it is difficult to 

deal with multi-path problems because the path is calculated according to a shooting angle; 
when direct and head waves arrive simultaneously, we have to consider both such waves. In 
a tomographic analysis these two paths give us two independent equations which should be 
used to invert travel times;

3.	 in a cell model, a large computation time is required; the shooting method depends on the 
boundary that the ray has to cross during the travel from the source to the receiver;

4.	 for a complicated velocity structure it is difficult to find the path. 
The bending method (Wesson, 1971) on the other hand does not use the initial direction of 

the ray but the path is guessed between the two end points, then is perturbed iteratively so as to 
satisfy the appropriate differential equations, or the Fermat’ principle directly. 

The simpler, starting model is to consider the average value of the velocity field calculated 
from the measured travel time and distances between sources and sensors. In this case, the rays 
are straight during the first iteration. On succeeding iterations, the rays are curved  and are 
compared with those of the previous iteration, to detect the amount of change, if the ray is 
changing we would continue the inversion procedure. If the rays are stabilised, the inversion is 
taken to the best approximation. In the simpler velocity model the bending method is usually 
more efficient than the shooting method. When the velocity structure is more complicated, 
efficiency of the bending is lower and has a tendency to overlook some multiple rays (Cerveny, 
1987), furthermore, is not clear if the minimal is local or global.

For these reasons, and to overcome some of the difficulties mentioned above, other 
techniques were developed. The first approach is the Huygens’ principle method (Saito, 1990; 
Moser, 1991). The second approach is based on solving the eikonal equation using the Finite 
Differences Method (FDM); this method was proposed by Vidale (1988). He considered two 
steps: in the forward step the computation of traveltimes from the source to a particular point 
(grid points) throughout the investigated area; and, in the backward step, the best estimation 
of the ray paths from the traveltime data obtained in the first step. This approach has the great 
advantage that the techniques used in each step can be different (Matsuoka and Ezaka, 1992).

The Linear Traveltime Interpolation method (LTI) is such a technique. It was introduced 
by Asakawa and Kawanaka (1993) who assumed that the traveltime at any point along the cell 
boundary can be interpolated linearly between the traveltimes at adjacent discrete points on the 
same cell boundary. They demonstrated this method to be more accurate and stable than FDM.

Li and Ulrych (1993) provided two different formulations of the LTI method, and 
demonstrated that in the near field the accuracy of traveltime computation is improved with 
respect to the Vidale (1988) formula.
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The LTI method is especially suitable for seismic travel time tomography. In fact, ray paths 
are determined by the calculation points (or grid points) located on the cell boundary thus, 
according to the hypothesis of constant velocity in each cell, the ray paths are represented by 
segments that change in direction at the cell boundary. 

2. Background and LTI implementation in transversely anisotropic media

The LTI method starts from the consideration that the minimum travel time from the source 
S and the receiver R can be calculated starting from the Fermat principle and from the linear 
interpolation between two points of the grid in which the times have been calculated.

For the complete theory of the LTI method, we refer to Appendix A and to the paper of 
Asakawa and Kawanaka (1993).

We implemented the method considering anisotropic media in the simple case of an 
elliptical model under the hypothesis that one of the two main anisotropic directions coincide 
with one of the directions of the frame (Cardarelli and Cerreto, 2002). If we define the slowness 
of the two main directions with Sx and Sz and with φ, the angle by which the slowness S(φ) is 
evaluated (Postma, 1955; Levin, 1978) we can write:

	 S2 (φ) = Sz
2 cos2 φ + Sx

2 sin2 φ.	 (1)

The procedure we used, in the case of elliptical anisotropic media, is not different from the 
procedure indicated by Asakawa and Kawanaka (1993) in the case of isotropic material. The 
authors suggest evaluating the path proceeding column by column and if necessary to repeat 
the calculation row by row. Considering that in seismic 2D tomography for building structures,  
sources and receivers are arranged along the whole boundary of the investigated object (ray 
coverage 360°) refraction at a critical angle must be considered throughout the whole boundary 
of the cells. For this reason, to simplify the procedure, we repeat the calculus column by column 
twice just swapping the X axis with Z axis and vice versa.

