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ABSTRACT	 In	a	Vertical	Seismic	Profiling	(VSP)	acquisition,	downgoing	wavefields	and	upgoing	
wavefields,	 interfere.	 Both	 wavefields	 are	 practical	 in	 various	 seismic	 applications,	
However,	it	is	needed	to	separate	these	two	reflection	and	transmission	fields.	Different	
techniques	have	been	proposed	for	VSP	wavefield	separation.	Median	filtering	as	well	
as	2D	Fourier	 transforms	are	commonly	used	 for	 separating	 the	 seismic	wavefields.	
The	 former	 suffers	 from	 the	 averaging	 effect,	 generating	 artifacts,	 and	 amplitude	
modification	 due	 to	 spectral	 energy	 leakage	 after	 the	 inverse	 transform.	 2D	Fourier	
has	the	problem	of	leakage	and	edge	effects.	We	propose	a	new	approach	based	on	the	
structure	tensor	and	local	dip	estimation	following	a	masking	filter	for	VSP	wavefield	
separation.	The	dip	masking	filter	 is	 calculated	using	 the	 local	 dip	 of	 each	point	 of	
data	that	can	separate	upgoing	and	downgoing	wavefields	from	the	original	data.	The	
advantage	of	this	approach	is	both	in	preserving	seismic	amplitudes	and	in	provision	of	
a	section	free	of	fake	events;	this	literally	implies	no	energy	leakage.	The	synthetic	and	
real	data	examples	are	demonstrated	to	show	the	performance	of	the	proposed	method.
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1. Introduction

Vertical	Seismic	Profiling	(VSP)	is	a	seismic	technique	that	extracts	high-resolution	information	
from	the	subsurface.	The	seismic	VSP	signal	 is	generated	at	 the	surface	recorded	by	receivers	
located	at	different	depths	in	a	vertical	well.	VSP	recorded	data	have	been	used	in	calculating	the	
velocity	and	the	attenuation	in	an	interval	(Pevzner	et al.,	2011;	Baharvand	Ahmadi	and	Morozov,	
2013;	Wang,	2014).

In	a	VSP	recording,	downgoing	wavefields	with	a	positive-slowness	and	upgoing	wavefields	
with	a	negative-slowness,	interfere	with	each	other	(Seeman	and	Horowicz,	1983;	Hardage,	2000).	
The	simultaneous	recording	of	upgoing	and	downgoing	wavefields	are	regarded	as	an	added	value	
of	the	VSP	method.	Downgoing	waves	are	used	to	compute	seismic	P-	and	S-waves	velocities,	to	
calculate	the	seismic	anelastic	quality	factor	Q,	to	create	time-dependent	filters,	which	are	used	to	
recover	high-frequency	seismic	waves	(Sudhakar	and	Blias,	2002).	Upgoing	wavefields	are	tools	
for	obtaining	VSP-CDP	images	(Blias,	2005).

As	a	fundamental	step	to	process	a	VSP	data	set,	the	separation	of	upgoing	and	downgoing	
wavefields	is	introduced.	There	are	many	methods	to	separate	upgoing	and	downgoing	signals	
from	each	other.	Mostly	these	methods	are	based	on	two	types:	1)	methods	using	averaging	filters	
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for	 the	 separation	of	 the	upgoing	 and	downgoing	waves	by	median	filter;	 2)	wave	 separation	
techniques	which	transform	primary	data	into	a	new	domain	and	separate	upgoing	and	downgoing	
waves	in	this	space	and	thereafter	returning	data	to	its	primary	space.	The	most	important	ones	are	
f-k	and	τ-p	filtering.	Curvelets	are	also	a	kind	of	directional-scale	tools	used	for	VSP	wavefield	
separation	(Heravi	et al.,	2012).

