
Bollettino di Geofisica Teorica ed Applicata  Vol. xx, n. x, pp. x-xx; Xxxxx 20xx

DOI 10.4430/bgta0342

1

The uncertainty analysis of seismic reflection coefficient 
estimation based on polynomial chaos expansion

M.R. QadeRi1, M.a. Riahi2 and R. NikRouz1

1 Geology Group, University of Urmia, Iran
2 Institute of Geophysics, University of Tehran, Iran

(Received: 15 September 2019; accepted: 19 August 2020)

ABSTRACT	 To	 estimate	 the	 seismic	 reflection	 coefficients,	 using	 deterministic	 computational	
methods,	 the	 velocities	 and	 density	 of	 a	 layer	 are	 assumed	 to	 be	 constant;	 this	
assumption	 is	 not	 required	when	 using	 statistical	 analysis,	 such	 as	 the	 polynomial	
chaos	expansion.	If	we	let	the	input	parameters	of	a	layer	to	vary,	the	determination	of	
the	reflection	coefficient	will	have	uncertainty.	Accurate	determination	of	the	reflection	
coefficient	is	valuable	for	the	correct	modelling	of	wave	propagation	amplitude.	The	
standard	deviation	is	an	indicator	of	our	data	distribution.	To	reduce	the	uncertainty	of	
the	reflection	coefficient	estimated	using	the	Zoeppritz	equations,	standard	deviations	
are	considered	for	the	input	parameters.	In	this	paper,	the	following	steps	are	taken	to	
investigate	the	changes	of	the	reflection	coefficient	curve	of	layer	with	depth:	1)	the	P-,	
and	S-wave	velocities,	and	density,	are	used	in	the	Zoeppritz	equations	to	determine	
the	reflection	coefficients	in	the	polynomial	chaos	expansion;	2)	the	accuracy	of	the	
estimated	reflection	coefficients	is	better,	while	the	standard	deviations	for	the	input	
parameters	is	low.	Using	the	lower	standard	deviations	for	the	input	parameters	resulted	
highly	accurate	in	estimating	reflection	coefficients	and	critical	angle.

Key words: seismic	parameter,	reflection	coefficient	curve,	standard	deviation,	Poisson’s	ratio,	uncertainty.

© 2021 – OGS

1. Introduction

The	Poisson’s	ratio	is	a	measure	of	Poisson’s	effect,	a	phenomenon	in	which	material	tends	to	
expand	perpendicular	to	the	compression	direction.	Likewise,	if	the	material	is	stretched	rather	than	
compressed,	it	will	shrink	in	a	direction	perpendicular	to	the	stretch.	Like	many	other	materials,	
rocks	exhibit	Poisson’s	effect	when	exposed	to	stress.	Excessive	erosion	and	sedimentation	of	the	
Earth’s	crust	can	cause,	or	decrease,	a	great	deal	of	vertical	stress	on	the	underlying	rocks.	This	
causes	the	rock	to	expand	or	shrink	in	the	vertical	direction	and,	also,	to	deform	due	to	the	Poissons	
effect.	Poisson’s	ratio	is	one	of	the	most	important	physical	properties	of	rocks	that	will	allow	us	to	
gain	a	better	understanding	of	the	mechanical	behaviour	of	subsurface	layers	(Beer,	2014).

The	Zoeppritz	(1919)	equations	specify	the	reflection	and	transmission	of	the	wave	propagation	
coefficients	as	a	function	of	the	incidence	angle.	Still,	these	equations	do	not	accurately	represent	
how	the	amplitude	changes	with	changing	the	physical	properties	of	the	rock.	The	approximations	
of	 the	Zoepprites	 equations	 are	 simpler	 and	more	 general	 than	 the	 general	 equations.	Among	
the	well	 known	approximations	presented	 for	 the	Zoeppritz	 equation,	 those	 suggested	by	Aki	
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and	Richards	 (1980),	Shuey	 (1985),	Mallick	 and	Frazer	 (1991),	Fatti	et al.	 (1994),	Verm	and	
Hilterman	(1995),	Afzal	et al.	(2018),	and	Zhang	et al.	(2018)	are	worth	citing.	Beforehand,	based	
on	these	approximations,	reflection/transmission	coefficients	and	different	seismic	attributes	have	
been	extracted.

