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ABSTRACT	 Seismic inversion aims to infer subsurface properties from processed seismic data; since 
these are often ill-conditioned procedures, numerous strategies can be investigated. To 
date, currently adopted procedures assume an a priori structural knowledge of the 
investigated area and impose such constraints on the recovered solution. To overcome 
this shortcoming, we apply a transdimensional reversible jump-Markov chain Monte 
Carlo (Rj-McMC) algorithm to solve the interval-oriented amplitude versus angle 
(AVA) inversion on 2D synthetic seismic data. This approach considers the model 
parameterisation as an unknown, together with the elastic properties of the investigated 
area. The algorithm samples models discretised in Voronoi cells characterised by 
similar AVA responses. The elastic values associated with each Voronoi cell are 
obtained taking the average of the elastic properties of the Common Dip Points (CDPs) 
falling within it. This data-driven approach, therefore, needs no external assumption 
over the investigated area and ensures an automatically inferred strategy to include 
lateral variability of data inside the inversion kernel. We compare results obtained 
with a standard Bayesian approach for different signal-to-noise ratios (SNR), showing 
how the increase of random noise contaminating the data strongly affects the linear 
approach, while the Rj-McMC generates model predictions in accordance with the true 
model, producing more reliable results.
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1. Introduction

The inclusion of lateral constraints in the inversion framework is the most popular strategy 
devoted to attenuating the ill-conditioning of the seismic inversion. Several advanced regularisation 
strategies exist, such as the inclusion of geostatistical constraints in the form of isotropic model 
correlation functions (Buland and Omre, 2003), multipoint statistics (Cordua et al., 2012; Hansen 
et al., 2012), stratigraphic constraints (Tetyukhina, 2011), or constraints derived by the seismic 
bandwidth (Haas and Dubrule, 1994). The main limitation of all these approaches is that they rely 
on an a priori structural knowledge of the investigated area and force the recovered model to obey 
such a priori constraints. These are essentially model-driven regularisation strategies that could 
provide biased model parameter estimations in case of erroneous a priori assumptions. More 
advanced approaches train sparse dictionary learning algorithms to impose sparse representations 
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of subsurface model parameters (She et al., 2018) or make use of anisotropic Markov random 
fields (Aleardi et al., 2018; Guo et al., 2018). The goal of these approaches is to locally adapt 
the structural constraint to the local structural characteristics of the subsurface model that can be 
iteratively inferred from the local characteristics (i.e. variability) of the observed data.

In line with these data-driven approaches, we present a numerical transdimensional reversible 
jump-Markov chain Monte Carlo (Rj-McMC) algorithm for target-oriented amplitude versus angle 
(AVA) inversion. Numerical reservoir models play a key role in the exploration industry since 
they describe the spatial variability of reservoir elastic properties. To this end, interesting works 
have focused on establishing inversion procedures for complex-media reservoir characterisation 
that reliably estimate rock properties from seismic data (Ba et al., 2017; Chen and Zhang, 2017).

In our case target-oriented means that only the AVA responses of the target layer are inverted 
and these AVA responses are extracted for each considered  Common Dip Points (CDP) position. 
The results are 2D maps representing the lateral variability of the elastic contrasts along the 
considered reflecting interface. The AVA inversion is a severely ill-conditioned problem, highly 
affected by noise contamination, in which it is crucial to adopt a reliable regularisation strategy 
to retrieve reliable and stable results. Furthermore, the extraction of reflection coefficients from 
seismic data is an extremely delicate process that needs a robust procedure (Grion et al., 2002). In 
a transdimensional inversion, the number of model parameters (that codes the optimal subsurface 
model parameterisation) is considered unknown and is estimated using a probabilistic sampling. 
In our case, the inverted 2D horizon is divided into Voronoi cells, whose number and shape are 
automatically determined by the Rj-McMC sampling. The algorithm autonomously partitions 
the considered 2D horizon on the basis of the spatial variability of data, producing subsurface 
2D models discretised in Voronoi polygons, each one enclosing CDP positions with similar AVA 
responses. This also means that the CDPs falling within the same cell also share similar elastic 
properties and for this reason the same elastic property values are assigned to these CDPs. These 
values are computed by averaging the model properties pertaining to the CDPs falling within each 
cell. Similarly, the observed data for each polygon is computed by averaging the AVA responses 
of the CDPs falling within each Voronoi cell. On one hand, this strategy constitutes a data-driven 
approach to include lateral constraints into the AVA inversion because these constraints are 
automatically inferred from the lateral variability of the data and not arbitrarily infused into the 
inversion framework. On the other hand, the averaging of the AVA responses pertaining to CDPs 
falling within the same cell inherently increases the signal to noise ratio (SNR) of the observed 
data. These two aspects proved of crucial importance for stabilising the inversion, even in the case 
of severely noise-contaminated data.

