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ABSTRACT In this study, the inversion of seismic data has been used in integration with the seismic 
attributes in order to evaluate the reservoir porosity in the Ghar member of the Asmari 
Formation for an oil field located in SW Iran. Using the inversion method based on 
acoustic impedance modelling, the compressional wave velocity and density are 
extracted and, then, the linear and nonlinear conversion between the seismic attributes 
and the porosity log is used to obtain the optimum porosity volume for the region. 
In this study, we have used pre-stack seismic data to estimate reservoir porosity. The 
combination of selected seismic attributes along with the raw seismic data is used to 
estimate the porosity by the neural network method. In order to validate the utilised 
method, the cross-validation technique has been used to compare the accuracy of the 
calculated petrophysical parameters with the actual values. The correlation coefficient 
obtained for the estimated porosity is 81%. This value indicates that the training data 
were appropriate, optimally estimating the actual porosity using the selected attributes.
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1. Introduction

Hydrocarbon reservoirs are one of the most important energy resources for mankind today, 
therefore, using more efficient and less costly methods for developing hydrocarbon reservoirs 
is inevitable. In exploration and production activities, a quantitative description of reservoir 
properties, using all available petrophysical, seismic, and geological data, can play a significant 
role in the development of oil fields and enhanced recovery of the reservoir (Pendral, 2001; Çemen 
et al., 2014). In recent years, the use of seismic inversion to estimate reservoir properties has been 
a useful tool in the oil and gas industry (Alsos et al., 2018; Ghanbarnejad Moghanloo et al., 2018; 
Qiang et al., 2020). Seismic inversion is a method of extracting the subsurface properties using 
seismic data as input (Doyen, 1988; Russell and Hampson, 1991). The main purpose of seismic 
inversion is to convert seismic data into quantitative rock properties (White, 1991; Dolberg et al., 
2000). In the model-based inversion used in this study, by building an initial geological model and 
estimating the seismic wavelet, the acoustic impedance of the Earth layers is extracted from seismic 
data. Acoustic impedance data are used for quantitative characterisation of reservoir properties 
for reservoir modelling (Ling, 2003; Russell et al., 2003). Seismic attributes are extracted from 
seismic data in the time and frequency domains. Attributes derived from time variables include 
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structural information and domain-derived attributes include stratigraphic information. Frequency 
attributes contain information about reservoir properties (Li and Zhao, 2014). Seismic attributes 
are extracted from pre-stack and post-stack seismic data. Post-stack seismic attributes can be 
extracted on a time slice or between two horizons (Brown, 2001). Compared to seismic amplitudes, 
the results of inversion have higher resolution and convey more accurate interpretations (Pendrel, 
2006; Li and Zhao, 2014). Post-stack inversion is the process of calculating the final impedance 
model of the subsurface using post-stack seismic data which, in turn, determines the geology of 
the subsurface (Hampson-Russell, 2007; Xinyang et al., 2015). The purpose of this research is to 
determine the reservoir characteristics using seismic data inversion methods and the integration 
of seismic attributes in one of the carbonate reservoir oil fields located SW of Iran.

2. Geological setting

The Zagros-Persian Gulf region is part of the giant sedimentary basin of Iran, Saudi Arabia, 
and Iraq, which is the world’s largest oil-bearing sedimentary basin (Ghazban, 2007). The Ghar 
Formation can be correlated with the older (Oligocene) Ahwaz sandstone Member of the Asmari 
Formation in the SW of Iran (James and Wynd, 1965; Powers et al., 1966). In this study, the 
Asmari Formation and the Ahwaz sandstone Section (Ghar Formation) were studied in a field 
located NW of the Persian Gulf, 100 km SW of the Kharg Island (Ghazban, 2007). In the study 
area, the Asmari Formation is divided into two upper and lower reservoir layers and the Ghar 
Formation is located in the middle. In this oilfield, the Upper Asmari Formation lithology consists 
of anhydrite, dolomite, calcite, and illite. The Ghar Formation mostly consists of sandstone 
and smaller quantities of dolomite, calcite, and illite. The Lower Asmari Formation includes 
carbonate lithology and small amount of illite and calcite (Aghanabati, 2004; Ghazban, 2007).