The	Polynomial	Chaos	Expansion	(PCE)	takes	each	complex	function	as	an	input	and,	by	the	
coefficients	contained	within	the	polynomial,	as	well	as	the	polynomial	variables,	it	becomes	a	
function	with	simplified	polynomials	(Chaitanya,	2017).	In	this	paper,	we	derive	the	nonlinear	
equations	of	Zoeppritz	(1919)	with	the	PCE	in	the	form	of	a	univariate	finite	exponent	and	easily	
calculate	the	uncertainty	of	the	reflection	coefficient	of	the	PCE	in	the	form	of	a	univariate	finite	
exponent.

Based	on	the	Huygens	theorem,	the	wave	propagation	velocity	in	homogeneous	environments	
is	 constant.	The	 propagation	 velocity	 of	 seismic	waves	 in	 an	 elastic	 environment	 depends	 on	
reflection	coefficients	and	the	density	of	the	medium.

Generally,	the	factors	affecting	the	wave	velocity	can	be	divided	into	two	categories:	the	first	
is	related	to	the	inherent	physical	and	lithological	properties	of	the	rock,	such	as	porosity,	of	the	
pore	types,	composition,	grain	size,	texture,	and	the	rock	fabric.	The	second	category	is	related	to	
the	environmental	characteristics	of	the	medium,	such	as	burial	depth,	confining	pressure,	and	the	
age	of	the	sediments.	In	real	geological	environments,	the	wave	propagation	velocity	is	affected	
by	a	combination	of	these	factors.

Each	factor	is	investigated	independently	(Kearey	et al.,	2002):
•	 depth:	the	wave	velocity	increases	with	increasing	depth;
•	 compaction:	the	wave	velocity	increases	with	increasing	compaction;
•	 density:	the	wave	velocity	increases	with	increasing	the	density	of	the	medium;
•	 confining	 pressure:	 the	 wave	 velocity	 increases	 with	 increasing	 confining	 pressure;	 this	
is	 a	 result	 of	 the	 reduction	 of	 porosity	 and	 improvement	 of	 grain	 contact.	The	 effect	 of	
pressure	changes	on	rock	samples	with	low	velocity	is	more	than	rocks	with	high	velocity.	
The	highest	increment	in	confining	pressures	below	100	MPa	is	mostly	related	to	fracture	
closure.	In	confining	pressures	greater	than	100	MPa,	as	the	fractures	are	already	closed,	the	
velocity	reaches	approximately	a	constant	limit;

•	 porosity:	it	decreases	the	velocity	as	it	increases	(Barton,	2007).
Accordingly,	the	determination	of	wave	propagation	velocity	in	the	Earth	layers	has	an	inherent	

uncertainty:	 the	 velocity	 and	 density	 uncertainties	 affect	 the	 reliability	 of	 estimated	 reflection	
coefficients	of	the	media.

2. Geological setting

In	 this	 research,	 we	 used	 data	 from	 Borehole	MI70	 in	 the	Mansouri	 oil	 field	 wells.	 The	
Mansouri	oil	field	is	located	100	km	north	of	the	Persian	Gulf	and	50	km	SE	of	Ahwaz	city.	This	
study	area	is	situated	in	the	Dezful	embayment	that	contains	the	Iranian	oilfields,	located	SW	of	
Zagros.	In	terms	of	geology,	this	oil	field	is	located	in	the	area	of	the	Dezful	embayment,	NW	of	
the	Ahvaz	oil	field	and	the	NE	of	the	Shadegan	oil	field.

The	Mansouri	oilfield	is	located	to	the	south	of	the	Dezful	embayment	region,	with	the	same	
structural	 trend	 as	 the	 Zagros	 fold-thrust	 belt.	 The	 Mansouri	 anticline	 is	 NW-SE	 elongated	
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and	has	a	30-km	length	and	a	3.5-km	width	on	the	Asmari	horizon.	The	Asmari	Formation,	of	
Oligo-Miocene	age,	is	the	most	important	reservoir	in	hydrocarbon	fields	in	Iran;	it	is	composed	
mainly	of	carbonate	rocks	and	 is	steeply	sloping	on	 the	deep	sediments	of	 the	formation.	The	
lower	boundary	of	the	Asmari	Formation	is	overlain	by	the	Pabdeh	Formation.	The	Gachsaran	
Formation	is	the	underlying	upper	boundary	of	the	Asmari	Formation	(Motiei,	1993).

3. Data and processing procedures

The	 data	 used	 in	 this	 study	 are	 density	 and	 sonic	 logs	 acquired	 from	 the	 Borehole	MI70 
(Fig.	1).