For the lack of field data, we test the implemented Rj-McMC algorithm by performing 
synthetic inversions with different SNR. The proposed method is benchmarked against a more 
standard Bayesian AVA inversion without lateral constraints.

2. Bayesian formulation

The Bayesian approach originates from the probability theory of the English mathematician 
Thomas Bayes (1702-1761). There are two main differences between the classical deterministic 
and Bayesian approach: the solution, which is described by a probability distribution, and the 
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inclusion of a priori information inside the inversion kernel. This a priori information is derived 
from seismic independent data (as well as log information, geological information, and so on) and 
is always expressed by a probability distribution, which respects the model parameters.

Seismic data are, thus, combined with a priori information through Bayes’ theorem, to obtain 
the posterior distribution for model parameters. The theorem can be formulated as:

(1)

where p(m) denotes the a priori probability: the probability density function (PDF) over m. The  
p(d | m) is the likelihood function and expresses a conditional probability and quantifies the fit 
among observed and predicted data from model m. The denominator of Eq. 1 is considered a 
constant scale factor, that normalises the conditional distribution p(m | d) (Aster et al., 2005) and 
that can be ignored when only the shape of the posterior PDF is of interest. The p(m | d) represents 
the a posteriori PDF describing the PDF of m once the observations d are obtained.

3. Rj-McMC algorithm

Among the numerical approaches for non-linear inverse problems, Markov chains Monte 
Carlo (McMC) methods are the most commonly used, gaining growing attention over the last 
decades. Their genesis dates back to the mid-1940s when the method was formalised by Nicholas 
Constantine Metropolis and Stanislaw Marcin Ulan (Metropolis and Ulan, 1949); nonetheless, 
the use of random numbers to solve problems of probabilistic nature is quoted in a paper by Lord 
Kelvin back in 1901. Actually, the development of McMC techniques and the statistical theory at 
its base constitute a large and active research field (Flournoy and Tsutakawa, 1991) and in recent 
years the different typologies of problems where it has been applied have grown exponentially 
(Moosegard and Tarantola, 1995; Sambridge and Moosegard, 2002).

McMC algorithms are iterative procedures where a model is generated through a random walk 
on the model space. This random path satisfies the Markov property of “absence of memory”: 
each generated model depends only on the previous model in the chain. The new model is, then, 
accepted or rejected based on some acceptance rules. Iteration by iteration the chain collects 
models spread all over the model space and reaches the stationary regime. The ensemble of all 
collected models during the random walk defines the posterior PDF. These methods, therefore, 
convert the inverse problem into a sampling problem in which the sampling density is proportional 
to the posterior, so that the sampled models can be used to approximate the statistical properties 
of the posterior PDF.

McMC algorithms require considerable computational effort with respect to analytical inversion 
approaches and for this reason, a specific McMC recipe, tailored to the problem in hand, is usually 
needed to efficiently sample the PDF. Like all the global optimisation methods, the choice of the 
starting model is not important, since we consider a user-defined number of iterations, called 
burn-in, to let the algorithm move toward the stationary regime; models collected before burn-in 
will be discarded from the computing of the posterior PDFs as they are not representative of the 
true posterior distribution. An accurate choice for the burn-in period is, therefore, essential to 
prevent biased PDF.
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Another very important issue related to all McMC methods is their inability to sample multi-
modal complex distributions. In a Monte Carlo sampling, the algorithm typically moves towards 
regions of high probability and, once reached, it will likely exploit it, at the expense of a strongly 
decreased model space exploration. Several methods have been deployed and applied to overcome 
this problem: Sen and Biswas (2017) hybridised the Rj-McMC with a faster Hamiltonian Monte 
Carlo algorithm, Lan proposed modifying the Riemannian geometric properties of the target 
distribution to create wormholes connecting high probability density regions (Lan et al., 2014). 
For this work, a parallel tempering approach has been adopted: several multiple chains are run at 
different temperatures to speed up the search on parameter space. This method has been widely used 
in computational statistics (Geyer, 1991). In exploration geophysics, it has been gaining attention 
(Dosso et al., 2012; Sambridge, 2013), since the results have demonstrated that the improved 
parallel-tempered McMC methods effectively accelerate the algorithm convergence speed.