The complete formulation for the implementation of LTI in the case of elliptical anisotropic 
media is reported  in Appendix B.

Because the rays are forcibly refracted on a priori fixed surfaces defined by the grid 
geometry and  as the matrix to be inverted depends on grid choice, not being able to vary 
the cell spacing leads to risk of losing all the advantage of ray tracing. Furthermore, because 
dimensions of cells determine the size of the minimum detected anomaly, it is of paramount 
importance to consider the  Fresnel ray theory.

If we indicate the minimum dimensions of the cells with rmin we can calculate by the
		 1		  Lv				  

–––
rmin =		––	 √	–––	 where L is the distance between the source and the receiver, v the mean velocity
		 2		  f
of the medium and f the dominant frequency of the signal. In the case of anisotropic models 
both velocities of main directions of anisotropy were considered to calculate the minimum 
dimensions of cells.
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The ray tracing algorithm was included in a procedure of calculus of anisotropic seismic 
transmission tomography. We choose the algorithm proposed by Michelena et al. (1993) in 
which the travel-time is given by:

			   N	     ––––––––––––––
	 ti (s) =		Σ	√Δx2

ij S2
j + Δz2

ij S2
j+N	,	 (2)

			   j=1

where Sj is slowness in one of the two main directions of anisotropy, Sj+N slowness in the 
perpendicular one, Δx and Δz are the components of the ray path in the corresponding 
directions, and N is the number of the cells. To invert the data we used the Coniugate Gradient 
(CG) algorithm (Press et al., 1992). The system was preconditioned by using damping factors 
in accordance with (JTJ.+.W) ΔS.=.JT Δt; here W is the diagonal matrix of damping factors, 
J the Jacobian solution matrix; ΔS.=.(Sn+1.–.Sn) and Δt.=.tm.–.t.(Sn), where Sn, tm and t.(Sn) are 
respectively the vector of unknowns, the vector of measured times and the vector of calculated 
times (Cardarelli and de Nardis, 2001). In the above the n.+.1 index indicates the actual step, the 
n index the previous one and the m index the mth traveltime of data set.

The procedure applied is as follows (Fig.1): 
1.	 compute travel times in the given model, (in the first step the velocities are guessed) 

calculate the matrix J and find the residual;
2.	 approximate the solution of the linear problem by applying few CG iterations;
3.	 smooth the updated slowness model;
4.	 update the paths considering the new inversion results; 
5.	 repeat the previous steps until there is no reduction in the data misfit.

The procedure is summarised by the flowchart in Fig.1.

3. Synthetic tests

To evaluate algorithm performances, a synthetic test was carried out. A square model 7x7 
m with elliptical anisotropic characteristics was created (Figs. 2a and 2b). A summary of the 
test is reported here, the complete test is reported in the paper by Cardarelli and Cerreto (2002).  
Considering the same data set (traveltimes) two other different distributions of geometry cells 
were tested (grid#1 and grid#2) to evaluate if this parameter is critical for the inversion (Figs. 
2c and 2d). Because head waves arise on the boundary of the cells the lengths of paths of the 
rays are determined by such a choice. The results of such a test are summarised in Tables 1 to 
3. Observing Tables 2 and 3, it is possible to note that the particular distribution of cell grid 
geometry, influences the solution quite strongly when ray tracing is used, whereas the sensitivity 
is far less when the rays are assumed to be straight lines. This is evident in the case of grid #2 
(Fig. 2d), where the Vx field is solved better in the straight ray approximation than ray tracing 
approximation.