To	 preserve	 signal-quality	 before	 and	 after	 these	 processing	 steps,	we	 decompose	 the	 raw	
data	into	several	 time-series	called	Intrinsic	Mode	Functions	(IMFs)	ranging	from	the	shortest	
wavelength	 dominated	 to	 the	 longest	 wavelength	 dominated	 subset.	 This	 procedure	 is	 the	
Empirical	Mode	Decomposition	(EMD)	(Flandrin,	2004).

The	values	of	the	parameters	in	the	Borehole	MI70	are	as	follows:
•	 P-wave	velocity	VP	=	3500-4750	m/s;
•	 S-wave	velocity	VS	=	1800-2300	m/s;
•	 density	ρ	=	2350-2550	kg/m3.

Fig.	1	-	Borehole	MI70	sonic	and	density	logs.
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4. Methodology
To	calculate	the	reflection	coefficient	between	the	two	layers	model,	one	requires	P-wave	

velocity,	S-wave	velocity,	and	density	values	of	 the	two	layers	(Fig.	2).	In	 this	figure	α	and	β 
denotes	P-	and	S-wave	average	velocities	of	the	two	layers,	respectively,	ρ	is	the	average	density	
of	the	two	layers,	and	θ	is	the	average	of	the	incident	and	transmitted	angle.

Fig.	 2	 -	 Reflected	 and	 refracted	 P-	 and	 S-wave	 rays	
generated	by	an	incident	P-wave	ray	on	an	interface	with	
acoustic	impedance	contrast.

The	following	equation	is	conventionally	used	to	calculate	the	reflection	coefficient	[Rpp	(θ)]	
(Zong	et al.,	2012):

(1)

We	used	full	set	well	log	data	from	Borehole	MI70	located	at	one	of	the	hydrocarbon	fields	in	
south-western	Iran.

To	model	 the	 reflection	coefficient	curve	 in	 terms	of	angle	offset	and	 reflection	coefficient	
curve	in	terms	of	Poisson’s	ratio,	we	inspect	the	values	of	VP,	VS,	and	ρ	recorded	from	Borehole	
MI70	in	the	Zoeppritz	equations	and	the	Poisson’s	ratio	equation	based	on	uncertainty	analysis	
using	PCE.

5. Polynomial Chaos Expansion
In	 general,	 in	 PCE,	 the	 random	 field	 u(x;	ξ)	 is	 divided	 into	 two	 certain	 and	

randomised	 parts.	 The	 PCE	 of	 a	 randomised	 field	 with	 degree	 p	 with	 ns	 random	 variables 
ξ = {ξi}

ns
i=1

 can	be	written:

.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2)
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Traditionally,	 PCE	 includes	 a	 complete	 basis	 of	 polynomials	 up	 to	 a	 fixed	 total	 order	
specification,	in	which	case	the	total	number	of	terms	Nt	in	an	expansion	of	total	order	p	involving	
ns	random	variables	and	is	given	by:

.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3)

This	approach	is	also	referred	to	as	a	“total-order	expansion”	(Eldred	and	Burkardt,	2009).	In	
Eqs.	2	and	4,	ψi	and	ψj	are	the	basis	functions,	which	are	orthogonal	to	the	probability	distribution	
functions.	In	a	general	form,	we	can	represent	the	orthogonality	of	multidimensional	inner	product	
as	(Baudin	and	Martinez,	2010):

.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4)

The	standard	normal	probability	density	function	is	given	as:

.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5)

The	basis	functions	should	be	selected	orthogonal	to	the	probability	distribution	function	of	
the	uncertain	input	variables,	for	example,	Legendre	and	Hermite	basis	functions	are	suitable	for	
uniform	and	Gaussian	probability	distribution	functions,	respectively.	Table	1	shows	Hermite	
polynomials	for	one-dimensional	parameter	up	to	the	4th	order.

Table	1	-	Hermite	polynomials	for	a	one-dimensional	parameter	up	to	the	4th	order	(Kuzma	et al.,	2011).

 Order of polynomial

  0 ψ0(ξ) = 1

 1 ψ1(ξ) = ξ

 2 ψ2(ξ) = ξ2 - 1

 3 ψ3(ξ) = ξ3 - 3ξ

 4 ψ3(ξ) = ξ4 - 6ξ2 + 3

The	basis	functions	are	known;	therefore,	for	known	ui	the	PCE	is	known.	Accordingly,	the	
problem	is	reduced	to	determining	the	coefficients	of	the	chaos	polynomials.	As	the	data	in	this	
study	follows	a	normal	distribution,	we	obtain	the	polynomial	chaos	coefficients	(PCCs)	using	the	
Gauss-Hermite	quadrature	method.

