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ABSTRACT The main objective of this work is to interpret aeromagnetic data of the central In Ouzzal 
terrane and adjacent zone, southern Algeria using the Riesz Transform (RT) method. In 
this paper, we developed the RT method using the concepts of monogenic functions 
with Cauchy Riemann conditions. The result, obtained by calculation, led us to the 
new expression of the Riesz Analytic Signal Amplitude (RASA) and Riesz Local Phase 
(RLP), respectively. Tests on a synthetic magnetic model showed that the RASA and 
RLP had a better performance in delineating the geological contacts that were not seen 
in the original data. The advantage of this RT method is that it is less sensitive to noise. 
By applying the Euler deconvolution method using the RASA to the aeromagnetic data 
of the study area, we obtained the West Ouzzalian Fault (WOF), which is below the 
Paleozoic cover and has a depth of 0.8 km. At a distance of 30 km from the WOF, we 
find the East Ouzzalian Fault (EOF) with a depth of about 5 km. According to the RLP, 
the dip of the WOF, the EOF and the Adrar Fault are vertical. The fault systems located 
inside of the central In Ouzzal terrane are, generally, inclined towards the west.

Key words: Riesz Transform, Riesz Analytic Signal Amplitude, Riesz Local Phase, Euler deconvolution, 
aeromagnetic data, In Ouzzal terrane.
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1. Introduction

Nabighian (1984) established the relationship between the horizontal and the vertical derivatives 
in the 3D analytic signal by using the fundamental property of Hilbert Transform (HT). The HT 
may have become the most important mathematical tool to define the analytic signal (Li and 
Pilkington, 2016). Later, Roest et al. (1992) showed that it is possible to apply this method to 
3D structures and defined the Analytic Signal Amplitude (ASA) as being the square root of the 
sum of squares of both horizontal and vertical derivatives of a magnetic anomaly. Büllow (1999) 
proposed a pattern of a 2D signal built in the algebra of quaternions, which generalises in an 
elegant and subtle way the notions of analytic signal and local phase. Constructing new signals 
using different transforms, like the Riesz Transform (RT) for the monogenic signal (Felsberg 
and Sommer, 2001; Hassan and Yalamanchili, 2013; Hidalgo-Gato and Barbosa, 2015; Li and 
Pilkington, 2016) is an ongoing process trying to extract all the hidden pertained information 
related to causative sources.
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The main objective of this work is to interpret magnetic data using the RT method. The RT 
method, so named after the mathematician Riesz (1928), has long been the multidimensional nD 
extension of the Hilbert transformation (Stein and Weiss, 1971). In this paper, we developed the 
RT method using the concepts of monogenic functions with Cauchy-Riemann conditions. The 
computational results lead us to the general mathematical formulation of the analytical signal in 
n-dimensional space. From the latter formula, we obtained a new expression of the Riesz Analytic 
Signal Amplitude (RASA) and the Riesz Local Phase (RLP), respectively. In this present study, 
we apply the Euler Deconvolution (ED) method using RASA to the example of synthetic data and 
to the aeromagnetic data of the central In Ouzzal terrane and adjacent zone.

The ED method is based on a mathematical process represented by Euler’s homogeneity 
equation defined by (Thompson, 1982; Reid et al., 1990):

(x – x0)∂T/∂x + (y – y0)∂T/∂y + (z – z0)∂T/∂z = N(B – T) (1)

where (∂T/∂x, ∂T/∂y, ∂T/∂z) are first order derivatives of the potential field T in the x, y and z 
directions, respectively. (x0, y0, z0) are the source location Cartesian coordinates and B is the 
regional value of the Total Field; N is the Euler’s Structural Index (SI) which characterises the 
source geometry. The SI categorises the anomaly attenuation rate at the observation point and 
depends on the source geometry, where it varies from 0 to 3. Detailed numerical development 
may be found in Reid et al. (1990). In this study, the ED method with RASA was calculated using 
the ED software (Durrheim and Cooper, 1998).

2. Methodology

2.1. nD Riesz Transform
Let us consider a derivation function f (Xn+1) with (n + 1)D such as:

f (Xn+1) = [ f1(Xn+1), f2(Xn+1),..., fn(Xn+1), fn+1 (Xn+1)] (2)

where Xn+1 = (x1, x2,..., xn, xn+1). These functions f (Xn+1) verify the Cauchy-Riemann’s conditions 
at (n + 1)D:

(3)
                .  

