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ABSTRACT	 As the best linear estimator, kriging is now a well-established method in all types of 3D 
geomodelling, including geochemical mapping, rock type modelling, 2D geophysical 
mapping, and resource estimation. In this context, investigating kriging performance has 
always been of interest to numerous researchers. Evaluating kriging implementation for 
different applications has been a growing field of study in the last few decades. Although 
many authors have discussed various kriging parameters, it seems necessary to conduct 
more detailed studies on range searching, high and low nugget effect, as well as 2D and 
3D estimations. In this paper, an optimal search range was determined using Quantitative 
Kriging Neighbourhood Analysis (QKNA), and the utility of this search range was 
explored by assessing kriging efficiency. Because of the existence of different numerical 
measures of search ranges in each criterion, it is difficult to define the optimal search 
range of an estimation process. In this research, different Multiple Criteria Decision 
Making (MCDM) methods were employed to determine the optimal search range via 
QKNA and by considering criteria which were applied to different cases. Given the 
unique capacity of this method in meeting this challenge, the Fuzzy-TOPSIS method, a 
variant of MCDM, was used in this study.

Key words:	 kriging neighbourhood, quantitative analysis, kriging efficiency, optimal search range, multiple 
criteria decision making, Fuzzy-TOPSIS method.
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1. Introduction

Geostatistical methods are now widespread in Earth science applications such as geochemical 
mapping, rock type modelling, and resource estimation. Among those methods, kriging, as a linear 
estimator, is popular in resource estimation (David, 1977), geochemical mapping (Changjiang et 
al., 2009; Talesh Hosseini et al., 2018), estimation of trace elements contamination (Tavares et 
al., 2008), identification of geochemical anomalies (Jimenez-Espinosa et al., 1993), prediction of 
flow-duration curves (Castellarin, 2014; Varouchakis et al., 2016), spatial variability of aquifer 
level (Varouchakis et al., 2016), and analysis of the relation between signal spectral range and 
noise (Jarmokowski, 2019). Kriging is also the base of most geostatistical simulation methods like 
sequential Gaussian simulation which is widespread in Earth science applications [forecasting the 
grade-tonnage curves and their uncertainty (Hosseini et al., 2017), multivariate simulation of 
multi-element deposit (Mahlooji et al., 2019)].
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Kriging is an estimator that yields the Best Linear Unbiased Estimate (BLUE) of point values 
or of block averages (Matheron, 1973; Armstrong, 1998); but this is only true provided that its 
search neighbourhood is properly defined. The most important characteristic of kriging is its 
unbiasedness: blocks estimated to have a value of Zν* will on average have that value (David, 1977). 
This characteristic is called “conditional unbiasedness”. Kriging neighbourhood parameters are 
very important in the process of estimation. These parameters including min/max number of used 
data, use of octant or quadrant search, and maximum search ranges in two or three dimensions are 
consequential inasmuch as they directly affect kriging weights (Vann et al., 2003).

Just like methods developed for assessing the accuracy of simulation algorithms (Mantoglou 
and Wilson, 1982; Ripley, 1987; Tompson et al., 1989; Omre et al., 1993; Gotway and Rutherford, 
1994; Tran, 1994; Deutsch, 1997; Emery, 2004, 2008; Emery and Peláez, 2011; Safikhani et al., 
2017), a common method of validating kriging results and determining optimal search ranges is 
the one developed by Rivoirard (1987). This method was, then, taken up by Armstrong (1998), 
Vann et al. (2003), Boyle (2010), and Shademan et al. (2013). It operates similar to the method 
proposed by Krige (1996a). Rivoirard (1987) deployed two parameters to determine appropriate 
search ranges: Weight of the Mean (WM) for Simple Kriging (SK) and Slope Of the linear 
Regression (SOR) of true values versus estimated ones. Armstrong (1998) modified Rivoirard’s 
(1987) method and suggested the same parameter along with the proportion of nugget effect 
for optimising the search range. Vann et al. (2003) introduced a similar approach to determine 
the optimal estimation neighbourhood using a combination of WM of SK, SOR, distribution of 
kriging weight [including the proportion of Negative Weight (NW)], and Kriging Variance (KV). 
This method is also known as Quantitative Kriging Neighbourhood Analysis (QKNA). Emery 
(2009) refined kriging equations to enhance the kriging neighbourhood definition. The proposed 
equations were reported to be very useful in updating kriging weights and variances in a short 
time. Madani and Emery (2019) employed different strategies to determine the optimal cokriging 
neighbourhood by investigating five alternatives: single search, multiple search, strictly collocated 
search, multi-collocated search, and isotopic search. Boyle (2010) obtained the best search ranges 
using WM and SOR in a case study on the Jura data set. Khakestar et al. (2013) used three 
parameters of SOR, WM, and KV to establish the best search ranges in an estimation program 
and compared the results with those reported by different researchers. Coombes (2008) aimed at 
identifying a set of estimation parameters that could afford the highest Kriging Efficiency (KE) 
and SOR statistics to ensure the most reliable estimate of block grades. Coombes and Boamah 
(2015) suggested a Localised Kriging Neighbourhood Analysis (LKNA) approach which could 
be used to optimise different parameters of each block within each domain. Hundelshaussen et al. 
(2018) advanced a new approach known as Localised Kriging Parameter Optimisation (LKPO) 
which overcame the disadvantages of LKNA approach.

All of these works focus on some special parameter and try to show the importance of search 
range in estimation results. As a research gap, it can be argued that none of these studies addresses 
the type of estimation. According to Deutsch et al. (2014), there are three kinds of estimates, each 
requiring a different strategy and criteria for assessing results: 1) estimates for visualization and 
geological understanding, 2) estimates for interim planning, and 3) ultimate estimates for reserve 
classification. Moreover, the authors put forth a new definition for KE and introduced another 
kriging quality criterion which could be used to characterise estimation results.