(6)

Nt
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where	u	is	the	random	variable	(RV)	represented	with	1D	PCE,	uk	is	the	deterministic	PCC,	ψk is 
the	Hermite	polynomial	of	order	k,	and	ξ	is	the	Gaussian	RV.

Since	the	basis	functions	are	orthonormal,	it	can	be	shown	that	the	mean	value	of	the	variance	
of	the	response	can	be	obtained	by	the	following	formulae:

(7)

	 	 	 	 	 	 	 .

PCE	 (O’Hagan,	 2013;	 Schöbi	 et al.,	 2014;	 Spiridonakos	 et al.,	 2016;	 Sudret	 et al.,	 2017)	
converts	 every	 complex	 function	 to	 several	 simplified	 terms	 using	 coefficients.	 One	 of	 the	
features	of	 the	PCE	approach	is	 that	 it	can	handle	 the	combined	effect	of	many	parameters	 in	
a	complicated	function	(Hariri-Ardebili	and	Sudret,	2019).	Therefore,	because	of	 the	complex	
manner	of	many	geophysical	studies	(e.g.	velocity	estimation),	the	PCE	method	can	be	a	choice	
for	their	simplification.	One	can	filter	some	coefficients	in	PCE	and	retain	only	polynomials	that	
depend	on	particular	parameters;	 the	effect	of	each	parameter	can	be	separated	(Kuzma	et al.,	
2011).

In	 this	paper,	 for	 the	purpose	of	uncertainty	analysis,	a	 two-layer	model,	with	 the	arbitrary	
incorrect	variation	of	the	selected	three	parameters	VP,	VS,	and	ρ,	was	selected,	then,	the	same	
two-layer	model	was	modified	with	correct	standard	deviations	for	the	three	parameters	VP,	VS,	
and	ρ.	Then,	the	results	were	compared	with	each	other.

For	 this	purpose,	 the	above	mentioned	 two-layer	model	was	considered	with	 the	following	
parameters:

-	first	layer:	P-wave	velocity	3500	m/s,	S-wave	velocity	1800	m/s,	density	2350	kg/m3;
-	second	layer:	P-wave	velocity	4750	m/s,	S-wave	velocity	2300	m/s,	density	2550	kg/m3.
The	standard	deviation	for	the	uncertainty	is	equal	to	VP	=	500	m/s,	VS	=	500	m/s,	ρ	=	100	kg/m

3.
These	values	for	standard	deviation	are	calculated	and	obtained	using	the	initial	seismic	data	

that	were	already	available	to	us.	In	this	sense,	for	example,	among	all	seismic	data,	the	velocity	
VP	 of	 the	first	 layer	 has	 been	 selected	 arbitrarily	 according	 to	 the	 data	 range,	 dispersion,	 and	
standard	deviation.

By	placing	the	standard	deviation	of	the	values	of	all	three	seismic	parameters	(VP,	VS,	and	
ρ)	in	both	layers,	we	will	have	an	average	reflection	coefficient	curve	of	the	other	512	reflection	
coefficients.	That	is,	by	using	statistical	calculations	and	having	the	standard	deviation	for	three	
parameters,	namely	VP,	VS,	and	ρ	of	the	two	layers,	the	curve	of	the	reflection	coefficients	can	be	
obtained.	The	selection	of	512	curves	is	completely	arbitrary,	and	one	may	select	any	number	of	
curves.	Its	criterion	is	the	correct	standard	deviation,	which	results	from	PCE.

Therefore,	 by	 using	 100,000	 different	 values	 of	 the	 three	 parameters	 (VP,	VS,	 and	ρ)	with	
respect	to	the	standard	deviation	of	512	curves	were	obtained.	For	realising	thousands	of	curves	
in	Figs.	3	and	6,	all	three	parameters	were	disturbed	simultaneously	and	not	only	one	while	fixing	
the	other	two.

One	of	the	main	ideas	in	this	paper	is	the	use	of	initial	estimates	of	the	standard	deviations	
and	 then	finding	 the	correct	 standard	deviations	 to	obtain	accurate	velocity,	density,	 reflection	
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coefficient	and	Poisson’s	ratio.	Here,	a	question	may	arise:	how	is	the	initial	standard	deviation	
calculated?	In	addition,	which	parameters	is	the	standard	deviation	calculated	from?

