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ABSTRACT The main aim of this study is to investigate the applicability of a Fuzzy Inference System 
(FIS) approach to produce a copper mineral potential map (MPM) at the Saveh area in 
the Markazi province of Iran. Seven indicator layers extracted from the geological, 
geochemical, and geophysical data sets are casted in a geospatial database for data 
integration. Indicator layers are rock types, alterations, Cu concentration anomaly, main 
geochemical principal component anomaly, reduced-to-pole magnetic data, electrical 
chargeability, and electrical resistivity. A fuzzy gamma operator is used at the first 
phase of exploratory data integration to produce three criterium layers that are geology, 
geochemistry, and geophysics. Then, at the second phase, the FIS is implemented in 
three main stages consisting of: 1) fuzzification of input/output data, 2) designing an 
inference engine, and 3) defuzzification of integrated data. The mineral favourability 
map is prepared and reclassified into five zones through a multifractal approach at 
the third phase. In order to evaluate the accuracy of the FIS method, the productivity 
index of 18 boreholes are utilised to examine the correlation between the mineralised 
zones and the MPM output. Whereby the synthesised indicator layers demonstrated a 
Pearson’s linear correlation coefficient of 0.44 in recognising copper mineralisation at 
depth. In addition, the eastern and central portions of the Saveh prospect were proposed 
as favourable potential zones for further mining operation.
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1. Introduction

The ultimate goal of a mineral exploration program is to detect new economical depositions in 
a sought region. Collecting simultaneously various geospatial data sets (e.g. geology, geophysics, 
and geochemistry), processing these data to extract exploratory indicator layers and data 
integration are called mineral potential mapping (MPM). Indeed, MPM is a multiple criterion 
decision-making (MCDM) task which provides a predictive model for categorising of sought 
areas in terms of ore mineralisation (Abedi and Norouzi, 2012; Abedi et al., 2012).

Knowledge and data-driven methods are two major categories developed for MPM to delineate 
highly favourable areas for exploration of a special sought deposit (Bonham-Carter, 1995; 
Carranza, 2008). The theory of fuzzy sets and fuzzy logic (Zadeh, 1965) is categorised in the 
knowledge-driven approach of MPM by which the weight assignment of indicator layers are on 
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the basis of the decision makers (DMs)’ judgments (e.g. D’Ercole et al., 2000; Knox-Robinson, 
2000; Carranza and Hale, 2001; Porwal et al., 2003; Tangestani and Moore, 2003; Abedi et al., 
2012; Barak et al., 2018a, 2018b). There are various types of fuzzy algebraic operators, that are 
fuzzy AND, fuzzy OR, fuzzy algebraic product, fuzzy algebraic sum, and fuzzy gamma operator 
(Mizumoto and Tanaka, 1981). However, among fuzzy algebraic operators, which have been 
extensively discussed by Zadeh (1965) and Lee (2007), the fuzzy gamma operator is defined as 
a combinatory operator of both the fuzzy algebraic product and the fuzzy algebraic sum. The 
contribution of each of these operators is controlled by a gamma parameter that varies at an 
interval from 0 to 1. Thus, the fuzzy gamma operator allows for more flexible combinations of 
weighted indicator maps, and could be readily implemented.

Utilisation of fuzzy logic for MPM is not a new idea. After its implementation for the first time 
in synthesising exploratory indictor layers by An et al. (1991), numerous researchers studies have 
dedicated to investigate the performance of the fuzzy logic for delineation of various types of ore 
deposits (e.g. Nykänen et al., 2008; Joly et al., 2012; Lisitsin et al., 2013; Lindsay et al., 2014). As 
expressed by Mamdani and Assilian (1975), the inferencing techniques of a FIS are divided into three 
types that are Mamdani-style, Sugeno-style, and Tsukamoto-style. They are run in three main stages: 
1) fuzzification of input/output data, 2) designing a fuzzy inference system, and 3) defuzzification 
of the output (Mamdani and Assilian, 1975; Sabri et al., 2013). Among all, the FIS of Mamdani and 
Tagaki-Sugeno algorithms have been extensively employed in various fields of geoscience (Nguyen 
and Ashworth, 1985; Gokay, 1998; Acaroglu et al., 2008), particularly for mineral exploration (e.g. 
Alaei Moghadam et al., 2015; Porwal et al., 2015; Barak et al., 2018a, 2018b).