4. Method

4.1. Forward model
Zoeppritz equations describe the partitioning of wave seismic energy at an interface in terms 

of P-wave velocity, S-wave velocity, and density of the upper and lower layers. In order to reduce 
the ambiguity within the AVA method (Drufuca and Mazzotti, 1995) and further constrain the 
inversion, the number of unknowns can be reduced. In this work, we have adopted the Ursenbach 
and Stewart (2008) equations as the forward model to describe the system in terms of relative 
contrasts in P-impedance and S-impedance (RI and RJ):

(2)

where Rpp is the P-wave reflectivity, Θ is the angle of incidence across the interface, 
 
with the subscripts 1 and 2, respectively, referring to the upper and lower layer,

(3)

where Ip and Is are respectively the P-wave and S-wave impedance; the operator Δ indicates the 
contrast and the symbol ˜ indicates the mean across the interface.

4.2. Space discretisation
In this work, the model space is discretised using the Voronoi polygons over equally spaced 

grid points representing the CDP positions. A number of discrete set of points, the centre of 
Voronoi cells, partitions the plane and the cells are composed by those points whose distance from 
the centre is smaller. By doing so polygons do not overlap each other (all points of the grid fall 
in just one polygon) and the parameterisation is totally defined by the position of the nuclei. Our 
models are, therefore, represented by all the CDPs over the grid, to each of which we associate 
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a P-impedance and S-impedance value. Fig. 1 shows an example of the Voronoi diagram, which 
forms an irregular set of cells that partitions the plane.

Fig. 1 - Example of model space partition in 3, 15 and 22 randomly distributed polygons; black dots indicate the nuclei 
centres.

4.3. Metropolis-Hastings
The Metropolis-Hastings rule (Metropolis et al., 1953; Hastings, 1970) determines the 

probability to accept or reject a new model mʹ from previous model m. For a given model space 
parametrisation with different number of unknowns γ, the probability can be expressed as: 

(4)

where J represents the Jacobian matrix of the model transformation, here needed to take into 
account the possible dimensional scale change from m to mʹ. It can be shown that for the present 
formulation the determinant of the Jacobian matrix is equal to 1 and can, therefore, be safely 
ignored (Bodin and Sambridge, 2009). The p(d | mʹ,γʹ) term describes the likelihood function,  
p(mʹ | γʹ) represents the a priori distribution and p(m,γ | mʹ,γʹ) is the proposal distribution that 
defines the probability of generating a new model as a random perturbation of the previous model.

4.3.1. Likelihood function
The likelihood describes how well a given model m reproduces the observed data. In this 

work, the likelihood function is quantified by a least squares misfit function:

 (5)

where G(m) is the forward modelling operator (Eq. 2), dobs represents the observed AVA and Cd  
is the covariance matrix of data noise. Since seismic data are usually pre-processed with several 
correction methods to remove coherent noise, we can assume that noise left inside seismic data is 
white: Gaussian distributed and uncorrelated along the incidence angles. As known, minimising 
the least squares misfit function is equivalent to maximising the probability for a Gaussian-shaped 
likelihood function:

J
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(6)

with L given by the product of incidence angles with the number of CDPs inside each cell.

4.3.2. The prior
Every information that can be expressed as a probability distribution can be used as prior 

knowledge on the model (Gouveia and Scales, 1998). Here, we have used bounded and independent 
uniform distributions between fixed ranges. Following Bodin and Sambridge (2009), the prior 
distribution is therefore expressed as:

(7)

where p(e | γ) represents the prior on the elastic properties,  p(z | γ) is the prior on the layer position 
and p(γ) refers to the number of layers:

(8)

(9)

(10)

where γmin and γmax are the minimum and maximum number of nuclei that the algorithm is allowed 
to generate, N are all the possible locations of the nucleus centres, emin and emax define the range of 
elastic values the algorithm associates to each Voronoi nucleus.

For a rigorous mathematical derivation of the a priori, likelihood and proposal formulation 
used in this work, the reader may refer to Bodin and Sambridge (2009).