In this study, different search ranges for 2D (geochemical anomaly detection) and 3D (resource 
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estimation) cases are evaluated using QKNA (Vann et al., 2003). Range searching is just one of 
the parameters discussed in this work. Min/max of data, using octane search, and max data from 
a single borehole are other parameters that are optimised here. The search range with the best 
QKNA criteria will be introduced as the optimal search range. Subsequently, the advantage of 
QKNA will be investigated by calculating KE. Cross validation analysis and swath plots are 
presented to show the effect of QKNA results on the estimation quality. Different synthetic and 
real cases with various statistical and geostatistical properties are presented to take account of all 
possible conditions. It should be clarified that the authors of the present research have focused on 
Ordinary Kriging (OK), and SK is used for some specific purpose [e.g. defining variance of global 
SK (σ 2

GSK) and calculating KE and WM for any search range]. Considering that different search 
ranges offer different values of QKNA criteria by means of the kriging method, the multiple 
criteria decision making (MCDM) approach is a highly useful choice for finding the best optimal 
search range. Among different methods of MCDM, TOPSIS (Technique for Order of Preference 
by Similarity to Ideal Solution), thanks to its selective nature, is used for determining the optimal 
search range (Opricovic and Tzeng, 2004). First developed by Hwang and Yoon (1981), TOPSIS 
helps solve best choice problems. In order to establish the weights of QKNA criteria in this study, 
the relationship between the criteria can be defined using the linguistic variables, which includes 
triangular fuzzy numbers (Wang and Elhag, 2006; Chen and Tsao, 2008). Therefore, the triangular 
fuzzy number is combined with TOPSIS to select the best alternative (optimal range) among 
others.

By deploying QKNA for estimating different variables such as geochemical assays, resource 
grade, geophysical parameters (e.g. induced polarisation and resistivity), and geomechanical 
parameters, users could be sure that the estimation results are the best. In addition, QKNA could 
be an essential step in setting up any kriging estimate, including that used for conditioning a 
simulation (Vann et al., 2003). In addition to finding the optimal search ellipsoid, this method 
provides better results in the abundance of nugget effect and sparse data. This could be seen 
in some case studies on geochemical anomaly detection, primary resource estimation, etc. To 
show the efficiency of the method, QKNA was here applied to different case studies through a 
combination of synthetic and real data sets. This paper initially explores the efficiency of different 
parameters under consideration in order to select the optimal estimation neighbourhood; next, a 
number of quantitative tools are employed to compare the results of each kriging neighbourhood.

2. How QKNA can help?

As discussed, kriging is the best linear estimator that provides unbiased results with minimum 
estimation variance. However, kriged values are highly dependent on the kriging neighbourhood. 
Neighbourhood parameters are often defined by users. For example, search ranges are commonly 
defined based on variogram ranges. Defining precise search ranges by means of variogram range 
could be very risky insofar as variogram ranges are not always the best search ranges. The slope 
of the variogram model at short lags and relative nugget effect (behaviour at origin) exerts a 
greater impact on search range selection than it does at larger increments (Vann et al., 2003). Too 
restricted search ranges give rise to conditional bias (Krige, 1994, 1996a, 1996b), whereas wide 
ranges may lead to highly smoothed results and, consequently, loss of local accuracy.
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In this regard, QKNA adjusts the neighbourhood to obtain the best regression statistics in 
order to reduce conditional bias. Meanwhile, smoothing could happen in the process of mitigating 
conditional bias and it is not possible to have a conditionally unbiased estimation with no 
smoothing effect. In fact, as Journel and Huijbregts (1978) articulated, the necessity for smoothing 
is a consequence of the ‘information effect’, meaning that non-exhaustive information may cause 
smoothing in the estimation result.

When using QKNA, it is desirable to determine an optimal combination of search neighbourhood 
which entails the least conditional unbiasedness (Vann et al., 2003). The priority of criteria used 
to assess kriging performance is as follows (Vann et al., 2003):

•	 the SOR of the true value on the estimated value;
•	 the SK WM;
•	 the distribution of kriging weight (including the proportion of NWs);
•	 KV.

3. How to calculate required parameters?

All of the parameters introduced above should be calculated in an estimation process. Some 
of them, like KV and SOR, are easy to be obtained, but others, such as NW and WM, need some 
post-processing.

3.1. Slope Of linear Regression (SOR)
It has been established that OK is an estimator which can minimise conditional bias (Matheron, 

1963; David, 1977; Rivoirard, 1987; Ravenscroft and Armstrong, 1990; Krige, 1994, 1996a, 
1996b). A perfect estimator Zν* (estimated values) equals Zν (true values) but this does not happen 
in reality and some fluctuations will always occur. Even so, if the regression of Zν* on Zν remains 
linear with a slope of 1.0, the result is conditionally unbiased and the obtained estimation could 
be acceptable. Armstrong (1998) defines the slope (P) of linear regression thus:

(1)

or equally:

(2)

where σZν
 is the standard deviation of true values, σZν*

 is the standard deviation of estimated 
values, ρ is the linear correlation coefficient. 

Moreover, for each position estimation, P can be calculated as follows (Sinclair and Blackwell, 
2002; De-Vitry, 2003):

(3)

where σ 2
ν and σ 2

k are respectively the variance of actual block values and kriging variance, and μ 
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is the absolute value of the Lagrange multiplier for each estimation position. For more details on 
SOR calculation, the reader is referred to the studies by Rivoirard (1987), Krige (1994, 1996a), 
Armstrong (1998), Sinclair and Blackwell (2002), and De-Vitry (2003).