The	 median	 filter	 method	 (as	 a	 conventional	 wave	 separation	 technique)	 is	 based	 on	
flattening	 data	 for	 separating	 downgoing,	 then	 applying	 a	 classic	median	 filter,	 shifting	 back	
and	finally	subtracting	the	separated	downgoing	wavefield	from	the	original	data	to	obtain	the	
upgoing	wavefields.	In	the	median	filter	method,	each	sample	is	replaced	by	the	median	value	
of	its	neighbourhood	samples.	Therefore,	due	to	the	averaging	effect,	this	method	suffers	from	
smoothing	the	input	signal,	manipulating	primary	signal	amplitudes,	and	damaging	some	of	the	
useful	details.	To	cope	with	these	problems,	some	improved	versions	of	median	filters	or	non-linear	
median	filters	have	been	proposed	such	as	vector	median	filtering	(Kasparis	and	Eichmann,	1987;	
Astola	et al.,	1990)	which	has	been	applied	in	seismic	data	processing	(Liu,	2013).	Moreover,	
Chen	et al.	 (2016)	 improved	 the	signal	preserving	ability	of	a	median	filter	using	a	structure-
oriented	space-varying	median	filter.

Wave	separation	techniques	such	as	f-k	or	the	τ-p,	transform	data	in	the	new	domain	and	always	
generating	some	artifacts	events	in	this	space	is	unavoidable	and	hence	amplitude	modification	
due	to	spectral	energy	leakage	effect	happens.	In	experimental	physics,	data	spectral	leakage	is	
a	well-known	problem	in	the	data	domain	transforms.	Xu	et al.	(2005)	proposed	an	antileakage	
Fourier	transform	approach	for	seismic	data	regularisation	case.	Chen	et al.	(2014)	proposed	an	
iterative	 framework	 for	 deblending	 of	 simultaneous-source	 seismic	 data	 using	Seislet	 domain	
shaping	regularisation	and	compared	this	method	with	two	Fourier	based	transform;	f-k	domain	
thresholding,	 and	 f-x	 predictive	 filtering.	According	 to	 their	 results,	 Fourier	 based	 transform	
methods	suffer	from	energy	leakage	and	generate	artifacts.

Downgoing	waves	are	characterised	by	positive	apparent	velocity	and	a	negative	slope	in	VSP	
image	data,	upgoing	waves	are	characterised	by	negative	apparent	velocity	and	positive	slope.	In	
this	paper,	it	is	decided	to	use	the	dip	variance	and,	then,	the	output	is	used	to	separate	upgoing	
and	downgoing	wavefields	from	each	other.	So,	data	will	not	be	transferred	to	the	new	space	and	
as	a	result,	data	domain	transfer	does	not	yield	the	leakage	of	energy.	In	this	paper,	we	decide	to	
make	a	masking	filter	based	on	the	local	dip	of	each	point	of	data	which	can	separate	upgoing	
and	downgoing	wavefields	from	original	data.	We	called	this	method	“dip	masking	filter”	and	the	
advantage	is	that	neither	averaging	of	amplitudes	nor	artificial	event	by	transfer	data	happen;	this	
implies	no	energy	leakage.

An	 initial	 published	 work	 estimating	 dip	 directly	 from	 2D	 seismic	 data	 is	 by	 Picou	 and	
Utzmann	(1962).	Finn	and	Backus	(1986)	extended	dip	estimation	 to	3D	data	as	a	piecewise	
continuous	function	of	spatial	position	and	seismic	traveltime.	Marfurt	et al.	(1998)	generalise	
a	later	semblance-based	scan	by	Finn	and	Backus	(1986).	As	discussed	by	Marfurt	(2006),	the	
local	 reflection	 orientation	 can	 be	 described	 by	 reflection	 normal	 vector.	 Fomel	 (2002)	 used	
plane-wave	destruction	filter	to	compute	reflection	slopes.	van	Vliet	and	Verbeek	(1995)	present	
an	estimate	based	on	the	gradient	structure	tensor.	Chen	and	Ma	(2014)	proposed	a	dip-separated	
filtering	 using	 an	 adaptive	 empirical	mode	 decomposition	 based	 on	 dip	 filter	 to	 separate	 the	
seismic	data	into	a	number	of	dip	bands.	This	method	says	that	the	dip	estimation	is	better	when	
it	is	applied	to	dip-separated	profiles.
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Our	proposed	local	dip	masking	filter,	based	on	the	structure	tensor	method,	is	used	for	the	
purpose	of	calculating	dip	variance.	The	coherent	structure	of	seismic	images	yields	to	suppose	
good	candidates	for	structure	tensor	application	(van	Vliet	and	Verbeek,	1995;	Weickert,	1999;	
Fehmers	and	Höcker,	2003),	which	are	a	common	tool	to	estimate	the	local	orientation	of	image	
features.	Tensor	structure	in	seismics	is	used	in	estimating	the	orientations	of	the	seismic	structural	
characteristics	such	as	reflection	slope,	stratigraphic	features	orientations,	horizon	interpretation,	
subsurface	modelling,	etc.	 (e.g.	Li	and	Oldenburg,	2000;	Bakker,	2002;	Fehmers	and	Höcker,	
2003;	Marfurt,	2006;	Hale,	2009;	Wu	and	Hale,	2015a;	Wu,	2017a,	2017b).	Bakker	(2002)	and	
Wu	and	Hale	(2015b)	use	structure	tensors	(e.g.	van	Vliet	and	Verbeek,	1995;	Weickert,	1997)	to	
estimate	reflection	orientations.	Wu	and	Janson	(2017)	propose	a	directional	structure	tensor	to	
estimate	the	orientations	of	reflections	with	steep	and	rapidly	varying	slopes.

