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ABSTRACT	 To estimate the seismic reflection coefficients, using deterministic computational 
methods, the velocities and density of a layer are assumed to be constant; this 
assumption is not required when using statistical analysis, such as the polynomial 
chaos expansion. If we let the input parameters of a layer to vary, the determination of 
the reflection coefficient will have uncertainty. Accurate determination of the reflection 
coefficient is valuable for the correct modelling of wave propagation amplitude. The 
standard deviation is an indicator of our data distribution. To reduce the uncertainty of 
the reflection coefficient estimated using the Zoeppritz equations, standard deviations 
are considered for the input parameters. In this paper, the following steps are taken to 
investigate the changes of the reflection coefficient curve of layer with depth: 1) the P-, 
and S-wave velocities, and density, are used in the Zoeppritz equations to determine 
the reflection coefficients in the polynomial chaos expansion; 2) the accuracy of the 
estimated reflection coefficients is better, while the standard deviations for the input 
parameters is low. Using the lower standard deviations for the input parameters resulted 
highly accurate in estimating reflection coefficients and critical angle.
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1. Introduction

The Poisson’s ratio is a measure of Poisson’s effect, a phenomenon in which material tends to 
expand perpendicular to the compression direction. Likewise, if the material is stretched rather than 
compressed, it will shrink in a direction perpendicular to the stretch. Like many other materials, 
rocks exhibit Poisson’s effect when exposed to stress. Excessive erosion and sedimentation of the 
Earth’s crust can cause, or decrease, a great deal of vertical stress on the underlying rocks. This 
causes the rock to expand or shrink in the vertical direction and, also, to deform due to the Poissons 
effect. Poisson’s ratio is one of the most important physical properties of rocks that will allow us to 
gain a better understanding of the mechanical behaviour of subsurface layers (Beer, 2014).

The Zoeppritz (1919) equations specify the reflection and transmission of the wave propagation 
coefficients as a function of the incidence angle. Still, these equations do not accurately represent 
how the amplitude changes with changing the physical properties of the rock. The approximations 
of the Zoepprites equations are simpler and more general than the general equations. Among 
the well known approximations presented for the Zoeppritz equation, those suggested by Aki 
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and Richards (1980), Shuey (1985), Mallick and Frazer (1991), Fatti et al. (1994), Verm and 
Hilterman (1995), Afzal et al. (2018), and Zhang et al. (2018) are worth citing. Beforehand, based 
on these approximations, reflection/transmission coefficients and different seismic attributes have 
been extracted.

The Polynomial Chaos Expansion (PCE) takes each complex function as an input and, by the 
coefficients contained within the polynomial, as well as the polynomial variables, it becomes a 
function with simplified polynomials (Chaitanya, 2017). In this paper, we derive the nonlinear 
equations of Zoeppritz (1919) with the PCE in the form of a univariate finite exponent and easily 
calculate the uncertainty of the reflection coefficient of the PCE in the form of a univariate finite 
exponent.

Based on the Huygens theorem, the wave propagation velocity in homogeneous environments 
is constant. The propagation velocity of seismic waves in an elastic environment depends on 
reflection coefficients and the density of the medium.

Generally, the factors affecting the wave velocity can be divided into two categories: the first 
is related to the inherent physical and lithological properties of the rock, such as porosity, of the 
pore types, composition, grain size, texture, and the rock fabric. The second category is related to 
the environmental characteristics of the medium, such as burial depth, confining pressure, and the 
age of the sediments. In real geological environments, the wave propagation velocity is affected 
by a combination of these factors.

Each factor is investigated independently (Kearey et al., 2002):
•	 depth: the wave velocity increases with increasing depth;
•	 compaction: the wave velocity increases with increasing compaction;
•	 density: the wave velocity increases with increasing the density of the medium;
•	 confining pressure: the wave velocity increases with increasing confining pressure; this 
is a result of the reduction of porosity and improvement of grain contact. The effect of 
pressure changes on rock samples with low velocity is more than rocks with high velocity. 
The highest increment in confining pressures below 100 MPa is mostly related to fracture 
closure. In confining pressures greater than 100 MPa, as the fractures are already closed, the 
velocity reaches approximately a constant limit;

•	 porosity: it decreases the velocity as it increases (Barton, 2007).
Accordingly, the determination of wave propagation velocity in the Earth layers has an inherent 

uncertainty: the velocity and density uncertainties affect the reliability of estimated reflection 
coefficients of the media.