This study focuses on the integration of a multidisciplinary geospatial database comprising of 
several indicator layers extracted from geology, geophysics, and geochemistry data, pertaining 
to a deposit-scale porphyry copper zone (i.e. the North Narbaghi) at Saveh district in Markazi 
province of Iran. A FIS methodology is run in three phases to synthesise indicator layers into a 
porphyry copper mineral favourability map. At first phase, a fuzzy gamma operator is utilised to 
prepare three main criteria of geology, geophysics, and geochemistry through integration of their 
sublayer indicators. Then, in the second phase, a FIS is implemented to integrate these criteria 
into a single mineral potential map. Finally, a multifractal approach is employed in the third 
phase to classify the MPM into some favourability zones, whereby the most productive one(s) is 
suggested for exploratory drillings.

The remainder of this work has been prepared as follows. Second section describes concisely 
the FIS methodology. Geological setting of the studied area is presented in the third section. In 
section four, the geospatial data sets are explained for geology, geochemistry, and geophysics 
in order. Fifth section illustrates how to implement data integration in details. The accuracy of 
the final synthesised indicator layers for porphyry copper targeting is evaluated and discussed in 
section six. Finally, the main achievements of this study are concluded in the last section.

 

2. Methodology

Literatures survey illustrates that the comprehensive explanations and more details of the FISs 
were studied by many researchers (Monjezi et al., 2009; Rezaei et al., 2014; 2015). As stated 
by Tang (2004), Alaei Moghadam et al. (2015), and Barak et al. (2018a), a FIS is a mapping 
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technique by which the fuzzy logic conducts the inputs to produce outputs. The FIS recognised 
as a knowledge-driven MPM method is an artificial intelligence system, which is transparent, 
intuitive and easy to build (Porwal et al., 2015). As declared by Bárdossy and Fodor (2003), the 
fuzzy set technique is an appropriate method for geoscience applications, because of adoptability, 
intelligibility and simplicity aspects. Various researchers have employed successfully the FIS in 
geospatial data analysis to explore mineral depositions (e.g. Alaei Moghadam et al., 2015; Porwal 
et al., 2015; Barak et al., 2018a, 2018b).

As mentioned, to run a popular inference system, that is a Mamdani-style, three steps of the 
fuzzification, the inference engine designing, and the defuzzification are required (Mamdani and 
Assilian, 1975). These steps for MPM are as follows:

(i) fuzzification of input indicator layers. This stage includes assigning fuzzy membership 
values to the input predictor maps through a fuzzy membership function. There are various 
types of functions to fuzzify inputs such as triangular, trapezoidal, Gaussian, and so on 
(Osna et al., 2014; Porwal et al., 2015; Shams et al., 2015; Barak et al., 2018a). As discussed 
by Masters (1993), the selection of a fuzzy membership function is an indispensable stage 
which can substantially affect the output directly. Among all functions commonly utilised 
in geoscience applications, triangular, trapezoidal, and Gaussian are popular (Osna et 
al., 2014; Shams et al., 2015). For more details, the work by Luo and Dimitrakopoulos 
(2003) are suggested. Fuzzy membership weights are assigned through the DMs’ attitudes 
towards MPM, but some researchers have employed objective mathematical functions for 
such task (e.g., Luo and Dimitrakopoulos, 2003; Porwal et al., 2003);