Faraklioti	and	Petrou	(2005)	benefit	from	the	use	of	structure	tensors	to	analyse	the	seismic	
data.	In	this	paper,	the	structure	tensor	algorithm	is	used	to	separate	VSP	wavefields	images	after	
finding	their	local	dips.

2. Methodology

2.1. Estimating local dips using structure tensors
The	structure	tensor	is	the	outer	product	of	the	image	gradient	with	itself,	which	is	also	called	

gradient-square	tensors.	Structure	tensor	was	developed	primarily	for	edge	detection	(Förstner	
and	Gülch,	1987),	but	it	has	been	used	for	a	wide	range	of	problems	in	image	processing.

Considering	an	image	I(x.y)	the	structure	tensor	S	is	defined	as:

(1)

where	K	 is	 a	 smoothing	 kernel	 (e.g	 a	Gaussian	 kernel),	*	 stands	 for	 convolution	 operator,	 Ix  
and	 Iy	 are	 the	vertical	and	horizontal	components	of	 the	gradient	of	 the	 image	 I,	 respectively.	
In	2D,	the	structure	tensor	S	is	finally	of	n×m×2×2	where	n×m	is	the	size	of	the	initial	 image	
I.	Effectively,	tensor	structure	obtains	a	2×2	matrix	at	each	pixel	of	the	original	image.	By	the	
eigendecomposition	of	the	matrix	S,	we	can	obtain	the	orientation	information	in	each	pixel.	In	
accordance	with	the	principles	of	matrix	eigenvector	decomposition,	the	eigendecomposition	of	a	
2D	structure	tensor	is	as	follows:

(2)

S = λu uuT + λv vvT.	 	 (3)

where	 u	 and	 v	 are	 normalised	 eigenvectors	 corresponding	 to	 the	 eigenvalues	 λu,	 λv,	
respectively.

These	 eigenvectors	 provide	 an	 approximation	 of	 orientations	 of	 features	 in	 the	 2D	 image	
(Fehmers	and	Höcker,	2003).	This	information	can	be	visualised	as	an	ellipse	with	two	diameters	



148

Boll. Geof. Teor. Appl., 61, 145-158 Hashemi and Ghasem Fakhari

which	are	equal	to	the	eigenvalues	and	directed	along	their	corresponding	eigenvectors	as	shown	
in	Fig.	1.

As	shown	in	Fig.	1,	 the	orthogonal	eigenvectors	u	and	v	describe	the	orientation	of	feature	
in	 each	 point.	 Individually,	 for	 each	 sample,	 the	 eigenvector	 u,	 corresponding	 to	 the	 largest	
eigenvalue	(λu),	is	parallel	to	the	directions	in	which	the	image	features	vary	most	significantly.	As	
shown	in	Fig.	1,	the	components	of	the	unit	vector	û	are	related	to	local	dips	θ	in	each	sample	by:

u1 = |u| cos θ,	 (4)

u2 = |u| sin θ,	 (5)

Finally,	the	dominant	orientation	(local	dip)	in	each	sample	is	computed	from	the	eigenvector	
u	associated	with	λu	as:

dip	(0)	=	tan–1(u2/u1).	 (6)