If P < 1, then one could infer that the estimation result is under-smoothed. This means that the 
true grade of areas predicted to have high values is indeed lower than expected; on the other hand, 
areas predicted to have low values are likely to show higher grades (Rivoirard, 1987; Pan, 1998). 
In such circumstances, one can argue that the neighbourhood is too restricted (Boyle, 2010). This 
problem is illustrated in Fig. 1, in which a departure could be seen between the scatter plot of true 
values on the estimated ones and X = Y, which represents the conditionally unbiased estimation.

If P > 1, then the estimation result is over-smoothed. In other words, the variance of the 
estimated vector is less than the actual variance of the sample vector. Smoothing is somehow 
unavoidable in making an estimation. As Krige (1996a) observed, one cannot both avoid 
smoothing and achieve conditional bias; nevertheless, it is still possible to modify smoothing via 
post-processing the result (Rossi and Parker, 1994; Krige et al., 2005).

Fig. 1 shows different SOR situations. It can be seen how a conditionally unbiased estimation 
can cause extra error in classifying the deposit. In the biased result, areas I and III are big, which 
means that a large part of the deposit predicted to be ore is not really so; conversely, a part of 
the deposit predicted to be waste is ore actually. Such predictions should not be used in the final 
estimation.

Fig. 1 - Different situations of P that could take place in an estimation process. Quadrants II and IV represent the correct 
classification of waste and ore, and quadrants I and III are their corresponding incorrect classifications (modified from 
Journel and Huijbregts, 1978).
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3.2. Weight of the Mean (WM) in SK
When using SK, the sum of weights is not constrained to add to one. Hence, the remaining 

weight is allocated to the mean, which is assumed to be known. In SK, WM indicates the degree 
to which kriging depends on local samples, and it is an inversely proportional index of the so-
called ‘screen effect’. Rivoirard (1987) used WM to determine the minimal neighbourhood (the 
neighbour with maximum 20% weight allocated to the mean is introduced as the minimal search 
range). Though easy to be measured, WM is not a parameter in many geostatistical packages 
(Armstrong, 1998; Chilès and Delfiner, 2012). The related formula is as follows:

(4)

(5)

in which  λi
sk is the sum of SK weights, and λm is WM. Using QKNA, one can obtain both the 

best SOR and the minimum weight allocated to the mean (Vann et al., 2003).

3.3. Negative Weight (NW)
If the search is too restrictive, the meaningful positive weight will be assigned to the additional 

samples when the search range is expanded. In fact, marginal samples should get very small or 
even NWs, and modifying weights (Deutsch, 1996) or setting them to zero will not be helpful 
because it will bring about conditional bias (Vann et al., 2003). Actually, if an NW represents less 
than 5% of the total weight, no problem occurs. Reporting weights in a kriging process is not part 
of conventional software applications. In the present study, the kriging functions in the ‘mGstat’ 
toolbox in MATLAB, ‘krig.m’ have been modified to maintain kriging weights.

3.4. Kriging Variance (KV)
Kriging is an estimator with minimum variance. Specifically, global SK is known to have 

minimal estimation variance. KV provides a measure of the error associated with the kriging 
estimator; consequently, it can be a criterion to evaluate the quality of data, density, and geometry. 
The less the KV is, the better the estimation quality will be. However, this criterion is not as 
important as the slope of the regression, but it can still be used as a yardstick for kriging evaluation. 
This property is highly dependent on the data involved in estimation and is usually reported from 
the kriging process by the software. Even so, its calculation is not very difficult, and one might do 
it using the following expression:

(6)

in which C(xi, xj) is the value of covariance function between sample locations xi, xj, and λi and λj 
represents the weight assigned to these samples.

3.5. Kriging Efficiency (KE)
The term KE was first used by Yfantis et al. (1987) for evaluating square, triangular, and 

hexagonal sampling grids. However, it was Krige (1996a) who introduced it as a measure of the 
efficiency of block estimates. In fact, it is another definition of KV which is normalised by the 

Zv
*sk – m = λi

*sk (Z(xi) – m)

λm λi
sk
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true block variance. KE can be used as a measure of estimation quality. Coombes (2008) tried to 
identify a set of estimation parameters that result in the highest KE and SOR statistics.

Let σ 2  and σ 2
k be the sample and kriging variance; then (Krige, 1996a):

(7)

where KEDK is KE and C- (V, V) is the average covariance of points within the blocks.
In theory, for a perfect estimation algorithm it is expected to be 1 (100%), which necessitates 

KV to be zero. This situation can only happen for SK to have no estimation variance. In real cases, 
the value of KE is less than 1. Besides, in some special cases where KV is greater than the true 
block variance, KE is negative (Deutsch et al., 2014).

Deutsch et al. (2014) restricted the application of KE to linear estimation and proposed 
another expression. Considering that global SK is associated with the linear minimum estimation 
variance, then:

(8)

in which KE (u) is SK and σ 2
GSK(u) is the global SK variance.