By applying the Fourier Transform to the Eq. 3 (see the Appendix), we obtain the nD RT in the 
space domain (Stein and Weiss, 1971):

(4)

where the asterisk (*) represents convolution and ||Xn||
n+1 = �(x1

2 + x2
2 + ... + xn

2)n+1. 
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2.2. Monogenic signal extended to nD
In this paper, to represent the nD monogenic signal in a vectorial form, we are using a vector 

field Fn (Xn+1) with (n + 1)D. Detailed mathematical development of the nD monogenic signal may 
be found in (Sommer and Zang, 2007):

(5)

where fj (Xn+1), fn+1 (Xn+1) 
 
are monogenic components, and (ej, en+1)

 
are orthogonal bases (Sommer 

and Zang, 2007). By using the definition of the RT in Eq. 5, the solution to the problem of 
Neumann (Felsberg and Sommer, 2004) in a space, leads to the definition of the monogenic 
components of vector field Fn (Xn+1) having (n + 1)D with Xn+1< 0 and 1 ≤ j ≤ n (see the Appendix):

(6)

where Xn+1 = (Xn, xn+1). Letting xn+1 tend to zero in the Eq. 6 yields an integral, which can be 
evaluated in a principal value sense (Felsberg et al., 2005; Sommer and Zang, 2007). We can 
deduce the space expression form of the nD RT and apply the Fourier Transform to the monogenic 
signal, which equations are written:

(7)

using the two previous Eqs. 5 and 7, we obtain:

(8)

Eq. 8 represents a general mathematical formulation of the nD monogenic signal with the 
 components of the operator of the RT  according to the axes  respectively.

2.3. Case 2D monogenic signal
We use Eq. 8 to obtain a 2D monogenic signal with three components under the form (Sommer 

and Zang, 2007; Hidalgo-Gato and Barbosa, 2015; Li and Pilkington, 2016):

F2 (X) = f (X)ez + Rx  f (X)ex + Ry  f (X)ey (9)

where X = (x, y, z), (ex, ey, ez) are orthogonal bases, and (Rx, Ry) the two components of the RT (Fig. 
1), according to two horizontal directions (oex, oey) respectively. In this RT method, the RASA 
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and RLP are given via the following Eqs. 10 and 11, respectively (Felsberg and Sommer, 2001; 
Hidalgo-Gato and Barbosa, 2015):

RASA = R = �f 2 + (Rx  f )
2 + (Ry  f )

2 (10)

and

.                     (11)

Fig. 1 - Representation of the 2D monogenic signal with three components, the component f is the real signal, and the 
components Rx and Ry are the x and y components of the first-order RT of the real signal.

The ASA and the Tilt Angle (TA) of the potential field T are given via Eqs. 12 and 13 below, 
respectively (Roest et al., 1992; Miller and Singh, 1994; Keating and Pilkington, 2004):

(12)

and

(13)

where (∂T / ∂x, ∂T / ∂y, ∂T / ∂z) are first order derivatives of the potential field T in the x, y and z 
directions respectively.
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2.4. Euler deconvolution using RASA
In this study, the RASA = R can replace the potential field T. By applying the R to Euler’s 

homogeneity equation (Thompson, 1982; Reid et al., 1990; Cooper and Whitehead, 2016), we 
obtain:

(14)

where (∂R / ∂x, ∂R / ∂y, ∂R / ∂z) are first order derivatives R in the x, y, and z directions respectively. 
The principle of the ED is based on the resolution of the preceding Eq. 14, which contains four 
unknown factors (x0, y0, z0, and B). To solve a system of equations with four unknown factors, 
it will be necessary to have four points of measure. We consider a square window size w×w = n 
on the grids of the R gradients. This window gives a system of n linear equations. Solutions of 
the equation system in the sense of least squares are derived by resolving the inverse problem 
(Menke, 1989).

3. Monogenic signal using synthetic data

The RT method has been applied to a synthetic magnetic model composed of the vertical Dyke 
A and the dipping Dyke B, respectively (Fig. 2b). The vertical Dyke A is located at a position of 30 
km and a depth of 2.5 km and has a magnetic susceptibility of 0.010 SI units, and magnetisation 1 
A/m (Table 1). The second Dyke B has a depth of 5 km, the large depth extension to be regarded 
as infinite. The Dyke B is located at a position of 70 km (Fig. 2b); its magnetic susceptibility 
is 0.015 SI units, the magnetisation intensity 2 A/m and the dip is 60°E. The geomagnetic field 
has inclination of 30º and declination 10ºW. The Total Magnetic Intensity (TMI) anomaly is 
calculated on a regular grid with a spacing of 1 km (Fig. 2a). The TMI anomaly was corrupted 
with pseudorandom zero-mean Gaussian noise with a standard deviation of 4 nT (Fig. 2c).