2. Geological setting

In this research, we used data from Borehole MI70 in the Mansouri oil field wells. The 
Mansouri oil field is located 100 km north of the Persian Gulf and 50 km SE of Ahwaz city. This 
study area is situated in the Dezful embayment that contains the Iranian oilfields, located SW of 
Zagros. In terms of geology, this oil field is located in the area of the Dezful embayment, NW of 
the Ahvaz oil field and the NE of the Shadegan oil field.

The Mansouri oilfield is located to the south of the Dezful embayment region, with the same 
structural trend as the Zagros fold-thrust belt. The Mansouri anticline is NW-SE elongated 
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and has a 30-km length and a 3.5-km width on the Asmari horizon. The Asmari Formation, of 
Oligo-Miocene age, is the most important reservoir in hydrocarbon fields in Iran; it is composed 
mainly of carbonate rocks and is steeply sloping on the deep sediments of the formation. The 
lower boundary of the Asmari Formation is overlain by the Pabdeh Formation. The Gachsaran 
Formation is the underlying upper boundary of the Asmari Formation (Motiei, 1993).

3. Data and processing procedures

The data used in this study are density and sonic logs acquired from the Borehole MI70 
(Fig. 1).

To preserve signal-quality before and after these processing steps, we decompose the raw 
data into several time-series called Intrinsic Mode Functions (IMFs) ranging from the shortest 
wavelength dominated to the longest wavelength dominated subset. This procedure is the 
Empirical Mode Decomposition (EMD) (Flandrin, 2004).

The values of the parameters in the Borehole MI70 are as follows:
•	 P-wave velocity VP = 3500-4750 m/s;
•	 S-wave velocity VS = 1800-2300 m/s;
•	 density ρ = 2350-2550 kg/m3.

Fig. 1 - Borehole MI70 sonic and density logs.
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4. Methodology
To calculate the reflection coefficient between the two layers model, one requires P-wave 

velocity, S-wave velocity, and density values of the two layers (Fig. 2). In this figure α and β 
denotes P- and S-wave average velocities of the two layers, respectively, ρ is the average density 
of the two layers, and θ is the average of the incident and transmitted angle.

Fig. 2 - Reflected and refracted P- and S-wave rays 
generated by an incident P-wave ray on an interface with 
acoustic impedance contrast.

The following equation is conventionally used to calculate the reflection coefficient [Rpp (θ)] 
(Zong et al., 2012):

(1)

We used full set well log data from Borehole MI70 located at one of the hydrocarbon fields in 
south-western Iran.

To model the reflection coefficient curve in terms of angle offset and reflection coefficient 
curve in terms of Poisson’s ratio, we inspect the values of VP, VS, and ρ recorded from Borehole 
MI70 in the Zoeppritz equations and the Poisson’s ratio equation based on uncertainty analysis 
using PCE.

5. Polynomial Chaos Expansion
In general, in PCE, the random field u(x; ξ) is divided into two certain and 

randomised parts. The PCE of a randomised field with degree p with ns random variables 
ξ = {ξi}

ns
i=1

 can be written:

.                                                (2)
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Traditionally, PCE includes a complete basis of polynomials up to a fixed total order 
specification, in which case the total number of terms Nt in an expansion of total order p involving 
ns random variables and is given by:

.                                                (3)

This approach is also referred to as a “total-order expansion” (Eldred and Burkardt, 2009). In 
Eqs. 2 and 4, ψi and ψj are the basis functions, which are orthogonal to the probability distribution 
functions. In a general form, we can represent the orthogonality of multidimensional inner product 
as (Baudin and Martinez, 2010):

.                                (4)

The standard normal probability density function is given as:

.                                                      (5)

The basis functions should be selected orthogonal to the probability distribution function of 
the uncertain input variables, for example, Legendre and Hermite basis functions are suitable for 
uniform and Gaussian probability distribution functions, respectively. Table 1 shows Hermite 
polynomials for one-dimensional parameter up to the 4th order.

Table 1 - Hermite polynomials for a one-dimensional parameter up to the 4th order (Kuzma et al., 2011).