4. Comments

Before going through samples, several comments need to be made:
1)	 QKNA is a methodology for evaluating parameters of a model and a good way to determine 

the optimal search range;
2)	 through QKNA, it is possible to evaluate estimation quality and assess the accuracy of 

kriging;
3)	 using QKNA for establishing search ranges in two or three dimensions can assure us about 

the accuracy of the selected model;
4)	 when using QKNA, it should be considered that the most important parameters are SOR 

and WM. Selecting the optimal search range must be conducted with an eye primarily to 
these two parameters and then the other two parameters of NW and KV;

5)	 in this paper, the authors have not rigorously followed Rivoirard (1987) and Vann et al. 
(2003) in their approach to finding the optimal search range. Meanwhile, as Rivoirard 
(1987) recommended, SK was performed to calculate WM and determine the minimal 
search range, and the resulting WM was obtained accordingly. The minimal search range is 
that with at most 20% WM proportion.
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5. Fuzzy-TOPSIS method

Being based on the concept of similarity to the ideal solution, TOPSIS is a compromise 
technique for finding the best alternative (optimal range) among all candidates (Wang and Elhag, 
2006; Boran et al., 2009). In fact, compromise techniques function based on a reference point 
(ideal solution). In the TOPSIS method, the distance of alternatives from both the positive and 
negative ideal points must be considered in choosing the best alternative (Chen and Tsao, 2008). 
In fact, the best alternative (optimal range) is obtained by calculating the minimum distance from 
the positive ideal solution and the maximum distance from the negative ideal solution. In order 
to consider the linguistic variables in the decision-making process, the fuzzy set theory is used in 
the TOPSIS method. The main purpose of Fuzzy-TOPSIS method is to rank different alternatives 
based on a fuzzy environment. Among different types of fuzzy sets, the triangular fuzzy number 
was applied in this research before applying the TOPSIS method. This type of fuzzy number can 
be defined by a (l, m, u) number (Eq. 9 and Fig. 2) (Shemshadi et al., 2011; Abedi et al., 2013):

(9)

Fig. 2 - Triangular fuzzy number.

Let us assume that A is a decision matrix and xij represents the score of alternative Ai (a fuzzy 
number) in the criterion Cj. Also, l and m represent the lower and upper value of the support of 
the fuzzy number A and m denotes the maximum grade of μA(x). The Fuzzy-TOPSIS algorithm 
has the following steps (Wang and Elhag, 2006; Chen and Tsao, 2008; Boran et al., 2009; Junior 
et al., 2014):

Step 1. Calculate the normalised decision matrix using Euclidean normalisation method:
 

(10)
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where rij gives the normalised values of the membership matrix A, and m represents the number 
of the alternatives (search range).

Step 2. Compute the weight values of QKNA criteria from the fuzzy set by observing the 
following stages:

•	 define the importance of QKNA criteria using the linguistic variables presented in Fig. 3;

Fig. 3 - Linguistic scales for determining the importance of 
QKNA criteria.

•	 determine the pairwise comparison matrix from decision-maker’s comments such that:

where ãij = (lij, mij, uij) = ãij
–1 = , for i, j, = 1,..., n and i � j. Also, ãij represents the 

 
l, m and u values of alternative Ai in the criterion Cj;

•	 calculate the normalised values of the pairwise comparison matrix such that:

(11)

where the numerator is a n×3 matrix with entries given by   

Also, the denominator is obtained by summing the columns of the previous matrix;

first row

second row for n criteria

third row.
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•	 compute the greatest degree of Si, compared to that of all other fuzzy numbers, based on the 
following equation:

(12)

In other words:

(13)

where S̃ = (li, mi, ui) and S̃j
 = (lj, mj, uj).

Step 3. Calculate the weighted matrix. Assume that W = (w1, w2, ..., wn) is the weight of criteria. 
The weighted matrix is calculated by the following equation:

(14)

Step 4. Determine the positive ideal solution (A+) and negative ideal solution (A–) by the 
following equation:

(15)

where

(16)

in which J1 represents the set of positive criteria and J2 denotes the set of negative criteria. J1  and 
J2 correspond to the benefit and cost criteria, respectively.

Step 5. Compute the distance between the alternative and positive ideal solution and the 
distance between the alternative and negative ideal solution for all alternatives such that:

(17)
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where

(18)

in which i and j are the number of alternatives and criteria, respectively.

Step 6. Calculate the relative closeness index of the alternatives by the following equation:

(19)

The relative closeness index ranges between 0 and 1. The bigger the relative closeness index 
is the better the alternative will be.

6. Applications

6.1. Calculation of criteria weights
In order to calculate the weight of each criterion, the importance degree of the seven criteria 

was defined by means of the linguistic variables, which were chosen based on the comments of 
the geostatistics specialist (Table 1). Once the relative importance matrix was determined by 
using the importance degrees (Table 1), the same stages described earlier in the section on Fuzzy-
TOPSIS method (Fig. 3) were followed in order to achieve the fuzzy numbers. Finally, the weight 
of each criterion was obtained by means of the defined stages (Table 2).

Table 1 - The importance degree of the seven criteria.

		  SOR	 Real Corr.	 leave-1-	 WM (SK)	 NW	 KV	 KE 
			   out cross 
			   validation

	 SOR	 Eq.	 Sl.	 Sl.	 St.	 St.	 VS.	 VS.

	 Real Corr.		  Eq.	 Sl.	 Sl.	 Sl.	 St.	 St.

	 leave-1-out cross validation			   Eq.	 Sl.	 Sl.	 St.	 St.

	 WM (SK)				    Eq.	 St.	 Sl.	 Sl.

	 NW					     Eq.	 Im.	 Im.

	 KV						      Eq.	 Im.

	 KE							       Eq.

Equally important (Eq.); Slightly important (Sl.); Important (Im.); Strongly important (St.); Very Strongly 
important (VS.); Infinitely important (In.).

Table 2 - The weight of each criterion calculated based on the triangular fuzzy number.

	 criterion	 SOR	 Real Corr.	 leave-1-	 WM (SK)	 NW	 KV	 KE 
			   out cross 
			   validation

	 Weight	 0.224	 0.170	 0.175	 0.146	 0.134	 0.088	 0.063
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6.2. Synthetic samples (2D Kriging)
In this section, the application of QKNA to a grid with low and high nugget effect is discussed. 