For a better understanding of how both grid choice and successive iterations influence 
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Fig. 1 - Flow chart of the inversion and raytracing procedure (after Cardarelli and Cerreto, 2002).

n = 0

Starting model with slowness
Sn

RAY TRACING
METHOD

INVERSION
ALGORITHM

Traced ray path

Calculated slowness Sn+1

Solution S = Sn+1

NO

YES

n = n+1

Sn+1 = a*Sn + b*Sn+1

Stop condition
(data distance σt)

the inversion results (as the Jacobian matrix changes at each iteration and consequently the 
ray coverage of cells), a study on covariance matrices (Menke, 1989; Cardarelli, 2000) was 
performed. If we indicate with G the matrix in which the elements gij correspond to the ith ray 
in the jth cell with GT the transpose of G and with β the dumping factor under the hypothesis of 
uncorrelated data the unit  covariance matrix (UCM) is defined as:

	 Cov = (GT G)–1 GT G (GT G)–1 = (GT G)–1,



with dumping we obtain (Aki and Lee, 1976):

	 Cov = (GT G + βI)–1 GT G (GT G + βI)–1 = (GT G + βI)–1 RT,

where R is the Data Resolution Matrix defined as:

	 R = (GT G + βI)–1 GT G.

In the case of elliptical anisotropy in each cell the two components of the rays in the 
directions of the two main components  of anisotropy have to be considered. For this reason 
if the ray travels, for example, mainly in X direction  the ray coverage in this direction will be 
better than in the Z direction and consequently the Vx velocity field will be solved better than Vz 
field (Fig. 3). To evaluate such a point and to improve inversion results UCM is a useful tool.
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Fig. 2 - Cell identification in grid models of synthetic test: a) grid that fits the model exactly; b) velocity fields of 
main directions of anisotropy; c) grid#1 in which all the cells have the same dimensions; d) grid#2 in which the inner 
cell has the biggest dimensions.
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σt

 
(ms)

	 % of average	
σVx

 
(km/s)

	 % of average	
σVz

 
(km/s)

	 % of average
				    time		  Vx		  Vz
	 straight		

0.315
	

10.1	 0.992	 44.7	 0.415	 34.0
 

	 ray path
	 ray tracing		  0.165	 05.3	 0.170	 07.7	 0.107	 08.8

Table 1 - Comparison between results obtained by the two methods when inverting synthetic data with noise, grid fits 
the model exactly. Test: data with noise and grid fitting the model exactly. Average measured time: 3.12 ms; Average 
Vx = 2.22 km/s; Average Vz = 1.22 km/s.
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The covariance matrix of both velocity fields was calculated at the same time and then the 
diagonal elements of these matrices were located on the corresponding cells. In such a way, it 
was possible to understand, directly, where data errors are more amplified.

			 
σt

 
(ms)

	 % of average	
σVx

 
(km/s)

	 % of average	
σVz

 
(km/s)

	 % of average
				    time		  Vx		  Vz
	 straight		

0.345
	

11.1	 0.682	 30.7	 0.558	 45.7
 

	 ray path
	 ray tracing		  0.245	 07.9	 0.335	 15.1	 0.196	 16.1

Table 2 - Comparison between results obtained by the two methods when inverting synthetic data with noise and grid#1.Test: 
data with noise and grid #1. Average measured time: 3.12 ms; Average Vx = 2.22 km/s; Average Vz = 1.22 km/s.

			 
σt

 
(ms)

	 % of average	
σVx

 
(km/s)

	 % of average	
σVz

 
(km/s)

	 % of average
				    time		  Vx		  Vz
	 straight		

0.298
	

9.6	 0.392	 17.7	 0.468	 38.4
 

	 ray path
	 ray tracing		  0.230	 7.4	 0.479	 21.6	 0.341	 280.

Table 3 - Comparison between results obtained by the two methods when inverting synthetic data with noise and grid#2. 
Test: data with noise and grid #2. Average measured time: 3.12 ms; Average Vx = 2.22 km/s; Average Vz = 1.22 km/s.