2.2. Wave separation process using dip masking filter
Using	 dip	 masking	 filter	 for	 VSP	 wavefield	 separation	 based	 on	 the	 structure	 tensor,	 the	

following	steps	are	proposed:
1.	 application	of	a	smoothing	filter	(e.g.	with	Gaussian	kernel)	on	data	to	reduce	random	noise	

and	non-structural	orientations;
2.	 calculate	the	partial	derivatives	of	the	image	and	build	structure	tensor;
3.	 eigenvalue	decomposition	of	the	structure	tensor;
4.	 estimate	local	dip	over	each	sample;
5.	 use	a	moving	similarity	filter	on	dip	image	to	obtain	the	dominant	slope	of	each	sample;
6.	 apply	a	median	dip	filter	on	data	to	eliminate	noise	points	with	non-structural	directions;

Fig.	1	 -	The	structure	 tensor	at	point	O	
is	 visualised	 as	 an	 ellipse	 and	 its	 unit	
eigenvectors	u,	v	and	rooted	eigenvalues	
λu,	λv	are	also	depicted.
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7.	 create	two	dip	masking	filters	by	separate	positive	and	negative	obtained	dips;
8.	 apply	 created	 dip	 masking	 filters	 on	 VSP	 data	 to	 separate	 upgoing	 and	 downgoing	

wavefields;
9.	 using	the	f-k	interpolation	to	recovering	intersecting	points	after	apply	masking	filter.

In	a	noise-free	data,	the	estimated	orientation	by	structure	tensor	will	be	an	ideal	approximation	
for	the	slope	of	the	events	reported	in	sample	by	sample	manner.	But,	in	general,	the	presence	of	
noise	in	the	data	will	affect	the	estimated	directions.	In	practice,	mixing	the	content	of	coherent	
signal	 and	 random	 noise	 in	 seismic	 data	 is	 unavoidable.	 Therefore,	 we	 require	 to	 compute	
more	 stable	dominant	orientations	by	 implementing	 a	 smoothing	filter	 to	 each	 element	of	 the	
gradient-based	structure	tensors.	The	smoothing	helps	to	remove	the	noise	and	much	more	stable	
orientations	even	if	apparently,	 the	resolution	of	 the	input	 image	is	not	good.	In	the	algorithm	
presented,	the	first	step,	related	to	smoothing	data	before	calculating	the	dip,	is	done	with	serious	
considerations.	We	proposed	a	recursive	Gaussian	filter	for	smoothing	the	parameters	of	window	
widths	 both	 in	 time	 and	 spatial	 directions,	 these	must	 be	 optimally	 chosen	 for	 each	 input.	 It	
smoothes	a	few	pixels	whose	values	differ	significantly	from	their	neighborhood	without	affecting	
the	other	pixels.	Note	also	 that	by	 increasing	 the	size	of	 the	 smoothing	window,	 the	 structure	
tensor	is	robust	in	the	presence	of	noisy	data	with	less	effect	in	reducing	the	spatial	resolution	[for	
more	details	about	Gaussian	filter	and	choosing	optimum	smoothing	parameter	refer	to	Deriche	
(1992),	van	Vliet	et al.	(1998)	and	Hale	(2006,	2009)].

Steps	2,	3,	and	4	are	relevant	in	calculating	local	dip	over	each	sample	using	structure	tensors	
mentioned	in	section	2.1.	Before	creating	masking	filters	from	the	estimated	local	dips,	in	addition	
to	the	smoothing	in	step	1,	the	algorithm	performs	the	two	additional	steps	5	and	6	to	deal	with	
noise	and	estimated	random	orientations.

Step	5	is	somewhat	similar	to	the	nonlocal	algorithm	for	the	image	denoising,	except	that	it	
does	not	refer	to	the	image	and	is	only	applied	to	estimated	directions	from	structure	tensors.	After	
computation	of	local	directions	in	each	sample,	a	matrix	with	2×1	element	is	constructed	at	each	
pixel	of	the	original	image.	Next,	this	matrix	is	decomposed	into	a	number	of	vertical-horizontal	
overlapping	small	windows.	For	the	central	pixel	of	each	window,	the	cosine	similarity	between	
this	pixel	and	neighbourhoods	is	calculated	and	on	the	basis	of	the	reported	value,	it	is	decided	to	
keep/remove	the	direction	for	that	pixel.	A	threshold	similarity	value	by	the	user	must	be	set	in	the	
algorithm.	The	schematic	performance	of	this	step	is	shown	in	Fig.	2.