(ii) integration of indicator layers or designing an inference engine. This stage for the sake of 
defining the if-then rules is the most influential section of the technique. Here, the DMs 
should capture all realistically possible conditions between input indicator layers and final 
potential map. The number of fuzzy if-then rules in a FIS increases with the increasing 
of input variables (indicator layers), known as the disadvantage of a FIS technique. 
Thus, it can be a too complicated model for MPM. To tackle such a deficiency, Alaei 
Moghadam et al. (2015), Porwal et al. (2015), and Barak et al. (2018a) have proposed the 
implementation of the whole fusion in two stages, where indicator layers are integrated 
into three main criteria of geology, geochemistry, and geophysics at the first stage, and, 
then, these criteria are integrated via a FIS in the second stage;

(iii) defuzzification of output layer. The fuzzified output layer must be converted into a crispy 
format. Various models have been proposed for defuzzification that are centre of gravity, 
weighted average, maximum mid centre, and centre of the greatest levels (Klir and Yuan, 
1995).

3. Geological setting of the North Narbaghi

A north dipping subduction of the Neo-Tethys Ocean has affected the Iranian plateau begun in 
the Mesozoic era (Stöcklin, 1968; Berberian and Berberian, 1981). After maturing the subduction 
zone and the overlying continental magmatic arc, intense igneous activities led to a wide belt 
consisting of Cenozoic plutonic and volcanic units, which is known as the Urumieh-Dokhtar 
magmatic assemblage zone (UDMA) in the Iran structural geology map. Such subduction generated 
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the UDMA as a distinct, linear intrusive-extrusive complex with elongation from the NW to SE of 
Iran, located among the magmatic-metamorphic Sanandaj-Sirjan zone (SSZ) and the central Iran 
domain (Nouri et al., 2018; Imamalipour and Barak, 2019). The Saveh prospect zone is located at 
the UDMA zone (Fig. 1), where the UDMA (also known as the Sahand-Bazman or Tabriz-Bazman 
zones) is the main host of the porphyry and epithermal metallic deposits such as Cu, Au, and Mo 
(Berberian and King, 1981; Rezaei et al., 2015). This ore-bearing zone defined as a ~ 50-100-km 
wide belt dominated by an Andean-type magmatic arc created at the crust of the Central Iranian 
Micro-Continent (CIMC) structural unit. The UDMA is discerned by the Cenozoic extrusive and 
intrusive units with an age of Eocene-Quaternary along with the associated volcanoclastic rocks. 
Intrusive magmatic units in the UDMA are often the subvolcanic porphyritic granitoid units of 
diorite, granite, granodiorite, and tonalite rocks (Shahabpour, 2005; Kazemi et al., 2018). Igneous 
activities have frequently occurred in Paleogene, where these volcanic rocks in the Saveh area are 
thicker than 4 km, and include pyroclastic sequences, lava flows, tuff, and ignimbrites (Stöcklin, 
1968; Berberian and Berberian, 1981; Alavi, 2007).

From a detailed geological point of view, the mineralised zone in the North Narbaghi copper 
deposit indicates a volcano-genetic type of mineralisation, and it is located on the volcanic belt of 
the UDMA zone. The main rock units dominating the studied area are as follows (Fig. 1):

1) monzogranite to quartz monzonite units as the main host rocks of the Cu mineralisation 
which were severely dominated by argillic alteration. The number of intrusive rocks in the 
Saveh region is relatively high, but most of them are exposed as small masses. The age of 
these masses is attributed to the early Oligocene. The extension of these intrusive masses has 
been in association with the great lineaments of the region. In fact, all of intrusive masses 
around the Saveh were observed on the margins and sides of the fractures. Therefore, it can 
be assumed that the intrusive masses of this region were fed by a batholith source. Two 
types of alteration were observed in this unit that are phyllic and argillic alterations. The 
phyllic alteration was seen in portions with minerals including pyrite, sericite, and quartz, 
and the areas with depleted Cu mineralisation were the masses severely affected by the 
argillic alteration. In some parts, the intrusive masses were unaltered;