To	answer	the	above	questions,	one	may	consider	that	the	input	data	(for	example,	data	from	
Borehole	MI70	in	this	paper)	contain	hundreds,	and	maybe	more,	VP,	VS,	and	ρ	values	obtained	
from	well	 logging.	 From	 these	 data,	 an	 initial	 value	 is	 obtained	 as	 the	mean	with	 its	 related	
standard	deviation.	This	standard	deviation,	which	corresponds	to	a	large	interval	of	numbers,	is	
used	as	the	initial	standard	deviation	for	VP,	VS,	and	ρ.

To	 perform	 this	 approach,	we	first	 obtain	 the	 curves	 of	 the	wave	 reflection	 coefficients	 in	
angular	distances	with	respect	to	the	initial	standard	deviation	and,	then,	modify	the	same	curves	
with	the	correct	standard	deviations.

To	examine	this	idea,	we	select	as	initial	standard	deviation	the	same	value	of	500	m/s	as	the	
standard	deviation	considered	in	the	initial	mode	for	VP	and	VS,	and	of	100	kg/m

3	for	ρ.

6. Discussion

Fig.	3	shows	the	obtained	results,	the	blue	curves	show	the	reflection	coefficient	(Rpp)	of	the	
compressional	waves	 (initial	 incident	P-wave	 and	 its	 reflected	P-wave	 rays)	 in	 relation	 to	 the	
angle	offset	for	each	wave	individually.	The	red	curve	depicts	the	average	reflection	coefficient	

Table	2	-	Physical	properties	of	different	types	of	formation	(Stanford	Rock	Physics	Laboratory).

 Type of formation P-wave S-wave Density Density of 
  velocity (m/s) velocity (m/s) (g/ cm3) constituent 
     crystal (g/cm3)

 Scree, vegetal soil 300-700 100-300 1.7-2.4 -

 Dry sands 400-1200 100-500 1.5-1.7 2.65 quartz

 Wet sands 1500-2000 400-600 1.9-2.1 2.65 quartz

 Saturated shales and clays 1100-2500 200-800 2.0-2.4 -

 Marls 2000-3000 750-1500 2.1-2.6 -

 Saturated shales and sand section 1500-2200 500-750 2.1-2.4 -

 Porous and Saturated sandstones 2000-3500 800-1800 2.1-2.4 2.65 quartz

 Limestones 3500-6000 2000-3300 2.4-2.7 2.71 calcite

 Chalk 2300-2600 1100-1300 1.8-3.1 2.71 calcite

 Salt 4500-5500 2500-3100 2.1-2.3 2.10 halite

 Anhydrite 4000-5500 2200-3100 2.9-3.0 -

 Dolomite 3500-6500 1900-3600 2.5-2.9 (Ca, Mg) CO3 2.8-2.9

 Granite 4500-6000 2500-3300 2.5-2.7 -

 Basalt 5000-6000 2800-3400 2.7-3.1 -

 Gneiss 4400-5200 2700-3200 2.5-2.7 -

 Coal 2200-2700 1000-1400 1.3-1.8 -

 Water 1450-1500 - 1.0 -

 Ice 3400-3800 1700-1900 0.9 -

 Oil 1200-1250 - 0.6-0.9 -
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Rpp(mean)	 of	 the	 blue	 curves	 relative	 to	 the	 angle	 distance.	 The	 yellow	 curve	 [Rpp(PCE)]	
indicates	 the	 reflection	 coefficient	with	 the	 initial	 standard	 deviation	 using	 PCE.	What	 is	 the	
correct	standard	deviation	criterion,	and	how	does	the	user	understand	that	this	standard	deviation	
is	correct?	The	main	criterion	for	the	correct	standard	deviation	is,	firstly,	the	intersection	of	all	
the	curves,	which	 should	be	very	close	 to	 the	critical	 angle,	or	 the	zero	 reflection	coefficient.	
Secondly,	the	Poissonʼs	ratio	curve	should	have	a	slope	of	approximately	zero	in	angle	offsets	
(degrees)	close	to	the	critical	angle	of	the	reflection	coefficients	(at	Borehole	MI70,	it	is	22°).	The	
user	can	test	the	best	intersection	by	finding	the	correct	standard	deviation	with	trial	and	error	on	
the	value	of	the	standard	deviation.