The calculation was made on the magnetic response to the synthetic model (Figs. 2d and 
4a). By applying Eq. 11, the RLP values for the synthetic model are shown in Figs. 3d and 4d, 
respectively. In the ED method, the input synthetic magnetic data are derived from a dyke model. 
We are using SI = 1.25 and a moving window of 11×11 grid points for inversion (Barbosa et 
al., 1999; Beguiret et al., 2016; Harrouchi et al., 2016). The ED method has been applied to the 

Table 1 - Physical parameters of the synthetic model.

 Physical Parameters Dyke A Dyke B

 Depth 2.5 km 5.0 km

 Magnetic susceptibility 0.010 SI units 0.015 SI units

 Magnetization 1 A/m 2 A/m

 Total magnetic field 37,000 nT 37,000 nT

 Declination 10°W 10°W

 Inclination 30° 30°

 Dip 90° (vertical) 60°E
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Fig. 2 - a) TMI anomaly map for the synthetic model described in the text, the inducing field has an inclination of 30° 
and a declination of -10°; b) TMI from the AA’ profile marked in black solid line in Fig. 2a. The profile azimuth was 
west (left) to east (right). The data sampling interval was 1 km. The top of the vertical Dyke A is located at a depth of 
2.5 km and the top of the dipping Dyke B at a depth of 5 km; c) Gaussian noise with standard deviation of 4 nT; d) 
Gaussian noise with standard deviation of 4 nT contaminated TMI anomaly from data in Fig. 2a.

Fig. 3 - a) ASA of the data from Fig. 2d, obtained from Eq. 12; b) TA of the data from Fig. 2d, obtained from Eq. 13; c) 
RASA of the data from Fig. 2d, obtained from Eq. 10; d) RLP of the data from Fig. 2d, obtained from Eq. 11.
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RASA (Fig. 3c). We obtained the average depth of 2.53 km and 5.15 km for the Dyke A and B 
(Fig. 4e), respectively. We notice that the RT method is less sensitive to noise and gives a depth 
estimate close to the synthetic magnetic data (Figs. 3 and 4). Thus, we can apply this RT method 
to a real case of the study area.

4. Application to real data

The study area is located in southern Algeria (Fig. 5). It belongs to the Hoggar shield. It 
is represented by the paleoproterozoic basement corresponding to granulite facies (Caby, 
1996). The granulite facies include quartzites, magnetite quartzites, marbles, calc-silicate 
gneisses, metadolomites (Fig. 5a), graphitic metapelites, and other gneisses possibly derived 
from greywackes, and of clear igneous origin, such as syenitic gneisses (Caby, 2003). During 
the regional metamorphism the temperature reached 1000°C in the study area (Ouzegane and 
Boumaza, 1996).

Fig. 5b shows Reduced To the Pole (RTP) aeromagnetic data from the central In Ouzzal 
terrane and adjacent zone. The field inclination is 27° and the declination is 4.7°W. The data 
sampling interval was 46.2 m (Aeroservice Corporation, 1975; Harrouchi et al., 2016). The RTP 
aeromagnetic data were upward continued by 0.5 km to remove short wavelength noise. The 
comparison between the geological map (Fig. 5a) and the RTP anomaly map (Fig. 5b) of the 
study area showed a good correlation, indicating that the magnetic structures, generally, follow 
the direction of the geological structures.

Fig. 4 - a) Zero-mean, Gaussian noise with 4 nT standard deviation contaminated TMI anomaly from AA’ profile in Fig. 
2b; b) ASA of the data from Fig. 4a; c) RASA of the data from Fig. 4a; d) TA (black solid line) of the data from Fig. 
4c and the RLP (red solid line) of the data from Fig. 4c. We obtain the following results: RLP = 88° and RLP = 58° for 
vertical Dyke A and dipping Dyke B, respectively (Fig. 4d). The RLP is less sensitive to noise than the TA; e) depths 
obtained by the ED method (plotted in red), applied to the RASA from Fig. 4c, using N = 1.25 and a window size of 
11×11 grid points.
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5. Results and discussion

Fig. 6 represents the RT solution: the RASA (Fig. 6a) of the RTP aeromagnetic data from 
the study area (Fig. 5b), obtained from Eq. 10, the RLP of the same data, obtained from Eq. 11, 
respectively.

Fig. 5 - Location of the study area: a) geological map of the study area (after Caby, 1996): WOF (West Ouzzalian Fault), 
EOF (East Ouzzalian Fault), AF (Adrar Fault), 1 - granulitic unit, 2 - Paleozoic sediments, 3 - Cambrian molasse, 4 - 
Cambrian volcanics, 5 - Late Paleoproterozoic sediments and magmatics, 6 - granites intruding the IOGU (In Ouzzal 
Granulitic Unit), 7 - Panafrican metamorphics and granitoides, 8 - major shear zone; b) RTP aeromagnetic data from 
the study area. Location of aeromagnetic BB’ profile (white solid line) cutting the central In Ouzzal terrane and adjacent 
zone.