Fig. 3 - Example of ray coverage depending on the components of the ray.
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In Figs. 4, 5 and 6, the covariance matrices of the three different grid geometries of the 
synthetic test are represented. In Fig. 4a the values of the UCM of the first iteration of the 
inversion procedure of the model with a grid that fits the model exactly is shown. In Figs. 4b 
and 4c, the elements of the main diagonal of both main directions of anisotropy are located in 
the respective cells; in Fig. 4f, the UCM of the last iteration of the inversion and in Figs. 4d and 
4e the elements of the main diagonal of both main directions. Comparing the values of these 
matrices with the analogous ones of figs. 5 and 6, that represent the UCM of grid #1 and grid 
#2, it can be noted that the results are analogous to those summarised in the tables 1 to 3. In 
fact, the higher values of the main diagonal of UCM are those that correspond to grid #2 that 
has the higher values of model and data distance. It means the choice of this grid is the worst, 
with respect to the others. Furthermore, analysing Figs. 4e, 4f and the analogous 5e, 5f and 6e 
and 6f, it is possible to detect the cells in which the error can be amplified more with respect to 
the others. It is possible to confirm such results following the ray tracing of figs. 4d and 4h and 
the analogous one of Figs. 5d and 5h and Figs. 6d and 6h.

4. Two case histories

To summarise, and to better understand the previous sections, two examples of seismic 
tomography are shown. In both examples, ray tracing and straight ray path approximations were 
used. In the first example, an elliptical anisotropic model was considered, in the second, an 
example of an isotropic model. Covariance matrices were calculated in both examples. 

4.1. First example: seismic anisotropic tomography on an ancient monument

This survey (Cardarelli and de Nardis, 2001; Cardarelli and Cerreto, 2002) was carried 
out to investigate the decay degree of two columns of the Antonino and Faustina temple in the 
Roman Forum in Rome, and consequently to redirect the restorer during the restoration. The 
columns have a diameter of 1.5 m and are 15 m long, they are formed of cipollino marble that 
is made up of calcite interbedded with mica. The data acquisition procedure and data processing 
of the whole survey are referred in the papers of Cardarelli and de Nardis (2001) and Cardarelli 
and Cerreto (2002).

At first isotropic model was considered with a linear ray path, then elliptical anisotropy was 
considered with ray tracing. The results of a section of column C are shown in Fig. 7. In Fig. 7a 
straight rays were considered whilst in Fig. 7b ray tracing with cells with variable dimensions 
were introduced. Analysing the figure, it is possible to note that in the case of ray tracing a 
higher resolution of velocity fields and lower data distance are reached. In Fig. 8, both coverage 
of straight ray (Fig. 8a) and  last iteration of ray tracing (Fig. 8b) is shown, it is evident in Fig. 
8b that the rays travel in the middle side of the section where the velocity is higher. In this case, 
it is interesting to analyse the covariance matrix (Fig. 9c) of the last iteration of the inversion 
procedure to detect the cells with higher amplification of data error. In Figs. 9a and 9b the values 
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d)

b) c)

Fig. 4 - a) UCM of the first iteration of the model that fits the data set exactly, b) and c) location of the values of the 
main diagonal of the UCM of the first iteration of the model that fits the data set exactly, d) ray tracing of the first 
iteration of the model that fits the data set exactly e) UCM of the last iteration of the model that fits the data set 
exactly, f) and g) location of the values of the main diagonal of the UCM of the last iteration of the model that fits the 
data set exactly h) ray tracing of the last iteration of the model that fits the data set exactly.

a)

d)

b) c)
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Fig. 4 - continued.

f) g)

h)

e)
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Fig. 5 - a) UCM of the first iteration of the grid#1, b) and c) location of the values of the main diagonal of the UCM 
of grid#1, d) ray tracing of the first iteration of grid#1, e) UCM of the last iteration of grid#1, f) and g) location of the 
values of the main diagonal of the UCM of the last iteration of grid#1, h) ray tracing of the last iteration of grid#1.

b) c)

d)

a)
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Fig. 5 - continued.

f) g)

h)

e)