Synthetic data were generated by the Lower-Upper (LU) simulation program (Alabert, 1987) on 
a regular grid of 160×160×1 sample in x, y, and z dimensions [with 5 m spacing, which makes an 
area of 800×800 m2 (Fig. 4)] and also using the following anisotropy model:

γ = 0.1*Nug(0) + 0.9*Sph(50, 30), Az = 0 Dip = 0
γ = 0.4*Nug(0) + 0.6*Sph(50, 35), Az = 0 Dip = 0

Then, a data set of 970 samples was chosen randomly as hard data (Fig. 4). This data set was 
later used to calculate the anisotropy model of the grid:

γ = 0.1*Nug(0) + 0.9*Sph(55, 47, 0), Az = 0 Dip = 0
γ = 0.4*Nug(0) + 0.6*Sph(58, 36, 0), Az = 0 Dip = 0

where γ represents the variogram value of the studied variable, Nug denotes the nugget effect. 
The Sph shows that the fitted model is spherical.

Fig. 4 - Synthetic data created by LU simulation 
(A, B) and the data set (C).
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To analyse the effect of the search range on QKNA criteria, we calculated these criteria and 
applied them to 15 different search ranges (Table 3). In these two cases, the focus was on the search 
range and other parameters like min/max number of data or octant search were not examined. 
Cross validation and estimation were performed via both ordinary and SK for all search ranges. To 
perform the estimations and calculate the required parameters, a Matlab toolbox, namely mGstat, 
was used. Some parts of this code were changed in order to make it work properly.

Table 3 shows the result of QKNA when the search range expands from the 1st ellipsoid SOR 
and reaches its proper values in the 7th ellipsoid. As given in the table, other criteria like KV, NW, 
WM, KE, and leave-one-out correlation are also acceptable. Hence, it can be said that it is the best 
search range for this case. It should be considered that in reality it is not possible to calculate the 
real correlation which is shown in this table. Thus, choosing the best search range through these 
criteria is not practical. As explained before, the best search range should be determined via other 
criteria.

In this table, the real correlation is calculated according to the estimation result and actual 
ones (obtained through LU simulation) and the leave-one-out correlation is gauged based on this 
algorithm. There exists an optimal range for some other parameters such as WM. This search range 
is expected to be at most 20% proportional to WM in SK. NWs are assigned, because of the screen 
effect, to marginal data which have no significant correlation with the estimation location but are 
involved in the estimation process. NWs are not generally problematic if they represent a small 
proportion (up to 5%) of the total weight; even so, it is better to choose NW proportions less than 
5% for special cases like high-grade zones of gold and copper deposit.

Table 3 shows the decision making matrix of QKNA parameter for all search ranges. According 
to the second step of the algorithm proposed for selecting the optimal search range, the normalised 
decision matrix was obtained by means of normalised Euclidean distance. Finally, the relative 
closeness of each search range was determined via the normalised decision matrix and weight of 
each criterion. Thus, the Fuzzy-TOPSIS algorithm was used for discovering the optimal search 
range. Table 4 presents the result of Fuzzy-TOPSIS method for the synthetic samples.

Table 4 and Fig. 5 show that the optimal search range introduced by QKNA is a search range 
between ellipsoid 6 and 8 in major axes. To find the optimal search range, then, the algorithm 
reruns between these two ranges and the best one is selected (see Table 5).

Boyle (2010) reported that neighbourhood analysis adds value in the presence of high nugget 
effect. For this case, the range between ellipsoids 8 and 9 could be chosen as the optimal search 
range (neighbourhood with 81 m length in the major axis). It can be seen in Fig. 5 and Table 5 that 
the best estimation quality occurs in this neighbourhood.

Regarding KV, it is obvious that it should not be very high compared to the total variance 
of the data set. Besides, in the stability of other parameters (including variance of the estimated 
vector), the less the KV is, the better the estimation will be. High KV is due to the number of 
data in the search ellipsoid. Table 3 indicates that in ellipsoids 7 and 8, fewer than 9 data exist, 
which explains the reason for the high KV. KE depends on nugget effect and KV, with the latter 
ignoring local grade variability. In a kriging program, besides other parameters, KE should be in 
the appropriate range. In Table 5, to evaluate KE, the linear minimum variance estimation must 
be calculated. To this end, a SK estimation was performed for each estimation using all available 
data, and the minimum variance was found to be about 0.20 and 0.45 for low and high nugget 
effects. This value was, then, used to calculate KE as σ 2

GSK(u) (Eq. 8).
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Moreover, when the number of data in the neighbourhood reaches 30, it is possible to achieve 
smoother results. If the choice between more accurate and smoother results and less accurate and 
less smooth results is desirable, the authors suggest adopting the strategy proposed by Deutsch et al. 
(2014), who demanded that the type of estimation also be considered while defining search ranges.

In fact, in any estimation program, search range could be investigated by means of the QKNA 
parameter so as to insure the quality of the results.

Table 3 - Search ranges used in the estimations and QKNA parameter calculated for each result.

	 Ellipsoid	 major	 Mean	 Real Corr	 SOR 	 KV 	 KE 	 NW 	 WM (SK)	 Leave 1 
 	 No.	 search	 data in							       out 
		  range	 neighbor		      (proportion)					     Corr