2) basaltic andesite unit with silicic alteration. Volcanic activity in the area gave rise to the 
formation of the basaltic andesite within the porphyritic hornblende andesite unit, which 
has a dark gray color, with a distinct outcrop than the surrounding rocks. These rocks are 
mostly surrounded by the monzogranite and quartz monzodiorite units;

3) porphyritic hornblende andesite types with propylitic alteration. The influence of the severe 
alteration of the coarse crystals, such as chlorite, epidote, and carbonate, emerges clearly 
in the andesite, which has led to the transformation of plagioclase and amphibole into 
these minerals. The andesite unit with an Eocene age is the oldest and the widest rock unit 
in the south of the mineralised region. Chlorite alteration was sporadically obvious and 
intensively increased in proximity to the mineralised areas (Ghalamghash, 1998; Ramazi 
and Jalali, 2015).

Fault lineaments with little outcrop in the area did not have much effect on the Cu mineralisation. 
With association to the disseminated type of the Cu mineralisation, the effect of the faults just led 
to locally trivial Cu enrichment. The largest fault observed in the region was with an approximate 
N-S trend in the west of the area (Dehghan Nayeri, 2018).
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4. Geospatial data sets

Taking the conceptual model of porphyry copper mineralisation into account (Sillitoe, 2010), 
seven indicator layers were derived from the geological, geochemical, and geophysical data sets. 
These layers are explained in this section to construct a geospatial database. Each indicator layer 
was scored at an interval of [0, 1] by a group of DMs with expertise in porphyry copper exploration 
to suppress scaling effects perturbing the integration result. Each indicator layer was discretised 
into pixel sizes of 40×40 m2 to construct the multidisciplinary database. After generation of all 
indicator layers, in the first phase of MPM, three criteria layers of geology, geochemistry, and 
geophysics are constructed through a fuzzy gamma operator.

Fig. 1 - The general structural geological map of Iran (a), and the simplified geological units in the North Narbaghi 
copper deposit (b).
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4.1. Geological indicators
Due to conceptual model of Cu mineralisation (Arribas 1995; Singer et al., 2002; Sillitoe, 

2010) and geoscientist DMs’ attitudes towards MPM, monzogranite to quartz monzonite units 
were gained the highest score as the main host rocks of the copper depositions (Fig. 2a). In 
addition, the disseminated nature of the Cu mineralisation with the phyllic alteration scattered 
in these units were assumed the highest scores in the alteration layer (Fig. 2b). Subsequently, 
the porphyritic hornblende andesite and the basaltic andesite units were assigned lower scores, 
respectively. The lowest score was also assigned to the propylitic alteration which has surrounded 
the main zones of mineralisation. Since there were not any evidence of the Cu mineralisation in 
association with the fault activities in the North Narbaghi, they were not taken into consideration 
as an individual indicator layer. Then, the geology criterion of the Saveh area was prepared 

Fig. 2 - The geological indicator layers: a) rock type; b) alteration; c) geological criterion.
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through the integration of rock types and alterations using a fuzzy gamma operator. The gamma 
value is determined by a trial-and-error test which was equivalent to 0.9 (Fig. 2c). Integration of 
geological indicators into a single geology criterion (first phase) can facilitate the design of if-then 
rules when running a FIS.

4.2. Geochemical indicators
Lithogeochemical survey was conducted in the area, where 47 samples were collected 

systematically. The distance of the sampling was less over the monzogranite and quartz monzonite 
units, where evidences of the Cu mineralisation were manifested. The descriptive statistical 
characteristics of the main elements, correlated strongly with the Cu element, has been presented 
in Table 1. Pearson’s linear correlation coefficients for six elements are tabulated in Table 2, and 
they indicate the enrichment of Mo, Zn, Co, As, Sb, and Li versus the Cu concentration. This 
correlation was negative for Mg (-0.567), where there was depletion of the Mg element over the 
mineralised zones. The non-normal distribution of the Cu concentration was evident based on the 
histogram, box, and quantile-quantile (q-q) plots shown in Figs. 3a, 3b, and 3c, respectively. Such 
a strong non-normal distribution can be relevant to favourable zones of copper mineralisation, 
where the background copper concentration with a mean value of 2256 ppm has enriched to an 
amount of 13,333 ppm. Fig. 4a indicates the geochemical map of the Cu concentration in the area 
where two distinct zones were visible as the geochemically anomalous zones.