293

Ray tracing applied to travel time seismic tomography	 Boll. Geof. Teor. Appl., 44, 281-305

Fig. 6 - UCM of the first iteration of grid#2, b) and c) location of the values of the main diagonal of the UCM of 
grid#2, d) ray tracing of the first iteration of grid#2, e) UCM of the last iteration of grid#2, f) and g) location of the 
values of the main diagonal of the UCM of the last iteration of grid#2, h) ray tracing of the last iteration of grid#2.

b) c)

d)

a)
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Fig. 6 - continued.

f) g)

h)

e)
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of the main diagonal are located on the cell model for a better understanding of the results. The 
different values of the covariance matrices arise, because in the case of an elliptical anisotropic 
model, as we described in the previous paragraph, we have to consider the rays as the sum of the 
two components that correspond  to the main directions of anisotropy. 

In Fig. 9a, the coefficients of the main diagonal of the covariance matrix of X direction, that 
represents the higher velocity field, are located. In this figure, it is evident that the inner cells 
are better conditioned, this is because the inner side is characterised by high velocity and the 
rays, obeying the Fermat principle, cross the inner cells in the X direction to reach the sensors, 
performing a good coverage of such cells. On the contrary, in the Z direction, that represents the 

Vx

Vx Vz

Vz

a)

b)

Legend
ABOVE 4.8

4.4-4.8
4.0-4.4
3.6-4.0
3.2-3.6
2.8-3.2
2.4-2.8
2.0-2.4
1.6-2.0
1.2-1.6
0.8-1.2

BELOW 0.8

a) σt = 0.060

b) σt = 0.053

Z

X

Axis direction

Fig. 7 - Seismic tomography results:  a) linear ray path approximation and cells of varying size, b) ray tracing and 
cells of varying size (after Cardarelli and Cerreto, 2002).
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Fig. 8 - Traced ray path in elliptical anisotropic medium: a) linear ray path approximation; b) rays traced in a 
heterogeneous medium modelled by a grid with cells of variable size (after Cardarelli and Cerreto, 2002).

Fig. 9 - a) UCM of the last step of the seismic anisotropic inversion, b) and c) location of the values of the main 
diagonal of the UCM of the last step, d) rays traced in a heterogeneous medium modelled by a grid with cells of 
variable size.

a) b)

c) d)



Fig. 10 - a) and b) field velocities of two sections of pillar D2 (S. Nicolò L’Arena) in the case of linear ray path 
approximation, c) and d) field velocities of two sections of pillar D2 in the case of ray tracing approximation (after 
Zanzi et al., 2001).

a) b)

c) d)
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lower velocity field, the rays cross the lower velocity superficial cells with the minimum path, 
that in this case coincides with the Z direction, for this reason a good coverage of such cells is 
performed in Fig. 9b. For a better understanding ray tracing, please see Fig.9d.

4.2. Second example: seismic isotropic tomography in S. Nicolò all’Arena (CT)

This survey was performed in the church of S. Nicolò all’Arena at Catania Sicily, to test 
some massive stone pillars. The section of the pillars is about 16 m2, they are built with volcanic 
stones and lime mortar. The survey consists in 28 tomographic sections. For each section, 23 
sensors and 21 shot points were located around the investigated pillar; the data were inverted 
with different algorithms depending if straight ray paths or ray tracing was considered. The 

ABOVE    1.5
1.4-1.5
1.3-1.4
1.2-1.3
1.1-1.2
1.0-1.1
0.9-1.0
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6

BELOW    0.5
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LTI interpolation alghorithm was used in the case of ray tracing approximation. In this case, 
isotropic material was considered. The complete processing and data acquisition of such survey 
is reported in the paper by Zanzi et al. (2001).

The results of sections 3 and 4 of pillar 2 are shown in Fig. 10. In the Figs. 10a and 10b 
the inversion results obtained with straight ray path approximation are shown, whilst in Figs. 
10c and 10d the results are obtained with ray tracing. In this case, there is no difference 
between the two different approximations. This result is confirmed observing the values of data 
distance where the values are quite similar, even if, in the case of the straight ray, the values are 
lower. This is probably because there is not a high velocity contrast between the cells, in fact, 
excluding some superficial zones where the velocities are lower, the inner core seems to be quite 
homogeneous.