		       Low nugget effect

	 1	 9.16	 0.1	 0.215	 0.000	 1.00	 0.20	 0	 0.998	 0.06

	 2	 18.32	 0.4	 0.254	 0.074	 0.99	 0.20	 0.000	 0.967	 0.08

	 3	 27.48	 1	 0.417	 0.317	 0.94	 0.21	 0.000	 0.845	 0.15

	 4	 36.64	 2	 0.497	 0.533	 0.87	 0.23	 0.002	 0.667	 0.36

	 5	 45.8	 3	 0.521	 0.798	 0.76	 0.26	 0.007	 0.473	 0.69

	 6	 54.96	 4	 0.511	 0.944	 0.66	 0.30	 0.019	 0.311	 0.810

	 7	 64.12	 5	 0.492	 0.9867	 0.56	 0.35	 0.036	 0.197	 0.812

	 8	 73.28	 6	 0.479	 0.996	 0.49	 0.40	 0.064	 0.127	 0.813

	 9	 82.44	 7	 0.478	 0.998	 0.44	 0.45	 0.108	 0.085	 0.811

	 10	 91.6	 9	 0.478	 0.999	 0.39	 0.49	 0.167	 0.059	 0.809

	 11	 100.76	 11	 0.482	 0.999	 0.37	 0.53	 0.233	 0.044	 0.810

	 12	 109.92	 12	 0.485	 0.999	 0.34	 0.57	 0.306	 0.033	 0.809

	 13	 119.08	 14	 0.482	 0.999	 0.33	 0.61	 0.378	 0.026	 0.808

	 14	 128.24	 16	 0.483	 0.999	 0.31	 0.64	 0.430	 0.020	 0.808

	 15	 137.4	 18	 0.476	 0.999	 0.29	 0.68	 0.467	 0.017	 0.808

		       High nugget effect

	 1	 9.66	 0.2	 0.138	 0	 0.95	 0.47	 0	 0.999	 0.06

	 2	 19.32	 0.5	 0.155	 0.074	 0.94	 0.48	 0.000	 0.979	 0.08

	 3	 28.98	 1	 0.274	 0.204	 0.92	 0.49	 0.000	 0.895	 0.13

	 4	 38.64	 2	 0.336	 0.410	 0.88	 0.51	 0.001	 0.760	 0.33

	 5	 48.3	 4	 0.358	 0.620	 0.83	 0.54	 0.004	 0.601	 0.59

	 6	 57.96	 4	 0.353	 0.849	 0.77	 0.58	 0.009	 0.450	 0.710

	 7	 67.62	 5	 0.339	 0.955	 0.71	 0.63	 0.019	 0.327	 0.726

	 8	 77.28	 5	 0.327	 0.988	 0.66	 0.68	 0.033	 0.233	 0.727

	 9	 86.94	 8	 0.319	 0.997	 0.61	 0.74	 0.053	 0.167	 0.721

	 10	 96.6	 10	 0.316	 0.998	 0.58	 0.78	 0.083	 0.123	 0.722

	 11	 106.26	 12	 0.312	 0.998	 0.55	 0.82	 0.123	 0.093	 0.722

	 12	 115.92	 15	 0.307	 0.999	 0.53	 0.85	 0.169	 0.072	 0.722

	 13	 125.58	 18	 0.306	 0.999	 0.52	 0.86	 0.226	 0.057	 0.722

	 14	 135.24	 21	 0.303	 0.999	 0.51	 0.88	 0.285	 0.046	 0.722

	 15	 144.9	 23	 0.294	 0.999	 0.50	 0.90	 0.342	 0.038	 0.723
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Table 4 - The relative closeness of each alternative in the synthetic samples.

	Alternative		  Low nugget effect			   High nugget effect

	 1	 0.324	 0.157	 0.326	 0.323	 0.147	 0.313

	 2	 0.308	 0.158	 0.340	 0.307	 0.148	 0.325

	 3	 0.254	 0.184	 0.420	 0.268	 0.167	 0.384

	 4	 0.149	 0.261	 0.637	 0.164	 0.245	 0.599

	 5	 0.065	 0.317	 0.830	 0.094	 0.290	 0.756

	 6	 0.040	 0.344	 0.900	 0.042	 0.327	 0.885

	 7	 0.039	 0.346	 0.899	 0.044	 0.336	 0.844

	 8	 0.043	 0.343	 0.890	 0.030	 0.339	 0.918

	 9	 0.050	 0.339	 0.872	 0.035	 0.339	 0.910

	 10	 0.060	 0.335	 0.848	 0.054	 0.332	 0.860

	 11	 0.076	 0.330	 0.812	 0.068	 0.327	 0.828

	 12	 0.096	 0.326	 0.773	 0.084	 0.323	 0.793

	 13	 0.133	 0.320	 0.706	 0.103	 0.319	 0.756

	 14	 0.084	 0.330	 0.798	 0.125	 0.316	 0.716

	 15	 0.158	 0.319	 0.669	 0.150	 0.314	 0.676

Table 5 - Estimation parameter calculated for the optimal search range. Low (1st row) and high (2nd row) nugget effect 
cases.

	 Search	 Mean	 Real Corr	 Min	 SOR 	 KV 	 KE 	 NW 	 WM (SK)	 Leave 1 
 	 range	 data in		  est						      out 
	 (m)	 neighbor		  var	     (proportion)					     Corr

	 68	 5	 0.49	 0.1972	 0.995	 0.5	 0.05	 0.4	 0.2	 0.812

	 81	 6	 0.32	 0.4497	 0.9976	 0.63	 0.048	 0.713	 0.196	 0.727

Fig. 5 - Sensitivity of QKNA parameter to search range. Low (A) and high (B) nugget effect cases.
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6.3. Real examples (block kriging)
A topic that has not been tackled so far concerns validating kriging reproduction of global and 

local means for estimated domains by using different search ranges. The economic evaluation 
of a mining project is highly dependent on estimation results, and using biased and inaccurate 
results for this purpose could lead to drastic errors. In the remainder of this study, some more 
examples are presented to highlight how search range can influence the reproduction of samples 
average. For this, three different data sets with different distributions are explored. These data 
sets represent real case studies. It should be noted that statistical analysis and un-clustering were 
performed and then the data sets were run.