3. Method

The data required in this study include three-dimensional seismic data, petrophysical logs as 
well as geological data from the region. To do this research, the Hampson-Russell (2007) software 
was used to perform the seismic inversion, and the extraction of seismic attributes was performed 
using the commercial Petrel software. Fig. 1 shows the workflow performed in this study.

In this study, we used the pre-stack time-migrated seismic data with a sampling rate of 4 
ms in the SEGY format and employed related well logs from the oil field. The first step in pre-
stack inversion is to load seismic data, well logs, headers, check shots on well logs, as well as 
the interpreted seismic horizons. Determining the top and base reservoir reflectors is also an 
important geological application for matching seismic and well information. Fig. 2 shows the 
pre-stack seismic data loaded with interpreted horizons in this interval.

Well logs have been loaded into the software. The logs from the A-10 well include gamma 
ray, sonic wave velocities, and density. In addition to the above logs, shear wave velocity is also 
recorded for well A-17 (Fig. 3).

The model-based inversion method requires that a seismic wavelet has to be introduced to 
calculate a synthetic seismic trace. A synthetic seismic trace will be calculated based on the 
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Reservoir characterisation

Import Seismic data, well logs and drilling core data

Drilling core data

Estimation of porosity value

Determine of porosity value with seismic inversion

Integrate pre stack seismic 
inversion and seismic attribute

Well logs Pre stack Seismic data

Fig. 1 - Workflow applied in this study.

Fig. 2 - Seismic data and interpreted horizons of the investigated field.

convolution between initial estimated acoustic impedance and the introduced wavelet. The 
acoustic impedance is, then, corrected and adjusted using check shot. In this approach, after 
estimating the series of reflection coefficients from the sonic log recorded at well site, different 
seismic wavelets are extracted (Yi et al., 2013; Rahimi and Riah, 2020). In the spectral division 
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Fig. 3 - Logs recorded at the well A-17.

method, seismic mapping in the frequency domain is the product of the Fourier transform of the 
reflection coefficient series and the Fourier transform of the wavelet. As the Fourier transform of 
seismic mapping at the well is divided by the Fourier transform of the reflection coefficients of 
the well logs, the constructor wavelet is obtained. At places where the reflection coefficients are 
equal to zero, the Fourier transform is the series of zero reflection coefficients and, hence, there is 
the problem of dividing by zero. The wavelets are extracted using three seismic angle gather data 
ranging from 0° to 10° as the near offset, 11° to 20° as the middle offset, and 21° to 29° as the far 
offset (Fig. 4). The wavelets are 140 ms long and the phase of all three wavelets is equal to zero 
degrees. As shown in Fig. 4, the seismic data has a wide frequency spectrum, which improves the 
quality of the results.

Fig. 4 - Simultaneous representation of three angle-dependent wavelets extracted statistically.
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Fig. 5 - The cross-section of the P-wave acoustic impedance resulting from pre-stack elastic seismic inversion.

Fig. 6 - The cross-section of the S-wave acoustic impedance resulting from pre-stack elastic seismic inversion.

After the inversion, the sections of compressional acoustic impedance, shear impedance, and 
the density are obtained. Figs. 5 and 6 show a cross-section of the volume obtained from acoustic 
impedance. As it can be seen in Fig. 5, the amount of acoustic impedance in the interval of 
interest (reservoir interval) is reduced towards the top and the base layers which indicates the high 
porosity of the reservoir layer.

In Fig. 7 we also see that the density cross-section in the reservoir interval is slightly lower 
than the top and base layers.

3.1. Probabilistic neural network (PNN)
The Probabilistic Neural Network (PNN) is an intelligence neural network, which is frequently 

used in classification and pattern recognition problems. The estimation of petrophysical property 
model from well log data is mainly performed via empirical, statistical, and intelligent systems 
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Fig. 7 - Density cross-section resulting from pre-stack elastic seismic inversion.

methods. The empirical technique is based on core measurements to develop mathematical models. 
PNN is an alternative type of neural network using a mathematical interpolation (Specht, 1990; 
Masters, 1995). PNN assumes that each new log output can be written as a linear combination of 
log values in the training data. PNN can be written using equations:

{A11, A21, A31, L1}
{A12, A22, A32, L2}
{A13, A23, A33, L3} (1)
     …
{A1n, A2n, A3n, Ln}

where n is training data, and there are three attributes to be used. Li is the target log that will be 
predicted. PNN assumes that each value of the output log can be written as a linear combination of 
the input log values. The new data sample with corresponding attribute values can be written as:

x = {A1j, A2j, A3j … Anj} (2)

Then, the new log quantity will be calculated using the following equation:

(3)

where

.                        (4)
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The quantity D(x, xi) is the ‘distance’ between the input point and each of the training points 
xi. This D is measured in the multi-dimensional space spanned by the attributes, and it is scaled 
by the quantity jσ, which may be different for each of the attributes:

.                     (5)

Note that the prediction error depends on the choice of the parameters, σj. This quantity is 
minimised using a nonlinear conjugate gradient algorithm described in Masters (1995). The 
results obtained by PNN analysis will form a nonlinear transformation between the target log and 
the seismic attributes in the cross-plot diagram. The results of non-linear transformations expect a 
better correlation value between the actual log and the log model compared to the results of linear 
transformations generated through a decrease in multi-attributes.

4. Porosity estimation using seismic attributes

Since seismic inversion is one of the tools for extracting useful information from seismic 
data, innovating new techniques in this area have been steadily increasing in recent years. As 
the next step to our workflow, the neural network capabilities of the Emerge module in the 
Hampson-Russell (2007) software are used for porosity estimation. This module utilises a variety 
of PNN such as statistical neural networks, normal discriminant analysis (NDA), neural networks 
with radial basis functions, and leading neural networks for such purpose. PNNs are useful in 
quantifying reservoir properties due to their ability to solve complex and functional equations 
efficiently finding reservoir properties (Specht, 1990; Masters, 1995). This network is a variety 
of radial networks and their performance is similar to that of radial networks. The PNN consists 
of two layers similar to other neural networks. The second layer in this network, unlike other 
neural networks, is competitive and target outputs must be entered in the form of index vectors 
with values of 0 and 1. Similarly for other inputs, this operation is repeated. Finally, the sum of 
the computed intervals in the form of a probabilistic vector is passed to the output layer and the 
values are obtained through functions related to the network output values.

In order to estimate the porosity using seismic attributes, 28 different attributes were 
investigated. The correlation coefficient of all these 28 attributes with porosity was calculated. 
The attributes that had the highest correlation coefficient with porosity were selected. Then, to 
increase the accuracy of the estimation, attribute group information was used to estimate the 
porosity (Table 1).

In other words, several attributes were used simultaneously to increase the accuracy of porosity 
estimation at the well site (Fig. 8).

An important point is to determine the proper number of attributes. The black curve in Fig. 8 
shows the training error, the vertical axis the mean error, and the horizontal axis the number of 
attributes. Mathematically, the training-error curve should always be descending. There is always the 
principle that increasing the attributes will better predict the target parameter. However, this does not 
mean that the added attributes predict the correct signal of the target parameter, but it may predict the 
noise in the target parameter as well. Increasing attributes are like fitting higher-order polynomials to 
a set of points. We need a benchmark to figure out where to stop adding new attributes.
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Table 1 - Training error and final attribute validation error.

 Parameter Seismic attribute Training error Validation error

 porosity Zp
2 0.053 0.084

 porosity Zs
2 0.050 0.082

 porosity Instantaneous frequency 0.047 0.079

 porosity Instantaneous amplitude 0.045 0.076

 porosity Instantaneous cosine phase 0.043 0.072

 porosity Instantaneous phase 0.042 0.070

 porosity Apparent polarization 0.041 0.092

Fig. 8 - Five attributes used in the training phase at Well 17 in the Ghar member reservoir interval down to the Asmari 
Formation.

Each point in the validation error is estimated using the technique of disregarding one well and 
predicting its values using the operator calculated with the other wells. For example, the last red 
dot corresponding to the seven attributes is calculated as follows: the seven attributes listed are 
sorted in Table 1. First, Well 1 is excluded from the calculation. The weight of seven attributes 
is calculated for the rest of the wells. The obtained operator is, then, used to predict the values in 
Well 1. Since we already know the exact values, the RMS error is stored for Well 1. Then, Well 
2 is ignored and the whole process is repeated. The last point in the validation curve is the mean 
error, which is calculated for all wells. This indicates an error that can be expected if a new well 
is added. For this reason, the validation curve is a good measure of the validation of the analysis.