Fig. 6 - Solution from RT method of the study area; a) RASA of the data from Fig. 5b, obtained from Eq. 10; b) RLP of 
the data from Fig. 5b, obtained from Eq. 11.
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Fig. 7 shows the interpretation of the BB’ profile by three previous techniques (RASA, RLP, 
and ED), using the RT method (Table 2). The aeromagnetic data collected were subjected to 
mathematical processing (RTP, RASA and RLP) using the Oasis montaj software (Geosoft Inc., 
2007).

Comparison of the results obtained by the interpretation of the BB’ profile with the geological 
data of the study area (Fig. 5a) allows us to note the following: the WOF is below the Paleozoic 
cover and its depth and RLP are 0.8 km and -90° (vertical) respectively (Figs. 6b and 7c). At a 
distance of 30 km from the WOF (Fig. 7d), we find the EOF with a depth of about 5 km (Fig. 7d) 
and a RLP of -90° (vertical). At a distance of about 50 km further east of the EOF (Fig. 7d), we 
meet the Adrar Fault (AF) with a depth and a RLP of about 0.3 km and +90° (vertical), respectively 
(Table 2). The results of the interpretation of the fault systems (Fig. 7c) are summarised in Table 2.

Fig. 7 - a) RTP aeromagnetic data from BB’ profile, azimuth was west (left) to east; b) RASA from Fig. 7a is obtained 
from Eq. 10; c) RLP from Fig. 7b is obtained from Eq. 11; d) solutions from ED and from Fig. 7b, the SI N used is 
1.25, and the window size is 11 samples; Tas (Tassendjanet terrane), Ou (In Ouzzal terrane), Tir (Tirek terrane), It-Za 
(In Teideni terrane - Tin Zaoutene terrane), WOF (West Ouzzalian Fault) and EOF (East Ouzzalian Fault) red solid line, 
AF (Adrar Fault) green solid line and F1, F2, …, F9 (fault system) blue solid line.
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6. Conclusions

The application of the RT method to a synthetic magnetic model allowed us to note the 
following: 1) the advantage of this method is that it is less sensitive to noise; 2) it allows to obtain 
a better estimation of the geometric parameters (depth and dip). The application of the ED method 
using the RASA to the synthetic data example gave more valid results. By applying the RLP to the 
RTP aeromagnetic data from study area and adjacent zone of the In Ouzzal terrane, we obtained 
the WOF and the EOF dips, they are vertical. We confirmed that the RLP of the AF demonstrates 
the fault is vertical. The faults systems that are located inside of the central In Ouzzal terrane are 
inclined toward the west.
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Appendix: nD Riesz Transform in the space domain

The derivation functions  f (Xn+1)  
are equivalent to the concept of nD harmonic field related to 

the equation of Laplace Δp = 0; where p is scalar potential (Blakely, 1995). One can thus easily 
move to higher dimensions using Laplacian (n+1)D: 
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∇ f (Xn+1) = Δp (Xn+1) (A1)

where ∇, = (∂ / ∂x1, ∂ / ∂x2, ..., ∂ / ∂xn, ∂ / ∂xn+1) and Δ = ∇2. The generalisation of Cauchy-
Riemann’s conditions at (n+1)D via the two following Eqs.:

(A2)

(A3)

By applying the properties of the derivation of Fourier Transform to the Conditions of Riemann 
(Eq. A3), we obtain (Bracewell, 1965):

(A4)

where i2 = –1, Un = (u1, u2, ..., un) and Fn(Un, xn+1) = ∇P(Un, xn+1), we can, therefore, write: 

.                   (A5)

The solution of Eq. A5 is given by (Felsberg and Sommer, 2001):

P(Un, xn+1) = C(Un) exp (2π ||Un||xn+1) (A6)

where C(Un)  
is an independent function of xn+1 and ||Un|| = �u2

1 + u2
2 + ... + u2

n, we apply the 
conditions of Riemann (n+1)D to Eq. A6 we obtain:

(A7)

From Eq. A7, one can easily draw the value of Fk(Un, xn+1):

(A8)

If xn+1 → 0, we obtain the Eq. A8 by:

(A9)

where O(Un) = 1/C(Un). Eq. A9 represents the RT in the frequency domain. By applying the 
Fourier Transform to Eq. A9, we obtain a mathematical formulation of the nD RT in the space 
domain (Stein and Weiss, 1971).