6.3.1. Statistical analysis of data sets
Sungun copper deposit is one of the biggest copper deposits in north-western Iran, containing 

about 817 m ore and a mean grade of 0.62% (Pars Olang Engineering Consultant Company, 
2006). In this study, some of the information related to this deposit was used to clarify the effect 
of data distribution on QKNA results. The data set comprised 396 and 801 borehole samples 
for the first and second estimation phases, respectively, with lognormal distribution and positive 
kurtosis in two case studies (Table 6, Figs. 6 and 7). To analyse the estimation type and understand 
the results, in addition to the two cases of this example, the program was run for these two data 
sets and the results are presented in Table 7. The borehole distance is 90 and 65 for the first (Fig. 
6) and second (Fig. 7) phases, respectively; therefore, these two cases can be considered distinct 
estimation stages.

Fig. 6 - The position of drill holes (right) and histogram of Fe (left) in Sungun data set phase 1.

Although this deposit is part of a big iron ore deposit which has an excellent data set, the 
exploration program is no more running in this part of the deposit and there is no certainty 
regarding the mean of the data. This problem could have both positive and negative effects on the 
results. The negative point is that an extra uncertainty is added to the calculations. Consequently, 
in this regard, the authors decided to show how the results would be in the absence of certainty. 
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For these cases, the average of the estimated grid was calculated and found to be a further criterion 
among others. The related changes in different search ranges are also plotted in the graphs. Then, 
it is possible to investigate the reproduction of the real mean in the estimation result. To observe 
the reproduction of the local mean, the mean square error of the mean value of the model and 
composites was also assessed by swat plots.

Fig. 7 - The position of drill holes (right) and histogram of Fe (left) in Sungun data set phase 2.

Table 6 - Statistics of real case data sets.

	 Data set	 Sungun phase 1	 Sungun phase 2

	 Mean	 0.5171	 0.5132

	 Standard Deviation	 0.383	 0.4078

	 Sample Variance	 0.147	 0.1663

	 Kurtosis	 0.084	 0.488

	 Skewness	 0.596	 0.701

	 Distribution type	 Lognormal (positive Skewness)	 Lognormal (positive Skewness)

		  0.0579	 0.0608

6.3.2. Sungun results
The variogram model of Sungun 1 and 2 data sets is shown in the following equations (the 

variogram is calculated for de-clustered data; hence, it is different from primary data):

γ = 0.06 + 0.14*Sph(320, 161, 100), Az = 135
γ = 0.06 + 0.13*Sph(311, 150, 90), Az = 135.

The results of QKNA analysis are illustrated in Table 7, Figs. 8 and 9. Different steps of 
the Fuzzy-TOPSIS algorithm was applied to the decision making matrix (Table 7) in order 
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to determine the optimal search range (Table 8). The results of the relative closeness analysis 
demonstrated that the optimal search ranges determined through QKNA criteria are ellipsoids 
13 and 7 for phase 1 and 2, respectively (Table 8). As explained before, for some cases there 
is not a single option, and the selection of optimal search range would be an option. In such 
circumstances, one option is selected according to the estimation type and by considering the 
test parameter. For example, in the Sungun 1, which is designed to be a primary estimation for 
ellipsoid 13, the mean reproduction is excellent and after this range no significant improvement 
occurs in the test parameter; therefore, this search range could be a good choice. On the other 
hand, for Sungun 2, which is a resource estimation project, the minimum search range is the best 
option; hence, ellipsoid 7 should be chosen.

Fig. 8 - Alteration of QKNA parameter in Sungun 1 versus search range expansion.

Fig. 9 - Alteration of QKNA parameter in Sungun 2 versus search range expansion.
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Table 7 - Search ranges and QKNA parameter used in estimation of Sungun phase 1 and 2.

	 Ell. No.	 Ave.	 major 	 Estimation 	 SOR	 KV	 KE	 NW	 WM	 leave-1-	 Block	 MSE 
		  data	 range 	 mean 					      (SK)	 out cross	 model 
										          validation	  Corr