Fig.	2	-	Schematic	performance of	moving	similarity	filter	presented	in	step	5	on	the	dip	image	to	obtain	the	dominant	
slope	of	each	sample.
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In	step	6,	a	median	filter	is	applied	on	data	using	the	estimated	dominant	dip	information,	to	
eliminate	noise	points	which	have	non-structural	directions.	 In	step	7,	 two	dip	masking	filters	
are	created	by	separate	positive	and	negative	calculated	dips	and	the	masking	filters	are	applied	
accordingly	on	VSP	data	 to	separate	upgoing	and	downgoing	wavefields	 in	step	8.	Finally,	 in	
the	last	step,	the	f-k	interpolation	is	used	to	recover	intersecting	points	after	application	of	the	
masking	filter.

In	general,	our	proposed	method	is	not	a	noise	removal	method	and,	if	there	is	significant	noise	
in	data,	it	is	better	to	use	denoising	processes	before.

3. Examples

3.1. Application on a synthetic model
To	display	the	efficiency	of	the	proposed	method,	it	is	firstly	tested	on	a	synthetic	VSP	data	

set.	Fig.	3a	shows	a	simple	synthetic	VSP	data	set	containing	a	single	downgoing	and	a	single	
upgoing	wavefield.	Fig.	3b	shows	eigenvectors	computed	from	structure	tensors	in	each	sample	

Fig.	3	-	a)	A	simple	synthetic	VSP	data	set	with	a	single	upgoing	and	a	single	downgoing	wavefield;	b)	eigenvectors	
computed	from	structure	tensors	in	each	sample	exhibiting	local	structural	orientation;	c)	and	d)	VSP	downgoing	and	
upgoing	waves	obtained	from	applying dip	masking	filter	on	synthetic	data.
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where	 structural	orientations	 in	 these	points	 are	 shown	 (for	 a	better	visualisation,	1	out	of	20	
eigenvectors	in	all	images	is	shown).

After	 the	 creation	 of	 two	 dip	masking	 filters,	 namely	with	 positive	 and	 negative	 obtained	
dips,	and	performing	the	dip	masking	filter	on	synthetic	VSP	data,	the	separated	downgoing	and	
upgoing	wavefields	are	obtained	(Figs.	3c	and	3d,	respectively).	As	it	is	shown	in	Figs.	3c	and	
3d,	the	proposed	method	separates	downgoing	and	upgoing	wavefields	from	each	other	without	
artifacts	or	smoothing.

As	shown	in	Fig.	3b,	in	this	image	all	 the	orientations	are	correctly	estimated	by	structural	
tensor	and	they	contain	three	dominant	directions:	1)	a	downgoing	event	with	negative	dip,	2)	
upgoing	event	with	positive	dip,	and	3)	background.

Now	we	add	 the	Gaussian	white	noise	 to	 the	primary	synthetic	VSP	data	 set	and	compute	
eigenvectors	calculated	from	structure	tensors	with	and	without	the	use	of	a	smoothing	filter.	The	
results	for	the	two	noise	values	are	shown	in	Figs.	4	and	5.

Fig.	4	-	a)	Noisy	synthetic	VSP	data	set	corrupted	by	a	middle	level	of	Gaussian	white	noise;	b)	eigenvectors	computed	
from	structure	tensors	without	the	use	of	a	smoothing	filter;	c)	eigenvectors	computed	from	structure	tensors	with	the	
use	of	a	Gaussian	smoothing	filter.

As	shown	in	Figs.	4	and	5,	the	noise	affects	the	estimated	directions	and	causes	the	deviation	
of	the	slope	approximation	of	the	events.	But,	by	using	the	smoothing	filter	on	both	images,	the	
estimated	orientations	for	dominant	directions	(upgoing	and	downgoing)	are	correctly	calculated.
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3.2. The issue of intersecting waves
Structural	tensors	are	a	good	estimator	for	finding	the	direction	of	the	wave	paths,	but	only	

for	cases	 in	which	 they	do	not	 intersect.	Hence,	 the	standard	structural	 tensor	breaks	down	 in	
the	 presence	 of	 intersecting	 wavefields.	 In	 order	 to	 solve	 the	 difficulty	 in	 estimating	 correct	
conflicting	dips,	Chen	(2016)	proposed	a	dip-separated	filtering	approach.	However,	in	this	study	
our	objective	is	to	separate	upgoing	and	downgoing	wavefields	in	the	simplest	way	with	the	lowest	
cost;	it	implies	that	the	precise	local	slope	estimation	at	the	intersection	point	is	not	targeted.