The	 accuracy	 of	 the	 initial	 standard	 deviation	 curves,	 as	 shown	 in	 Fig.	 3,	 decreases	 with	
increasing	angle	offsets	(degrees).	The	overlap	of	the	average	value	of	the	Rpp	(red	curve),	namely	
[Rpp(mean)],	with	the	yellow	curve,	namely	[Rpp(PCE)],	obtained	from	PCE,	drops	sharply	and	
the	two	curves	are	separated,	which	indicates	a	decrease	in	accuracy.

From	the	yellow	curve,	we	see	 that,	 if	we	assign	 just	any	arbitrary	values	 for	 the	standard	
deviations	of	VP,	VS,	and	ρ,	the	resulted	reflection	coefficients	will	not	be	correct.

Fig.	3	-	Reflection	coefficient	curves	[Rpp,	Rpp(mean),	and	Rpp(PCE)]	calculated	for	0°	to	30°	angle	offset.

In	Fig.	4,	 the	blue	colour	of	 the	curve	shows	 the	 reflection	coefficient	of	 the	P	waves	 (the	
radiation	density	compression	wave	and	its	reflection	compression	wave)	versus	the	offset	angle	
for	each	wave	individually.	The	red	curve	of	the	reflection	coefficient	is	the	average	of	the	blue	
curves	compared	to	the	angle	offsets.	The	yellow	curve	shows	the	reflection	coefficient	resulting	
from	PCE	of	the	same	waves	and	with	the	standard	deviation	of	the	angle	offsets.

Rpp:
Rpp(mean):
Rpp(PCE):
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Fig.	5	shows	the	obtained	results	for	Rpp	and	Rpp(PCE)	versus	the	different	Poisson’s	ratios	
for	5,	22,	and	30°	angle	offsets.	As	shown	in	Fig.	5,	the	initial	standard	deviation	cannot	find	the	
Poisson’s	ratio	with	high	accuracy.	In	this	figure,	the	curves	of	the	Poisson’s	ratio	with	respect	to	
reflection	coefficient,	in	four	angle	offsets	(degrees),	are	shown,	which	are	incorrect.

In	Fig.	5,	the	green	curve	shows	the	average	of	Rpp(mean)	of	P	waves	(incident	and	reflected	
ray)	versus	 the	Poisson’s	 ratio	 for	 the	angular	offsets	of	5,	22,	 and	30°.	The	 red	curve	 shows	
Rpp(PCE)	of	the	same	P	waves	as	the	initial	standard	deviation	versus	the	Poisson’s	ratio	for	the	
angular	offsets	of	5,	22,	and	30°.

Fig.	4	-	Magnification	of	reflection	coefficient	curves	of	Rpp,	Rpp(mean),	and	Rpp(PCE)	modelled	in	terms	of	0-30o 
angle	offsets	near	the	critical	angle.

Fig.	5	-	The	reflection	coefficient	curve	[Rpp(mean)]	versus	the	different	Poisson’s	ratios	for	5,	22,	and	30°	angle	offsets.

Rp
p

Angle offset (degree)

Original Rpp:
PCE Of Rpp:

Poisson ratio
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However,	by	performing	the	test	and	error	for	the	standard	deviation	values,	we	will	see	that	
the	standard	deviation	range	could	not	be	arbitrary,	and	many	of	our	seismic	data	are	invalid	due	
to	the	heterogeneities	of	the	Earth	and	presences	of	noises.	Therefore,	only	in	a	specific	range	of	
standard	deviation,	we	can	carry	out	the	best	modelling	of	reflection	coefficient	relative	to	angle	
offset	(Fig.	6)	and	relative	to	the	Poisson’s	ratio	(Fig.	7).	The	best	modelling	is	to	have	the	highest	
accuracy	 in	 the	 reflection	coefficient	curve	model	and,	as	 shown	 in	Fig.	8,	having	 the	correct	
standard	deviation	for	the	three	parameters	VP,	VS,	and	ρ.

Fig.	6	-	Reflection	coefficient	[Rpp,	Rpp(mean),	
and	Rpp(PCE)	]	curves,	modelled	for	0°	to	30°.