The principal component analysis (PCA) as a well-known multivariate statistical technique and a 

Table 1 - Descriptive statistical summaries of main correlated elements (in ppm).

 Element Min Max Mean Median Std. Skewness Kurtosis

 Cu 3.83 13333.00 2256.10 134.13 4333.30 1.880  4.95

 Mo 0.66    11.30    3.12   1.94    3.30 1.510  3.99

 Zn 7.53   568.00   69.17  24.00  103.98 2.790 12.50

 Co 6.00   167.00   45.44  20.57   53.92 1.480  3.64

 As 3.33  5960.00  668.46  42.00 1483.1 2.500 v8.11

 Sb 3.33   229.00   27.33   5.51   55.82 2.640  8.66

 Mg 0.06     3.07    1.06   1.06    0.78 0.690  3.06

 Li 0.75   144.00   22.13  10.00   32.56 2.078  6.76

Table 2 - Pearson’s linear correlation coefficient.

 Element Cu Mo Zn Co As Sb Mg Li

 Cu -1.000

 Mo -0.845 -1.000

 Zn -0.573 -0.440 -1.000

 Co -0.872 -0.734 -0.504 -1.000

 As -0.869 -0.863 -0.518 -0.748 -1.000

 Sb -0.816 -0.869 -0.464 -0.653 -0.748 -1.000

 Mg -0.567 -0.563 -0.292 -0.605 -0.653 -0.478 -1.000

 Li -0.631 -0.444 -0.388 -0.811 -0.605 -0.389 -0.543 1.000
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dimension-reduction tool was employed to the eight lithogeochemical elements. This technique leads 
to a main principal component (PC) indicator layer in strong association with the Cu mineralisation. 
In this analysis, the PC scores are calculated by the projection of the original geochemical data 
onto the PC axes (eigenvectors). The elements of the eigenvector that compute the PC scores of 
the original input data are named loadings (or eigenvalues), which indeed are coefficients of a 
linear equation for introducing an eigenvector. The original PCs usually are rotated to maximise 
the elements’ loading in contrast. Simply speaking, the process involves moving each PC axis to a 
new position so that projections from each variable onto the PC axes are either near the extremities 
or near the origin. Therefore, high loadings attain +/–1 values and low ones tend to 0 (Davis, 2002; 
Abedi et al., 2013). Table 3 has tabulated the eight PC components, where PC1 with about 68.5% 
of variation variance has the most close consistency with the Cu mineralisation. Fig. 4b plotted the 
PC1 indicator map, while two mineralised zones were distinguished from the PCA analysis result of 
the main correlated elements pertaining to the Cu mineralisation. Finally, the geochemical indicator 
criterion of the Saveh area was generated through the integration of the Cu concentration anomaly 
and the PC1 indicator map, assuming a fuzzy gamma operator (γ = 0.95, Fig. 4c).

4.3. Geophysical indicators
Magnetometry and geo-electrical surveys, as two prevalent geophysical tools, can approve 

valuable pieces of information about the types of alteration, rock, and ore mineralization, 

Fig. 3 - The statistical charts from the 
lithogeochemical samples in the prospect 
region: a) histogram; b) box; c) Q-Q plots 
of the Cu concentration.
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Fig. 4 - The normalised geochemical indicator layers: a) Cu concentration; b) main principle component; c) geochemical 
criterion.

Table 3 - The PC analysis for correlated lithogeochemical elements, where the PC1 was chosen as the main factor in 
association with the Cu mineralisation.