As it is clear from the validation error, using the first six attributes, the validation error is 
reduced. But with the addition of the seventh attribute, the validation error increases. From this 
curve, it can be seen that no more than the first six properties are used to calculate porosity, since 
for the seventh attribute no reduction in validation error takes place. In fact, adding the seventh 
attribute will cause more error and reduces the prediction accuracy. Therefore, the six primary 
attributes are selected to estimate the porosity parameter. Each point in the validation error is 
estimated using the technique of excluding one well and predicting its values using the operator 
calculated by including other wells. For example, the last red dot corresponding to the seven 
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attributes is calculated as follows: the seven attributes listed are sorted in the Table 1. To perform 
this step, Well 1 is excluded from the calculation process.

The red curve in Fig. 9 illustrates the validation error, and this curve can guide us in deciding 
how many attributes to use.

Fig. 10 shows the predicted porosity using data training against actual porosity at the well 
locations. The correlation coefficient was 81% indicating that the training data were appropriate 
and this method was able to estimate the actual porosity using the listed attributes (Table 1).

Fig. 9 - Validation error and prediction error in all wells in the reservoir interval. The first six attributes demonstrate 
least prediction error.

Fig. 10 - Predicted porosity using data training versus actual porosity in wells. The correlation coefficient was 81% and 
error was 3.6%.
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Now, we have obtained a relation between porosity and a set of seismic attributes. The obtained 
relationship is now applied to the whole seismic data volumes. Fig. 11 is a section of the porosity 
parameter in the reservoir interval. As it is shown, the porosity at the top the reservoir is lower 
(about 23%); within the Ghar member, porosity increases (about 28%). Overall, it can be said that 
the porosity of the Ghar member is considerable, due to its sandy composition (Aghanabati, 2004; 
Alizadeh et al., 2008).

Fig. 11 - Porosity section calculated at the reservoir interval. The upper layer of the Ghar member has less porosity and 
it increases in porosity within the Ghar member.

Fig. 12 shows a time slice at 730 ms of porosity distribution in the reservoir interval (a time 
window of 20 ms above and below the Ghar member’s horizon). As it can be seen in the figure, 
the high porosity segments are well separated from the low porosity segments. These ranges can 
be considered for infill drilling.

5. Verification

In this study, in order to validate the utilised methodology, a well was excluded from the relevant 
calculations to compare the accuracy of the calculated petrophysical parameters with the actual 
values. Table 2 shows the comparison between estimated parameters with actual petrophysical 
values at the well location. The results show that the proposed methodology provides a good 
estimation of the desired parameters with reasonable accuracy.
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6. Conclusions

In this study, compressional acoustic impedance, shear impedance, and density were obtained 
using pre-stack elastic seismic inversion of the seismic data. These parameters in the reservoir 
interval showed significant reduction. The use of elastic inversion in this study enabled the 
estimation of shear wave in addition to compressional wave velocity in the seismic data. In 
addition, the ratio of the compressional wave to the shear wave was calculated. All of these 
attributes were used in the data training phase. Therefore, the presence of shear wave information 
and shear wave impedance as independent external attributes helped to increase the accuracy of 
petrophysical parameter estimation. The time slice of the porosity distribution corresponding to 
the Ghar member revealed a hydrocarbon zone east of the oil field and two oil-bearing channels 
located SW of the field. These areas can be designated as proposed drilling locations for field 
development. The correlation coefficient obtained for porosity estimation is 81%. This value 
indicates that the training data is appropriate, and can estimate the actual porosity to the desired 
extent using the proper attributes.

Fig. 12 - Time slice at 730 ms of porosity distribution in the reservoir interval. Areas with high porosity (purple colour) 
are well separated from other areas.

Table 2 - Comparison between the porosity calculated using the well log of a test well with the estimated porosity.

 Time (MS) Estimated porosity (%) Porosity value of well test (%)

 718 20.12 19.98

 724 43.35 40.31

 750 32.12 32.78

 772 30.95 31.90

 790 29.41 30.83
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