5. Proposed inversion procedure

For each chain the inversion starts from a single Voronoi cell representing a laterally 
invariant RI and RJ value drawn from the prior distribution. The values of γmin and γmax defining 
the a priori range of the Voronoi cells number are, respectively, equal to 1 and three-quarters 
of maximum number of CDPs within the inverted area (chosen for computational reason). The 
model parameters include the number of Voronoi cells, the position of their nuclei, and the elastic 
properties associated with each polygon. To all the N CDPs positions falling within the same cell 
are assigned the same elastic property values that are computed as the average of their RI and RJ 
values. Similarly, the average AVA response of the N CDPs constitutes the observed data for the 

otherwise
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d   m

m

min



Transdimensional 2D AVA inversion with data-driven lateral constraints	 Boll. Geof. Teor. Appl., 62, 73-88

79

considered cell. Then, the algorithm evolves by sampling the model space that is by sampling the 
RI and RJ values, the number of cells, and the positions of their nuclei. The sampling is driven by 
the acceptance probability given in Eq. 4, in which models with better fit with the observed data 
and with a parsimonious parameterisation (lower number of cells) are more likely to be accepted. 
During the iterations the algorithm tends to gather within the same Voronoi cell adjacent CDPs 
with similar AVA responses to which are assigned the elastic properties that produce a good fit 
with the observed data. On each iteration, the algorithm applies a perturbation to the current 
model chosen with equal probability from the following list:

1 -	 death move: delete one polygon from the Voronoi tessellation and rearrange the shape of 
the remaining polygons based on the positions of their nuclei (Fig. 2b);

2 -	 cell move: randomly choose one Voronoi cell and change the position of the corresponding 
centre without modifying the associated RI and RJ values. This perturbation will produce a 
slight rearrangement of the Voronoi tessellation over the considered 2D horizon (Fig. 2c);

3 -	 elastic move: randomly choose one Voronoi cell and perturb the RI and RJ values for all the 
CDP positions enclosed in the selected cell. This perturbation follows a Gaussian proposal 
centred on the current RI and RJ values (Fig. 2d);

4 -	 birth move: create a new polygon within the Voronoi tessellation and assign the elastic 
properties to the newly created polygon by drawing a random realisation from the prior RI 
and RJ distributions. Note that only the neighbouring cells of the new-born cell have their 
geometry changed during this step (Fig. 2e).

Fig. 2 - Proposed perturbation 
strategies adopted: a) starting 
model with 5 nuclei, b) perturbed 
model after death step, c) 
perturbed model after cell move, 
d) perturbed model after elastic 
property change, e) perturbed 
model after birth step.
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Fig. 3 illustrates an example of the evolution of the RI models sampled by the algorithm. 
These models represent the RI values estimated over the 2D stratigraphic horizon. We note that 
the algorithm starts from very different RI values from the reference model and from a Voronoi 
tessellation with a number of cells, which are not enough to successfully predict the observed 
data. As the iterations proceed, the sampled RI values get closer to the reference model, whereas 
the Voronoi tessellation successfully partitions the considered 2D horizon by gathering within 
the same polygon CDPs with similar AVA response. In other words, the algorithm successfully 
recognizes adjacent CDP positions with similar AVA responses and similar relative contrasts in 
the P- and S-impedance values.

Fig. 3 - Example of evolution of the sampled RI models from iteration 5 (top left) to iteration 2600 (bottom centre) over 
a regular spaced grid of 100×100 CDPs. The reference model is shown in the bottom right corner.

Defining a reliable method to assess the convergence of a transdimensional McMC inversion 
is still a matter of debate (Brooks et al., 2003). Indeed, in transdimensional optimisations the 
standard measures of convergence such as the potential scale reduction factor (Gelman et al., 
2013) cannot be applied. In this work, the convergence of the algorithm has been addressed by 
comparing the PDFs estimated by each chain in the first and second halves of the sampled models 
after the burn-in. If these PDFs are in good agreement no further sampling is needed.
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6. Parallel tempering

In order to increase the model space exploration and to ensure good properties mixing between 
the chains, we applied a parallel tempering simulation method. Each chain is initialised with a 
temperature and, after a fixed number of iterations we let the temperature swap between 2 chains, 
chosen with equal probability among all running chains. The likelihood for a given chain is:

(11)

according to Sambridge (2013), the probability p to swap two running chains temperatures, 
respectively identified with models m1 and m2 and temperatures T1 and T2, is equal to:

(12)

the temperature acts as a normalising factor, modifying the shape of the likelihood function (Fig. 
4). Higher temperatures will produce a flatter shape, enabling the chain to freely explore the 
model space; lower temperatures will force the chains to exploit their current model regions. 
We proceed with collecting models from chains at temperature = 1, since all other models are 
representative of biased posterior PDFs (Dosso et al., 2014).