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

 Mo  0.381 -0.284 -0.211 -0.024 -0.434  0.725 -0.113  0.047

 Cu  0.405 -0.052  0.038  0.134 -0.381 -0.537 -0.614 -0.059

 Zn  0.262 -0.055  0.869 -0.400  0.026  0.104  0.039 -0.016

 Co  0.386  0.294  0.030  0.268 -0.395 -0.197  0.705  0.017

 As  0.397 -0.281 -0.070  0.125  0.445 -0.107  0.056  0.728

 Sb  0.374 -0.438 -0.143  0.039  0.400 -0.097  0.183 -0.666

 Mg -0.291 -0.381  0.408  0.766 -0.077  0.101 -0.006 -0.018

 Li  0.303  0.641  0.084  0.378  0.382  0.324 -0.273 -0.139

 % variance 68.510 11.390  8.970  6.090  2.560  1.430  0.880  0.170
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particularly for porphyry-type deposits (Thoman et al., 1998; Clark, 1999; John et al., 2010). The 
porphyry Cu deposits are often surrounded by contrasting zones of different alterations centred 
on the main source of mineralisation. Such alteration types are generally localised by fluctuations 
of the magnetic field intensities over their regions. Weak background magnetic intensity increases 
over the potassic zone (due to iron-oxide contents such as magnetite), decreases over the sericitic/
phyllic zones, and gradually intensifies over the propylitic zone. Similar to the magnetic anomalies, 
the lowest electrical resistivity (Res) and the highest induced polarisation (IP) anomalies are 
associated with the sericitic/phyllic alteration that has high sulfide content. Since the potassic 
alteration as the core of the porphyry-type deposits depletes in total sulfide minerals and the 
distal zone of the propylitic alteration has low amounts of pyrite mineral, they are frequently 
corresponded to the regions with higher resistivity and lower polarisation anomalies.

Magnetometry survey was carried out along 28 N-S profiles with 40 m spacing for acquisition 
of 1077 data samples at station interval of 20 m. The Earth’s magnetic field intensity was about 
47,680 nT with an inclination and declination angles of 53.5° and 4.3°, respectively. Firstly, 
the total magnetic anomalies over the prospect region was obtained with a distinct anomalous 
region at the southern part of the area over the porphyritic hornblende andesite unit despite of no 
evidences of the Cu mineralisation based on the geological field operation. After eliminating the 
background magnetic field, the reduced-to-pole (RTP) transformation of the residual magnetic 
data was conducted to eliminate the inclination influence of the induced magnetic field by putting 
it at the north pole. In fact, it corrects the location of the magnetic anomaly by moving the positive 
portion of the observed signal over the causative source, amplifies the observed magnetic signal, 
and generates almost a symmetric positive anomaly. The RTP indicator layer, shown in Fig. 5a, 
depicted that the background magnetic anomalies have decreased at the centre of the Narbaghi, 
where it was mostly in association with the monzogranite to quartz monzonite units with intense 
phyllic alteration.

To investigate the electrical properties of the subsurface layers at the region, seven time-domain 
direct current electrical resistivity tomography (ERT) profiles, with electrode spacing of 20 and 
mostly 40 m, have been surveyed to image the resistivity and induced polarisation variations at 
depth. The measurements were applied by two configurations of pole-dipole and pole-pole arrays 
to obtain data from deeper sources. Since the aim of this study was to generate 2D MPM maps, 
two horizontal slices from the inverted electrical models were extracted. These depth slices were 
chosen at the centre of probable Cu mineralisation zone. Figs 5b and 5c revealed the normalised 
values of the IP and Res maps used in designing of the geospatial database. Both maps showed 
that the central part of the prospect area had more favourability for the Cu mineralisation, where 
the phyllic alteration scattered among the monzogranite to quartz monzonite units. Finally, the 
geophysical criterion at the Saveh area was prepared through the integration of the RTP, IP and 
Res indicators, using a fuzzy gamma operator (γ = 0.88, Fig. 5d).