In	Fig.	6,	the	blue	colour	indicates	the	P-wave	reflection	coefficients	(Rpp)	curves	from	the	
incident	and	reflected	rays	versus	0°	 to	30°	of	angle	offsets.	The	red	curve	shows	the	average	
value	of	the	blue	curves	of	reflection	coefficients	versus	0°	to	30°	angle	offsets.	The	yellow	curve	
indicates	 reflection	coefficients	versus	0°	 to	30°	angle	offsets	 resulted	 from	PCE	with	correct	
standard	deviation.	The	optimum	standard	deviation	is	obtained	when	correct	VP,	VS,	and	ρ	values	
are	considered.

Fig.	 7	 shows	 that	 the	 highest	 accuracy	 the	 lowest	 uncertainty	 of	 the	 estimated	 reflection	
coefficient	curve	obtained	from	seismic	data	belongs	to	the	velocity	data	obtained	from	the	correct	
critical	angle	using	PCE.	We	see	that	the	least	uncertainty	for	the	reflection	coefficient	in	critical	
angle	offset	and,	according	to	Fig.	7,	the	most	accurate	value	for	the	Poisson’s	ratio.

In	Fig.	7,	the	green	curves	indicate	the	average	value	(Rpp)	of	the	P-wave	reflection	coefficients	
from	the	incident	and	reflected	rays	for	different	incident	angles	(5,	22,	and	30°)	versus	Poisson’s	
ratios.	 Red	 curves	 indicate	 the	 reflection	 coefficients	 resulted	 from	 PCE	 [Rpp(PCE)]	 versus	
Poisson’s	ratios	for	different	incident	angles	(5,	22,	and	30°)	with	correct	standard	deviation.

At	 this	step,	one	may	ask:	how	can	 this	method	be	used	for	 real	data?	At	what	stage	 is	 its	
application?	And	what	kind	of	problem	does	it	solve	from	seismic	data?

As	explained	above,	our	 initial	data	from	the	Borehole	MI70	include	a	very	large	range	of	
VP,	VS,	and	ρ	values.	For	example,	the	initial	velocity	variation	value	in	a	layer	may	be	between	
3500	and	4000	m/s,	which	is	a	large	range	and	this	low	accuracy	is	due	to	measurement	errors,	
device	inaccuracies,	ambient	noises,	and	Earth’s	heterogeneities.	The	user	cannot,	anyhow,	get	
a	 unique	 velocity	 value	 for	 a	 single	 layer	 in	 a	 layered	Earth.	However,	with	 the	 help	 of	 this	

Rpp:
Rpp(mean):
Rpp(PCE):
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method,	the	user	will	be	able	to	omit	a	large	amount	of	redundant	data,	which	are	incorrect.	By	
excluding	those	inaccurate	data,	firstly,	the	volume	of	data	is	reduced,	the	information	is	given	
more	accurately,	and	it	is	presented	better,	in	statistical	terms.	Secondly,	by	working	on	those	data,	
one	can	determine	the	lithology	of	the	layers	with	higher	accuracy,	and,	thirdly,	the	most	accurate	
value	may	be	chosen	for	the	Poisson’s	ratio.

At	the	end,	we	can	say	that	this	method	is	a	sort	of	filtering	of	the	raw	data	of	VP,	VS,	and	ρ 
values.

7. Conclusions

The	data	obtained	from	well	 logging	contain	different	velocity	values	at	different	borehole	
depths,	and	some	of	these	values	are	far	higher	or	lower	than	their	true	values.	This	inconsistency	
is	usually	caused	by	the	existence	of	drilling	mud,	washout,	and	damage	zone	in	the	borehole.	
Therefore,	the	uncertainty	of	well	logging	data	can	be	high,	and	their	accuracy	very	low.

Estimation	 of	 the	 reflection	 coefficient	 and	 Poisson’s	 ratio,	 based	 on	 any	 interval	 of	 well	
logging	data,	using	the	Zoepprits	equation,	provides	incorrect	results	with	high	uncertainty.	The	
estimated	Poisson’s	ratio	in	a	layered	model	is	obtained	independent	from	both	of	the	offset	and	
angle	 of	 the	 incident	wave.	Therefore,	 the	 cross	 plot	 of	 Poisson’s	 ratio	 at	 any	 offsets,	 versus	
the	 reflection	coefficient,	 is	a	 straight	 line	with	zero	gradients	at	 the	critical	angle.	This	 study	
introduced	that	PCE	is	a	suitable	tool	to	estimate	the	reflection	coefficient	curve	and	Poisson’s	
ratio	with	high	accuracy	and	less	uncertainty.
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