Fig. 4 - Effect of temperature values on the 
L2 norm error between true and observed 
data.

Note that too high temperatures will make the likelihood a non-informative parameter (i.e. at T 
= ∞, the likelihood will tend to 0), doing so the inversion will just follow the a priori information 
(Eq. 1). The temperature limits are set in order to ensure an acceptance ratio around 0.2-0.4, 
which, according to Sambridge and Moseggard (2002), is the optimal rate for McMC methods.

d   m
m
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The entire process described above is summarised with a workflow reported in Fig. 5.

Fig. 5 - Flowchart of the implemented Rj-McMC inversion.
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7. Synthetic inversion tests and results

The previously described reversible jump McMC is compared with a classical Bayesian linear 
approach. This is a standard, fast marching method with good reliability where the model m is 
obtained as: 

(13)

with Cd covariance matrix of data noise, Cm model covariance matrix, G  represents the forward 
model operator (Eq. 2), dobs is the observed seismic AVA and mprior indicates the a priori model.

The synthetic observed AVA data are computed from a reference elastic model constituted by 
a regularly spaced grid of 320 by 480 CDPs (leftmost part of Figs. 7, 8, and 9). This reference 
model represents a stratigraphic section of a deltaic depositional area characterised by twisted 
river channel systems where yellow regions are representative of predominantly sandy channels, 
nested in blue-coloured background shale portions with significant lateral contrasts in the RI and 
RJ values.

The Ursenbach and Stewart (2008) equation is applied to the reference model to compute the 
AVA response for each CDP gather position within an angle range between 0 and 45 degrees and 
a 40-Hz Ricker source wavelet with a sampling interval of 0.002 s. We considered three scenarios 
with different SNR and with Gaussian-distributed noise affecting the data: in the first, second, and 
last case the noise standard deviation is respectively equal to 0.001, 0.050, and 0.070. The SNR 
is defined as the difference between the power in decibels of a signal and the power in decibels of 
the background noise:

(14)

In each scenario we used 20 chains, each one running for 105 iterations. Fig. 6 indicates that 
after the first 3000 iterations, approximately, the McMC algorithm reaches a stationary regime 
after which the algorithm begins to sample the posterior distribution. The VP/VS ratio oscillates 
from 1.9 to 2.2.

Fig. 6 - Example of evolution of the L2 norm misfit for 5 chains out of 20.
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In order to significantly reduce the computational cost of the inversion procedure on the 
simulated 2D model for the Rj-McMC, we split the inversion area in smaller areas of 40×40 
CDPs. The standard Bayesian has instead been applied separately on each CDP. 

Fig. 7 shows that for a SNR of 70 dB both approaches used provide final map solutions in 
good agreement with the reference model and where the formation boundaries can be mapped 
with high accuracy. Differently, as the noise increases, (Figs. 8 and 9) the standard Bayesian 
algorithm without lateral constraints provides an estimated model characterised by significant 
scattering that is produced by the noise propagation from the data to the model space. On the 
contrary, the implemented Rj-McMC algorithm efficiently attenuates the ill-conditioning of the 
inversion procedure. On one hand, the averaging of the AVA response within the same Voronoi 
cell significantly increases the SNR of the observed data. On the other, the averaging of the elastic 
properties estimated for the CDPs position falling within the same cell, inherently introduces 
lateral constraints into the inversion framework, which can particularly be highlighted where the 
lateral contrasts are stronger (as in xline 150-250, inline 150-300 or xline 50-150, inline 350-450 
of Figs. 7, 8, and 9). Both these characteristics of the Rj-McMC algorithm ensure a more stable 
inversion procedure and more reliable results.

Fig. 7 - Comparison between the reference model (A and D), the solution provided by the Rj-McMC (B and E) and by 
the standard Bayesian approach (C and F) for noise standard deviation is equal to 0.001. RI and RJ represent the relative 
contrasts in the Ip and Is values at the reflecting interface, respectively.