For	 the	 case	 of	 two	 intersecting	 local	 orientations	 with	 different	 directions,	 the	 proposed	
approach	can	smartly	represent	only	one	of	the	dominant	paths	for	the	corresponding	direction	
using	f-k	interpolation.

In	Fig.	6a,	a	simple	example	of	two	waves	with	different	local	orientations	is	shown.	Figs.	6b	
and	6c	show	the	computed	local	dip	vectors	from	structure	tensors	in	each	sample.	As	shown	in	
this	figure,	at	the	intersection	point	only	the	most	dominant	direction	is	restored.	After	calculating	
the	local	dip	at	each	point,	the	upgoing	and	downgoing	masking	filters	are	created	by	collecting	
positive	and	negative	dips,	respectively.	Finally,	the	dip	masking	filters	are	applied	on	the	input	
data	(Fig.	6a)	and	the	separated	upgoing	and	downgoing	wavefields	are	generated	(Figs.	6d	and	
6e,	respectively).	As	shown	in	Fig.	6c,	only	the	upward	direction	is	obtained	at	the	intersection	
point,	so	in	finding	the	masking	filter,	this	area	is	assigned	only	to	upgoing	wavefield.	Therefore,	

Fig.	5	-	a)	Noisy	synthetic	VSP	data	set	corrupted	by	a	high	level	of	Gaussian	white	noise;	b)	eigenvectors	computed	
from	structure	tensors	without	the	use	of	a	smoothing	filter;	c)	eigenvectors	computed	from	structure	tensors	with	the	
use	of	a	Gaussian	smoothing	filter.
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the	 nearby	 samples	 are	 incorrectly	 removed	 in	 downgoing	 wavefields	 and	 a	 discontinuity	 is	
observed	in	downgoing	wavefield	at	this	intersecting	point	(Fig.	6e).

In	 this	 paper,	 we	 use	 the	 f-k	 interpolation	 technique	 to	 recover	 intersecting	 points	 after	
applying	a	masking	filter	on	data.	Fig.	6f	shows	the	downgoing	wave	after	recovering	by	the	f-k	
interpolation	at	the	intersection	point.

3.3. Real data example
We	consider	now	a	real	vertical	seismic	profile	from	a	3D	elastic	simulation.	This	data	set	

has	been	acquired	in	SEAM	Phase	I	RPSEA	based	on	the	geology	of	the	Gulf	of	Mexico.	The	
described	method	gives	us	a	tool	to	separate	downgoing	and	upgoing	wavefields.	Fig.	7	shows	
this	VSP	data	set	consisting	of	downgoing	and	upgoing	wavefields.

Fig.	6	-	a)	A	a	simple	example	of	two	waves	with	different	local	orientations;	b)	eigenvectors	computed	from	structure	
tensors	 in	 each	 sample;	 c)	 eigenvectors	 in	 each	 point;	 d)	 upgoing	 events	 obtained	 from	 the	 application	 of	 the dip	
masking	filter	on	primary	data	shown	in	panel	a;	e)	downgoing	events	obtained	from	the	application	of the	dip	masking	
filter	on	primary	data	shown	in	panel	a,	at	the	intersection	point,	a	discontinuity	is	observed	in	downgoing	wavefield;	f)	
downgoing	wavefield	after	recovering	by	the	f-k	interpolation	at	the	intersection	point.

Fig.	 7	 -	 A	 real	 vertical	 seismic	 profile	 data	 set	
consisting	of	downgoing	and	upgoing	wavefields.
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Fig.	 8	 shows	 eigenvectors	 computed	 from	 structure	 tensors	 in	 each	 sample	 where	 there	 is	 a	
structural	orientation	in	these	points.	These	dominant	directions	help	us	to	separate	downgoing	
and	upgoing	events	from	each	other.

Fig.	8	-	Eigenvectors	computed	from	structure	tensors	in	each	sample.	The	direction	of	these	eigenvectors	can	represent		
a	 local	structural	orientation	in	each	sample	(of	course,	for	the	presentation,	 the	eigenvector	of	all	 the	points	is	not	
drawn	but	only	one	out	ten	points).

After	applying	generated	dip	masking	filters	on	the	real	VSP	data	shown	in	Fig.	7,	the	separated	
downgoing	and	upgoing	wavefields	are	generated	(Figs.	9a	and	9b,	respectively).	