5. Mineral potential mapping

A new Mamdani FIS method is employed here to generate the MPM. In order to determine the 
existence of Cu mineralisation, three main criteria of geology, geochemistry, and geophysics were 
prepared as input parameters in the first phase. In the second phase, the FIS is used to generate an 
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integrated map. Fig. 6 indicates the decision tree flowchart of these two phases for MPM. To run 
the FIS in the second phase, the following steps are considered:

i) fuzzification: the first step of the FIS integration approach is a mathematical procedure 
that converts numerical variables to language variables for both input and output data. 
It is normally implemented by fuzzy membership functions. Literature review indicates 
that the triangular and trapezoidal membership functions are used in the most studies. 
Nevertheless, the trial and error method is used to achieve the optimum membership 
functions in the current study. Here, the trapezoidal membership functions were used for 

Fig. 5 - The normalised indicator layers of the RTP magnetic data (a), electrical chargeability (IP) (b), electrical 
resistivity (Res) (c), and geophysical criterion (d). 
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fuzzifying geological, geochemical, and geophysical criteria. For input criterion, three 
linguistic variables were defined including “poor”, “average” and “strong” potential (Figs. 
7a, 7b, 7c), while for output layer (MPM) five linguistic variable have been used, that are 
“poor”, “below average”, “average”, “above average” and “strong” potential (Fig. 7d); 

ii) inferencing engine: in this step sufficient fuzzy “if-then” rules are designed to create 
a powerful “rule base” in order to indicate the relations between the input and output 
variables. These rules were applied based on the expert DMs. As aforementioned, to deal 
with increasing numbers of the if-then rules, the integration approach of this study was 
performed in two phases. Firstly, the indicator layers were integrated by gamma operators 
and subsequently three main criteria were prepared. Secondly, the FIS approach is used to 
integrate the main criteria (Fig. 6). Some of the defined rules have been tabulated in Table 
4 and the simplified procedure of integration has been depicted in the Fig. 8;

iii) defuzzification: as mentioned by Porwal et al. (2015), the centroid of area is the most 
widely used model for defuzzification, which can be formulated as follows:

Fig. 6 - Decision tree flowchart for generating final potential map.
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(1)

 where, μĀ (x) illustrates the degree of the fuzzy membership for values of x, and finally 
the term Z* presents the centre of gravity for the membership function values (Fig. 8). 
Eventually, crispy output is obtained in this step. For instance, in Fig. 8, if the pixel values 
of the geological, geochemical, and geophysical criteria are respectively 0.74, 0.61, and 
0.20, the integrated pixel value will be 0.35.

Fig. 7 - Membership functions taken into account for: a) geological criterion; b) geochemical criterion; c) geophysics 
criterion; d) output mineral potential map.

Table 4 - Examples of if-then rules in the FIS.

 Rule Geology Geochemistry Geophysics Mineral Potential

 1 Poor Poor Poor Poor

 2 Poor Average Poor Poor

 3 Average Poor Average Average

 4 Strong Strong Average Above Average

 5 Strong Strong Strong Strong

The concentration-area (C-A) multifractal approach was applied to reclassify the area of 
generated mineral potential map into some favourability zones, which are consistent with separating 
anomalous regions from background. Experts have studied several techniques for diagnosing 
anomalous and promising zones. As presented by Turcotte (1997), the fractal relationship exists 
among the numerous of ore deposits with moderate concentration of different parts. Cheng et al. 
(1994) firstly proposed the C-A technique for extracting anomalous areas with best results. The 
model was expressed by the following equation:

A (ρ ≤ δ) = K ρ–β (2) 

where A (ρ) is the area with the concentration greater than a value ρ, δ denotes a threshold, β is 
the fractal dimension, and K is a constant.
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In this work for better consequence, the crispy output derived from the defuzzification of 
the integrated criteria was reclassified into five classes in terms of favourability for copper 
mineralisation through the C-A fractal-based curve (Fig. 9a), and the MPM of the porphyry 
copper mineralisation at the North Narbaghi in the Saveh district was prepared (Fig. 9b).