Also in this case, covariance matrices were calculated, the values of the main diagonal of 
the matrices confirm that the quality of the inversion is quite similar when comparing the two 
approximations even if the straight ray path approximation seems to be better (Fig. 11) where 
the UCM of section 3 is shown.

Fig. 11 - UCM of the last inversion in the case of ray tracing (a) and linear ray path (b).

a)

b)
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5. Conclusions

Ray tracing is a useful tool to improve the quality of inversion results. The choice of the 
algorithm depends on the characteristics of the investigated soil and by the kind of survey. The 
use of ray tracing approximation does not seem to be, in any case, the best choice. In fact, in the 
case of homogeneous  materials the straight ray path approximation could be preferred because 
it gives the same or even better results than ray tracing, considering that ray tracing is more time 
consuming. In the case of the anisotropic model it has to consider the components of the ray to 
understand the quality of the ray coverage. To analyse this parameter UCM is a very useful tool. 
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suggestions. Furthermore the author wishes to thank Prof. L. Zanzi and Prof. M. Lualdi who permitted us to present 
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			      –––––––––––
	 TP = S		 √	(1Z + r)2 + 12

X	 ,	 (2A)

			  TA – TB				  ΔT	 TC = TA –		––––––		r = TA –	–––	 r.	 (3A)
			   d				    d

Then:
			  ΔT	            –––––––––––
	 TD = TA –		 –––	 r + S√(1z + r)2 + 1x

2	.	 (4A)
			   d	

If we differentiate Eq. (4A) with respect to r and solve for zero:
							          ––––––––––
				   			  ΔT				  √S2 d2 – ΔT2
	 TD

min = TA +		–––		1z +		–––––––––––	1x.		  (5A)
			   d				    d

This is the minimum travel-time that we consider.

Appendix A

The main steps of the calculus of the traveltime between two grid points is summarised by 
the formulas indicated here with reference to Fig. 1A. S indicates the slowness of the considered 

	 TD = TC + TP,	 (1A)

cell A and B are two grid points, C is the point where the minimum time is detected to travel in D.

Fig. 1A - Sketch of a ray path that crosses segment AB at point C and reaches D in a cell for the case of elliptical 
anisotropic media.
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Appendix B

The time TD, that the seismic ray needs to reach point D starting from source S, is given by 
the sum of two contributions:

a)	 the starting time Ti.=.TC, during which the seismic ray travels from the source to point C;
			  TA – TB
	 according to the LTI approximation, and is given by  TC =		––––––– r;
			   d
		

–––––––––––––––
			  b)	 the traveltime Tp = √	 Sx

2 1x
2 + Sz

2 (1z + r)2 between points C and D, derived from Eq. (2A).
As TD = Ti + Tp, we can write:

			  ΔT		 –––––––––––––––
	 TD = TA –		 –––	 r + √	 Sx

2 1x
2 + Sz

2 (1z + r)2	 ,	(1B)			   d

where ΔT.=.TA.–.TB.≥.0 (choosing A as the calculation point with the greater time); furthermore 
lz and r are computed starting from A with signs that correspond to the direction indicated in Fig. 
1B.

To locate point C, we look for the value of r that minimises TD with the condition 0.≤.r.≤.d 
(only paths crossing the segment AB are considered).