Fig.	9	shows	the	progression	obtained	by	the	dip	masking	filter	in	the	upgoing	and	downgoing	

Fig.	 9	 -	 Downgoing	 events	 obtained	 from	 applying the	 dip	masking	 filter	 on	 primary	VSP	 data	 (a)	 and	 upgoing 
events	(b).
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separation.	As	 it	 is	 clear	 in	 this	 figure,	 in	 points	 of	 discontinuity	 intersection	 in	 the	 upgoing	
and	downgoing	events	continuity	of	events	is	lost.	The	solution	presented	here	is	the	use	of	f-k	
interpolation	in	intersecting	points.

Figs.	10a	and	10b	are	 the	 separated	downgoing	and	upgoing	wavefields	after	 interpolation	
at	the	intersecting	points.	These	figures	highlight	that	the	continuity	of	seismic	events	has	been	
sufficiently	recovered.	The	result	of	another	standard	wavefield	separation	method	(flattening	and	
subsequent	median	filtering)	is	shown	in	Figs.	11a	and	11b.

Comparing	the	separation	results	obtained	by	the	application	of	the	median	filter	method	(Fig.	
11)	with	 the	proposed	method	 (Fig.	10),	 it	 is	 clear	 that	 there	 is	not	 significant	 interference	of	

Fig.	 10	 -	 Downgoing	 separated	 wavefields	 recovered	 in	 intersection	 points	 by	 f-k	 interpolation	 (a)	 and	 upgoing	
wavefields	after	recovered	(b).

Fig.	11	-	Downgoing	separated	(a)	and	upgoing	wavefields	obtained	by	median	filter	method	(b).
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downgoing	events	in	the	separated	upgoing	waves	(Fig.	10b),	but	clearly,	downgoing	waves	are	
visible	in	separated	upgoing	wavefield	obtained	by	the	median	filter	method	(Fig.	11b).

Comparing	 the	 separation	downgoing	 results,	 it	 appears	 the	highly	 coherent	 visible	 output	
of	 standard	median	 filtering	 algorithm.	 However,	 a	 further	 look	 to	 the	 computed	 histograms	
of	 amplitudes	 (Fig.	12)	 confirms	 that	 the	median	filtering	has	considerably	changed	 the	norm	
of	 amplitude	values	 and	distribution	considerably.	The	 similarity	of	Figs.	 12a	 and	12b	highly	
emphasises	the	amplitude	preserving	manner	of	the	proposed	method.

Furthermore,	first	break	picking	is	a	fundamental	step	in	VSP	wavefield	separation	by	median	
filter	method,	any	errors	of	these	arrival	times	may	have	significant	effects	on	the	results.	Another	
advantage	of	the	proposed	method	is	that	it	does	not	require	these	times.

Fig.	12	-	Histogram	of	amplitude	of:	a)	original	VSP	data;	b)	downgoing	wavefields	obtained	by	dip	masking	filter,	and	
c)	downgoing	wavefields	obtained	by	median	filter	method.
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4. Conclusion

In	this	paper,	we	have	proposed	a	new	approach,	structure	tensor	followed	by	dip	masking	
filter,	 to	 separate	 VSP	 downgoing	 and	 upgoing	 waves.	 The	 main	 idea	 of	 this	 method	 is	 the	
application	of	slope	of	events	to	separate	upward	and	downward	waves:	we	first	generate	a	mask	
with	the	same	size	of	data	using	the	slopes	derived	from	structure	tensor,	then,	by	applying	the	
mask	filter	on	data,	we	separate	the	upward	and	downward	waves.	This	leads	to	no	energy	leakage	
(amplitude	preserving	manner)	and	the	total	energy	after	separation	is	equal	to	the	initial	input	
ensemble	energy,	despite that,	in	traditional	methods,	wave	separation	often	occurs	when	data	is	
transferred	to	a	new	space	(f-k	domain	or	τ-p	domain).

Finally,	 it	was	shown	that	 the	approach	presented	in	this	paper	performs	well	 in	separating	
VSP	downgoing	and	upgoing	waves	and	offers	the	advantage	over	conventional	techniques	that	
no	averaging	of	amplitude	of	data	occurs,	so	no	artificial	smoothing	of	the	event	is	done	and	hence	
the	leakage	of	energy	is	nearly	zero.
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