	 Order of polynomial

￼	  0	 ψ0(ξ) = 1

	 1	 ψ1(ξ) = ξ

	 2	 ψ2(ξ) = ξ2 - 1

	 3	 ψ3(ξ) = ξ3 - 3ξ

	 4	 ψ3(ξ) = ξ4 - 6ξ2 + 3

The basis functions are known; therefore, for known ui the PCE is known. Accordingly, the 
problem is reduced to determining the coefficients of the chaos polynomials. As the data in this 
study follows a normal distribution, we obtain the polynomial chaos coefficients (PCCs) using the 
Gauss-Hermite quadrature method.

(6)

Nt
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where u is the random variable (RV) represented with 1D PCE, uk is the deterministic PCC, ψk is 
the Hermite polynomial of order k, and ξ is the Gaussian RV.

Since the basis functions are orthonormal, it can be shown that the mean value of the variance 
of the response can be obtained by the following formulae:

(7)

              .

PCE (O’Hagan, 2013; Schöbi et al., 2014; Spiridonakos et al., 2016; Sudret et al., 2017) 
converts every complex function to several simplified terms using coefficients. One of the 
features of the PCE approach is that it can handle the combined effect of many parameters in 
a complicated function (Hariri-Ardebili and Sudret, 2019). Therefore, because of the complex 
manner of many geophysical studies (e.g. velocity estimation), the PCE method can be a choice 
for their simplification. One can filter some coefficients in PCE and retain only polynomials that 
depend on particular parameters; the effect of each parameter can be separated (Kuzma et al., 
2011).

In this paper, for the purpose of uncertainty analysis, a two-layer model, with the arbitrary 
incorrect variation of the selected three parameters VP, VS, and ρ, was selected, then, the same 
two-layer model was modified with correct standard deviations for the three parameters VP, VS, 
and ρ. Then, the results were compared with each other.

For this purpose, the above mentioned two-layer model was considered with the following 
parameters:

- first layer: P-wave velocity 3500 m/s, S-wave velocity 1800 m/s, density 2350 kg/m3;
- second layer: P-wave velocity 4750 m/s, S-wave velocity 2300 m/s, density 2550 kg/m3.
The standard deviation for the uncertainty is equal to VP = 500 m/s, VS = 500 m/s, ρ = 100 kg/m

3.
These values for standard deviation are calculated and obtained using the initial seismic data 

that were already available to us. In this sense, for example, among all seismic data, the velocity 
VP of the first layer has been selected arbitrarily according to the data range, dispersion, and 
standard deviation.

By placing the standard deviation of the values of all three seismic parameters (VP, VS, and 
ρ) in both layers, we will have an average reflection coefficient curve of the other 512 reflection 
coefficients. That is, by using statistical calculations and having the standard deviation for three 
parameters, namely VP, VS, and ρ of the two layers, the curve of the reflection coefficients can be 
obtained. The selection of 512 curves is completely arbitrary, and one may select any number of 
curves. Its criterion is the correct standard deviation, which results from PCE.

Therefore, by using 100,000 different values of the three parameters (VP, VS, and ρ) with 
respect to the standard deviation of 512 curves were obtained. For realising thousands of curves 
in Figs. 3 and 6, all three parameters were disturbed simultaneously and not only one while fixing 
the other two.

One of the main ideas in this paper is the use of initial estimates of the standard deviations 
and then finding the correct standard deviations to obtain accurate velocity, density, reflection 
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coefficient and Poisson’s ratio. Here, a question may arise: how is the initial standard deviation 
calculated? In addition, which parameters is the standard deviation calculated from?

To answer the above questions, one may consider that the input data (for example, data from 
Borehole MI70 in this paper) contain hundreds, and maybe more, VP, VS, and ρ values obtained 
from well logging. From these data, an initial value is obtained as the mean with its related 
standard deviation. This standard deviation, which corresponds to a large interval of numbers, is 
used as the initial standard deviation for VP, VS, and ρ.

To perform this approach, we first obtain the curves of the wave reflection coefficients in 
angular distances with respect to the initial standard deviation and, then, modify the same curves 
with the correct standard deviations.

To examine this idea, we select as initial standard deviation the same value of 500 m/s as the 
standard deviation considered in the initial mode for VP and VS, and of 100 kg/m

3 for ρ.

6. Discussion

Fig. 3 shows the obtained results, the blue curves show the reflection coefficient (Rpp) of the 
compressional waves (initial incident P-wave and its reflected P-wave rays) in relation to the 
angle offset for each wave individually. The red curve depicts the average reflection coefficient 

Table 2 - Physical properties of different types of formation (Stanford Rock Physics Laboratory).