In order to give a quantitative indicator to compare the results obtained, we calculated the 
correlation coefficient (RR) between the synthetic data and the Rj-McMC and the standard 
Bayesian approach, as reported in Table 1. 
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Fig. 8 - Comparison between the reference model (A and D), the solution provided by the Rj-McMC (B and E) and by 
the standard Bayesian approach (C and F) for noise standard deviation is equal to 0.050. RI and RJ represent the relative 
contrasts in the Ip and Is values at the reflecting interface, respectively.

Fig. 9 - Comparison between the reference model (A and D), the solution provided by the Rj-McMC (B and E) and by 
the standard Bayesian approach (C and F) for noise standard deviation is equal to 0.070. RI and RJ represent the relative 
contrasts in the Ip and Is values at the reflecting interface, respectively.
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Obtained results confirm what was previously qualitatively highlighted, namely that for high 
SNR both approaches show a very good match with the synthetic data. The slightly lower match 
observed with the Rj-McMC for both the RI and RJ parameters can be explained considering that 
in these synthetic cases, the γmax value has been fixed to three-quarters of the maximum number of 
CDPs within the inverted area. By doing so, the algorithm generated models where naturally one 
or more CDPs shared the same elastic properties. This yielded a natural lower correlation with the 
synthetic data with respect to the standard Bayesian approach, where single CDPs were inverted. 
In the lower SNR case, where the ill-conditioning is severe, the differences between the outcomes 
of the two approaches can clearly be appreciated, in which the better match obtained with the Rj-
McMC can be quantitatively calculated at about 17% more with respect to the standard Bayesian 
method.

The implemented inversion algorithm runs in approximately 12 hours on two compute nodes 
equipped with two deca-core Intel(R) Core(TM) i7-8550U @2.00 GHz (8 Gb RAM). Clearly, the 
computational cost is primarily related to the number of chains used, the maximum number of 
Voronoi cells the algorithm is allowed to create, the maximum number of iterations and the seismic 
data size (i.e. the considered range of angles of incidence over which the AVA is calculated). 
We observed that doubling the numbers of unknowns (i.e. bigger inversion areas or increased 
incidence angles) lead to an exponential increase of the computational cost, for which a further 
optimised code should be applied.

 

8. Conclusions

We implemented a Rj-McMC algorithm for target-oriented AVA inversion on 2D seismic 
data. The aim was to estimate the elastic variables and their lateral variability over a reference 
model characterised by strong lateral contrasts. Results have been benchmarked against those 
obtained with a standard Bayesian linear approach for different SNR. Due to the lack of observed 
seismic data, the proposed algorithm has been applied here only to synthetic seismic data. Since 
the convergence of the McMC algorithms is generally very slow, a parallel tempering approach 
was used to ensure optimal exploitation and exploration capabilities and to preserve the mutual 
correlation between the elastic properties. Our synthetic tests showed that for very high SNR the 
standard Bayesian approach fails to reconstruct the actual subsurface structures and produces a 
final prediction totally covered by noise. Differently, the proposed Rj-McMC ensures much more 
stable results, in which the lateral discontinuities are recovered accurately. The superior solution 

Table 1 - Correlation coefficients derived from the posterior PDFs estimated by the Rj-McMC and the standard 
Bayesian approach.

	 RR for noise standard deviation of 0.001	 RI	 RJ

	 Rj-McMC	 0.984	 0.977

	 standard Bayesian	 0.999	 0.999

	 RR for noise standard deviation of 0.070	 RI	 RJ

	 Rj-McMC	 0.949	 0.949

	 standard Bayesian	 0.777	 0.776
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provided by the proposed Rj-McMC method is ensured by its transdimensional framework that 
inherently adapts the parameterisation of the proposed models to the lateral variability of the 
data. Indeed, the implemented algorithms do not require any statistical test to choose the adequate 
model parameterisation and do not include any regularisation operator to force the model to obey 
some external constraints. Instead, the Rj-McMC automatically adjusts the underlying model 
parameterisation to produce solutions with an appropriate level of complexity to fit the data to 
statistically meaningful levels. Clearly, for a correct application of the proposed algorithm, a 
careful check of all the AVA inversion requirements must be made (improved data quality and 
controlled amplitude data processing).
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