Consider the case when point D is located above point B: as point C is moved toward B, Ti 
and Tp both decrease, so r.=.d (and C.=.B). If point D is underneath point B, for r.>.–1z the time 
Ti decreases whilst the distance CD increases (consequently Tp too); thus, there exists a value of 

Fig. 1B - A sketch of a raypath that crosses segment AB at point C and reaches point D in a cell, for the case of an 
elliptical anisotropic medium.
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r where TD.=.min. In order to determine this point we differentiate Eq. (1B) with respect to r and 
solve for zero:

			  ΔT			  Sz (1z + r)	 –		–––	 +		–––––––––––––––––	  = 0.	 (2B)	
					         	–––––––––––––––
	 	 	d		 	√Sx

2 1x
2 + Sz

2 (1z + r)2 

Considering that (lz.+.r).≥.0 and ΔT.≥.0, from Eq. (2B):

			  Sx			 ΔT1x	 r =		 ––			–––––––––––	– 1z.		 (3B)
			  Sz		    

–––––––––
						    √Sz

2 d2 – ΔT2

Inserting Eq. (4A) into Eq. (2A) yields the minimum traveltime to point D:

										           –––––––––
			  ΔT				  Sx			√Sz

2 d2 – ΔT2		 TD = TA +		–––		1z +		––			–––––––––––	1x.		 (4B)
			   d				   Sz			  d

As shown in Fig. 2B, where the trend of the sign of the first derivative of the function TD.(r) 
is drawn, the position of point C depends on the value of ΔT. In fact, from Eq. (3B) we have:
				    Sz

2 d1zr ≥ 0	 if	 ΔT ≥		––––––––––––	 = ΔTmin,				      ––––––––––
				   √Sx

2 1x
2 + Sz

2 1z
2 

				    Sz
2 d (1z + d)r ≤ d	 if	 ΔT ≤		–––––––––––––––––	  = ΔTmax.				      –––––––––––––––

				   √Sx
2 1x

2 + Sz
2 (1z + d)2

Fig. 2B - The pattern of the first derivative of TD (r): the location of point C depends on the value of (T).
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Therefore, before using Eqs. (3B) and (4B) it is necessary to calculate ΔT and compare it 
with ΔTmin and ΔTmax following the procedure:

1)	 If ΔT ≤ ΔTmin	 then	 r = 0	 and	 C = A,

2)	 If ΔT ≥ ΔTmax	 then	 r = d	 and	 C = B,

3)	 If ΔTmin < ΔT < ΔTmax	 then	 0 < r < d	 and TD and r are given by Eqs. (4B) and (3B).

This procedure is valid also in the case of lz.<.–.d (point D above point B); in fact, in this 
case ΔTmax.<.0 and consequently r.=.d. Note that the expressions ΔTmin and ΔTmax are written 
differently from the Asakawa and Kawanaka (1993) formulation, but are equivalent if the 
condition on the sign of ΔT is valid. This means that for the starting point we choose A, i.e. the 
one where the time is the greatest.

Refraction with critical angle

The LTI method assumes a straight ray path approximation within each cell. This means that 
when the ray calculus reaches a point at the source cell boundary it can be joined to the source 
by a segment. However, when the reached point coincides with a corner of the cell (Fig. 3B) it 
is necessary to assess whether or not it is the head wave that gives the first arrival at that point. 
With reference to Fig. 3B we can write:

		  –––––––––
			   h2				    x2				   b – x	 Tp = √	–––		+		–––		+		––––	.		 (5B)
			  V2

1z				  V2
1z				   V2x

Given the condition of minimum traveltime we have:

						      x						      ––––
		 dTp				   V2

1x				    1		 –––		=		––––––––––		–		–––	 = 0.	
		 dx				   ––––––––				  V2x							       h2				    x2
					      √	––		+		––
							      V2

1z				  V2
1x

From which, if V2x.>.V1x:
			   V2

1x h	 x =		––––––––––––	 .	 (6B)			           –––––––
			  V1z √V2

2x – V2
1x

Because:

x2 = (x2 + h2) sin2 θc,
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using Eq. (6B) we get:

			   V 4
1x

	 sin2 θc =		––––––––––––––––	.		
(7B)				    V 4

1x + V2
1y (V2

2x – V2
1x)

Eq. (7B) represents a particular case (critical angle of incidence) of the formula given by 
Levin (1978).
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