	 Type of formation	 P-wave	 S-wave	 Density	 Density of 
		  velocity (m/s)	 velocity (m/s)	 (g/ cm3)	 constituent 
					     crystal (g/cm3)

	 Scree, vegetal soil	 300-700	 100-300	 1.7-2.4	 -

	 Dry sands	 400-1200	 100-500	 1.5-1.7	 2.65 quartz

	 Wet sands	 1500-2000	 400-600	 1.9-2.1	 2.65 quartz

	 Saturated shales and clays	 1100-2500	 200-800	 2.0-2.4	 -

	 Marls	 2000-3000	 750-1500	 2.1-2.6	 -

	 Saturated shales and sand section	 1500-2200	 500-750	 2.1-2.4	 -

	 Porous and Saturated sandstones	 2000-3500	 800-1800	 2.1-2.4	 2.65 quartz

	 Limestones	 3500-6000	 2000-3300	 2.4-2.7	 2.71 calcite

	 Chalk	 2300-2600	 1100-1300	 1.8-3.1	 2.71 calcite

	 Salt	 4500-5500	 2500-3100	 2.1-2.3	 2.10 halite

	 Anhydrite	 4000-5500	 2200-3100	 2.9-3.0	 -

	 Dolomite	 3500-6500	 1900-3600	 2.5-2.9	 (Ca, Mg) CO3 2.8-2.9

	 Granite	 4500-6000	 2500-3300	 2.5-2.7	 -

	 Basalt	 5000-6000	 2800-3400	 2.7-3.1	 -

	 Gneiss	 4400-5200	 2700-3200	 2.5-2.7	 -

	 Coal	 2200-2700	 1000-1400	 1.3-1.8	 -

	 Water	 1450-1500	 -	 1.0	 -

	 Ice	 3400-3800	 1700-1900	 0.9	 -

	 Oil	 1200-1250	 -	 0.6-0.9	 -
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Rpp(mean) of the blue curves relative to the angle distance. The yellow curve [Rpp(PCE)] 
indicates the reflection coefficient with the initial standard deviation using PCE. What is the 
correct standard deviation criterion, and how does the user understand that this standard deviation 
is correct? The main criterion for the correct standard deviation is, firstly, the intersection of all 
the curves, which should be very close to the critical angle, or the zero reflection coefficient. 
Secondly, the Poissonʼs ratio curve should have a slope of approximately zero in angle offsets 
(degrees) close to the critical angle of the reflection coefficients (at Borehole MI70, it is 22°). The 
user can test the best intersection by finding the correct standard deviation with trial and error on 
the value of the standard deviation.

The accuracy of the initial standard deviation curves, as shown in Fig. 3, decreases with 
increasing angle offsets (degrees). The overlap of the average value of the Rpp (red curve), namely 
[Rpp(mean)], with the yellow curve, namely [Rpp(PCE)], obtained from PCE, drops sharply and 
the two curves are separated, which indicates a decrease in accuracy.

From the yellow curve, we see that, if we assign just any arbitrary values for the standard 
deviations of VP, VS, and ρ, the resulted reflection coefficients will not be correct.

Fig. 3 - Reflection coefficient curves [Rpp, Rpp(mean), and Rpp(PCE)] calculated for 0° to 30° angle offset.

In Fig. 4, the blue colour of the curve shows the reflection coefficient of the P waves (the 
radiation density compression wave and its reflection compression wave) versus the offset angle 
for each wave individually. The red curve of the reflection coefficient is the average of the blue 
curves compared to the angle offsets. The yellow curve shows the reflection coefficient resulting 
from PCE of the same waves and with the standard deviation of the angle offsets.

Rpp:
Rpp(mean):
Rpp(PCE):
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Fig. 5 shows the obtained results for Rpp and Rpp(PCE) versus the different Poisson’s ratios 
for 5, 22, and 30° angle offsets. As shown in Fig. 5, the initial standard deviation cannot find the 
Poisson’s ratio with high accuracy. In this figure, the curves of the Poisson’s ratio with respect to 
reflection coefficient, in four angle offsets (degrees), are shown, which are incorrect.

In Fig. 5, the green curve shows the average of Rpp(mean) of P waves (incident and reflected 
ray) versus the Poisson’s ratio for the angular offsets of 5, 22, and 30°. The red curve shows 
Rpp(PCE) of the same P waves as the initial standard deviation versus the Poisson’s ratio for the 
angular offsets of 5, 22, and 30°.