Sungun phase 1

	 1	 2	 39	 0.486	 0.208	 0.152	 0.38	 0.01	 0.22	 0.487	 0.133	 0.100

	 2	 5	 78	 0.485	 0.536	 0.113	 0.51	 0.03	 0.21	 0.498	 0.145	 0.140

	 3	 8	 117	 0.480	 0.572	 0.105	 0.55	 0.03	 0.20	 0.509	 0.240	 0.020

	 4	 11	 156	 0.491	 0.699	 0.098	 0.59	 0.04	 0.15	 0.550	 0.490	 0.170

	 5	 16	 195	 0.499	 0.709	 0.094	 0.62	 0.05	 0.11	 0.604	 0.591	 0.084

	 6*	 21	 234	 0.506	 0.864	 0.089	 0.65	 0.05	 0.09	 0.645	 0.694	 0.070

	 7	 25	 273	 0.511	 0.965	 0.088	 0.66	 0.07	 0.08	 0.645	 0.707	 0.064

	 8	 27	 312	 0.509	 0.971	 0.087	 0.67	 0.07	 0.06	 0.641	 0.708	 0.126

	 9	 29	 351	 0.507	 0.976	 0.087	 0.67	 0.07	 0.03	 0.641	 0.707	 0.125

	 10	 32	 390	 0.510	 0.977	 0.085	 0.68	 0.09	 0.01	 0.640	 0.706	 0.068

	 11	 36	 429	 0.510	 0.976	 0.083	 0.70	 0.08	 0.009	 0.640	 0.706	 0.083

	 12	 38	 468	 0.511	 0.987	 0.083	 0.70	 0.09	 0.007	 0.639	 0.704	 0.073

	 13	 40	 507	 0.516	 0.997	 0.081	 0.71	 0.1	 0.007	 0.639	 0.700	 0.060

	 14	 45	 546	 0.509	 0.997	 0.081	 0.71	 0.11	 0.007	 0.639	 0.700	 0.203

	 15	 49	 585	 0.509	 0.997	 0.081	 0.71	 0.13	 0.007	 0.639	 0.700	 0.064

Sungun phase 2 

	 1	 4	 53.16	 0.4876	 0.708	 0.1494	 0.41	 0.02	 0.219	 0.600	 0.333	 0.055

	 2	 6	 106.32	 0.4856	 0.936	 0.1058	 0.57	 0.03	 0.065	 0.670	 0.450	 0.079

	 3	 9	 159.48	 0.4889	 0.972	 0.0967	 0.63	 0.04	 0.051	 0.699	 0.540	 0.053

	 4	 13	 212.64	 0.5440	 0.999	 0.0847	 0.72	 0.05	 0.021	 0.750	 0.690	 0.045

	 5	 18	 265.8	 0.5521	 0.999	 0.0831	 0.73	 0.08	 0.010	 0.800	 0.891	 0.033

	 6*	 25	 318.96	 0.5596	 0.999	 0.0766	 0.79	 0.11	 0.007	 0.845	 0.894	 0.026

	 7	 30	 372.12	 0.5214	 0.999	 0.0736	 0.83	 0.12	 0.004	 0.849	 0.899	 0.026

	 8	 34	 425.28	 0.4931	 0.999	 0.0734	 0.83	 0.12	 0.005	 0.849	 0.895	 0.035

	 9	 36	 478.44	 0.4791	 0.999	 0.0736	 0.83	 0.14	 0.008	 0.848	 0.893	 0.036

	 10	 39	 531.6	 0.5106	 0.999	 0.0743	 0.82	 0.16	 0.009	 0.846	 0.893	 0.037

	 11	 42	 584.76	 0.5344	 0.999	 0.0711	 0.86	 0.17	 0.004	 0.844	 0.891	 0.037

	 12	 44	 637.92	 0.5359	 0.999	 0.0702	 0.87	 0.17	 0.003	 0.819	 0.890	 0.027

	 13	 50	 691.08	 0.5472	 0.999	 0.0690	 0.88	 0.20	 0.002	 0.800	 0.888	 0.034

	 14	 56	 744.24	 0.5178	 0.999	 0.0682	 0.89	 0.21	 0.002	 0.799	 0.887	 0.066

	 15	 59	 797.4	 0.4994	 0.999	 0.0690	 0.88	 0.21	 0.002	 0.799	 0.887	 0.066

*search ranges calculated through variogram. Best values are indicated in blue, non-acceptable values  
in red. Italics indicate optimum search range.

7. Conclusions

This paper investigated determination of kriging search range. It was discovered that selecting 
the search range through variogram range is not always the best choice, for it may cause 
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conditional bias. Biasedness of results, especially in the final estimation, is not acceptable, and 
many strategies should be utilised during the estimation process to eliminate or at least reduce it. 
On the other hand, as an essential parameter for estimation quality, KE is directly related to search 
range and the number of data used. Using restricted neighbourhood could not satisfy conditional 
unbiasedness and afford high quality estimation. While large search ranges are not always the 
solution for low quality and biased result, establishing search ranges for different estimation 
applications is influenced by both QKNA criteria and KE.

Several case studies presented here displayed how estimation results are affected by 
neighbourhood parameter, nugget effect, data distribution, and data availability. The optimal search 
range was determined and estimation quality was explored by calculating QKNA. Choosing the 
best method with the high precision is consequential in selecting an optimal search range. In this 
study, the MCDM method was deployed to achieve this goal. In fact, after the QKNA criteria (as a 
decision making matrix) were computed for different search ranges based on the kriging method, 
the optimal search range was found using the MCDM method. Among various MCDM methods, 
Fuzzy-TOPSIS is a useful instrument for ranking alternatives. In this regard, the TOPSIS method 
was combined with the triangular fuzzy number to select the optimal alternative. A remarkable 
finding of this study is that the optimal search range is associated with many factors, which makes 
its discovery challenging. Some of the more salient factors in this context were discussed in this 
study.

As a recommendation for future work the authors suggest to use QKNA for kriging in a 
simulation program to see the effect of QKNA in simulation result.

Acknowledgements. The authors would like to acknowledge the financial support of University of Tehran 
for this research under grant number 27350/1/05.

Table 8 - The relative closeness of each alternative in Sungun phase 1 and 2.

	
Alternative

		  Sungun phase 1			   Sungun phase 2

		  d+	 d–	 rc	 d+	 d–	 rc

	 1	 0.644	 0.323	 0.334	 0.194	 0.153	 0.441

	 2	 0.304	 0.420	 0.580	 0.167	 0.157	 0.485

	 3	 0.249	 0.521	 0.676	 0.157	 0.162	 0.508

	 4	 0.308	 0.821	 0.727	 0.057	 0.215	 0.789

	 5	 0.401	 0.958	 0.705	 0.083	 0.207	 0.713

	 6	 0.940	 0.718	 0.433	 0.056	 0.219	 0.796

	 7	 0.919	 0.892	 0.492	 0.045	 0.283	 0.863

	 8	 0.888	 0.227	 0.204	 0.071	 0.212	 0.749

	 9	 0.772	 0.728	 0.485	 0.055	 0.222	 0.802

	 10	 0.307	 0.744	 0.708	 0.052	 0.224	 0.812

	 11	 0.225	 0.849	 0.790	 0.085	 0.206	 0.709

	 12	 0.431	 0.926	 0.682	 0.107	 0.197	 0.649

	 13	 0.002	 0.963	 0.998	 0.152	 0.191	 0.557

	 14	 0.245	 0.612	 0.714	 0.153	 0.190	 0.554

	 15	 0.487	 0.910	 0.651	 0.154	 0.192	 0.555
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