6. Discussion

MPM is a multiple criteria decision task requiring simultaneous consideration of geospatial 
data sets involving the geological, geochemical, and geophysical indicators. The MPM produces 
a predictive model for outlining the prospective areas. The efficiency of a FIS method as an 
artificial intelligence system was examined here to discover porphyry copper mineralisation in 
the Saveh area. Geospatial database consisted of three main indicator criteria of the geology 
(surface studies), geophysics (magnetometry and electrical surveys), and geochemistry. A group 
of DMs in the field of porphyry Cu exploration, with various disciplines in mineral exploration, 
was gathered together to guide the MPM process. Finally, seven indicator layers were extracted 
to implement the FIS method in three phases, where a distinct ribbon at the centre of the studied 
region was manifested as the most favourable zones for exploratory drillings (Fig. 9b). Such 
promising potential zone located at the monzogranite to quartz monzonite units.

The central portions of the North Narbaghi copper mineralisation were drilled by 18 vertically 
boreholes to investigate its mining prospectivity. The productivity index of each drilled borehole 
was calculated in Table 5 to evaluate the efficiency of the MPM. The productivity value was 
calculated from multiplying Cu concentration (in ppm unit) by its ore thickness (in metre) along 
each drilled borehole, finally normalised by the total length of borehole. Indeed, the productivity 
index has presented the average of the copper grade along the borehole. Fig. 9b has indicated 
borehole locations. The scatter plot of the productivities versus the MPM amounts extracted at 
the locations of drillings were plotted in Fig. 9c. The Pearson’s linear correlation coefficient 
(ρ) for the fitted linear curve was also calculated to evaluate the performance of the MPM. It is 

Fig. 8 - The simplified procedure of 
integrating layers by the FIS method.
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Fig. 9 - The fuzzy inference system output: a) the 
C-A multifractal curve; b) the final MPM; c) the 
curve of the productivity versus the MPM values at 
the drilling locations.

evident that positive correlation must happen when the MPM output is in consistency with the 
mineralised zones. It attained equal to 0.44.

Since produced MPM in this work was 2D for a deposit-scale prospect zone, the importance 
of drilled boreholes through calculation of the productivity index were projected and mapped on 
the surface. Indeed, it facilitated the evaluation of the performance of the MPM by comparison to 
the drilling results. It should be noted that some indicator layers such as those derived from the 
geophysical criteria (i.e. RTP, IP, and Res) had information from deep-seated sources. In other 
words, the effect of blind targets can be manifested on the surface geophysical data. Therefore, 
2D MPM could provide valuable information about deep targets in case of involving geophysical 
indicators.

7. Conclusion

The main aim of this study was to delineate probable porphyry copper mineralisation at the 
north Narbaghi in the Saveh, Markazi province of Iran. A fuzzy inference system was implemented 
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Table 5 - The descriptive of the boreholes with their productivity values.

 Borehole ID Length (m) Productivity (ppm)

  1 224.35   8.38

  2 184.45  84.62

  3 128.70 885.26

  4 110.40 199.99

  5 179.20 378.85

  6  96.10 167.22

  7 152.75 726.78

  8  55.00 107.38

  9  52.00 205.02

 10  93.40  14.68

 11  96.00 290.52

 12  78.00 382.40

 13 126.00 696.23

 14  56.60  11.02

 15 142.00 113.84

 16 113.00 119.26

 17  71.80 732.55

 18  54.00  13.44

in three phases to integrate seven indicator layers derived from geology, geochemistry, and 
geophysics data. Generated mineral favourability map located a distinct ribbon zone at the centre 
of the area, where such a potential zone was derived from a concentration-area multifractal 
analysis. Result of drillings in this zone showed copper occurrences at depth. Note that the 2D 
copper potential map has an acceptable correlation with the grade productivity of drillings.
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