Fig. 4 - Magnification of reflection coefficient curves of Rpp, Rpp(mean), and Rpp(PCE) modelled in terms of 0-30o 
angle offsets near the critical angle.

Fig. 5 - The reflection coefficient curve [Rpp(mean)] versus the different Poisson’s ratios for 5, 22, and 30° angle offsets.

Rp
p

Angle offset (degree)

Original Rpp:
PCE Of Rpp:

Poisson ratio
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However, by performing the test and error for the standard deviation values, we will see that 
the standard deviation range could not be arbitrary, and many of our seismic data are invalid due 
to the heterogeneities of the Earth and presences of noises. Therefore, only in a specific range of 
standard deviation, we can carry out the best modelling of reflection coefficient relative to angle 
offset (Fig. 6) and relative to the Poisson’s ratio (Fig. 7). The best modelling is to have the highest 
accuracy in the reflection coefficient curve model and, as shown in Fig. 8, having the correct 
standard deviation for the three parameters VP, VS, and ρ.

Fig. 6 - Reflection coefficient [Rpp, Rpp(mean), 
and Rpp(PCE) ] curves, modelled for 0° to 30°.

In Fig. 6, the blue colour indicates the P-wave reflection coefficients (Rpp) curves from the 
incident and reflected rays versus 0° to 30° of angle offsets. The red curve shows the average 
value of the blue curves of reflection coefficients versus 0° to 30° angle offsets. The yellow curve 
indicates reflection coefficients versus 0° to 30° angle offsets resulted from PCE with correct 
standard deviation. The optimum standard deviation is obtained when correct VP, VS, and ρ values 
are considered.

Fig. 7 shows that the highest accuracy the lowest uncertainty of the estimated reflection 
coefficient curve obtained from seismic data belongs to the velocity data obtained from the correct 
critical angle using PCE. We see that the least uncertainty for the reflection coefficient in critical 
angle offset and, according to Fig. 7, the most accurate value for the Poisson’s ratio.

In Fig. 7, the green curves indicate the average value (Rpp) of the P-wave reflection coefficients 
from the incident and reflected rays for different incident angles (5, 22, and 30°) versus Poisson’s 
ratios. Red curves indicate the reflection coefficients resulted from PCE [Rpp(PCE)] versus 
Poisson’s ratios for different incident angles (5, 22, and 30°) with correct standard deviation.

At this step, one may ask: how can this method be used for real data? At what stage is its 
application? And what kind of problem does it solve from seismic data?

As explained above, our initial data from the Borehole MI70 include a very large range of 
VP, VS, and ρ values. For example, the initial velocity variation value in a layer may be between 
3500 and 4000 m/s, which is a large range and this low accuracy is due to measurement errors, 
device inaccuracies, ambient noises, and Earth’s heterogeneities. The user cannot, anyhow, get 
a unique velocity value for a single layer in a layered Earth. However, with the help of this 

Rpp:
Rpp(mean):
Rpp(PCE):
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method, the user will be able to omit a large amount of redundant data, which are incorrect. By 
excluding those inaccurate data, firstly, the volume of data is reduced, the information is given 
more accurately, and it is presented better, in statistical terms. Secondly, by working on those data, 
one can determine the lithology of the layers with higher accuracy, and, thirdly, the most accurate 
value may be chosen for the Poisson’s ratio.

At the end, we can say that this method is a sort of filtering of the raw data of VP, VS, and ρ 
values.

7. Conclusions

The data obtained from well logging contain different velocity values at different borehole 
depths, and some of these values are far higher or lower than their true values. This inconsistency 
is usually caused by the existence of drilling mud, washout, and damage zone in the borehole. 
Therefore, the uncertainty of well logging data can be high, and their accuracy very low.

Estimation of the reflection coefficient and Poisson’s ratio, based on any interval of well 
logging data, using the Zoepprits equation, provides incorrect results with high uncertainty. The 
estimated Poisson’s ratio in a layered model is obtained independent from both of the offset and 
angle of the incident wave. Therefore, the cross plot of Poisson’s ratio at any offsets, versus 
the reflection coefficient, is a straight line with zero gradients at the critical angle. This study 
introduced that PCE is a suitable tool to estimate the reflection coefficient curve and Poisson’s 
ratio with high accuracy and less uncertainty.
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