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ABSTRACT	 Interpreting	and	studying	reflection	seismic	data	containing	low	levels	of	noise	has	
become	 easier	 and	more	 accurate.	Random	noise	 decreases	 the	 quality	 of	 seismic	
data	considerably,	and	suppressing	it	is	an	important	step	in	seismic	data	processing.	
In	 this	study,	we	 introduce	a	method	called	 local	 least	squares	polynomial	 (LLSP)	
smoothing	based	on	the	Savitzky-Golay	filter	to	diminish	seismic	random	noise.	This	
filter	is	based	on	smoothing	the	data	fitting	a	curve	in	the	least	squares	method	which	
can	eliminate	random	noise	significantly.	The	LLSP	smoothing	has	two	main	notable	
advantages.	First,	 simple	mathematics	governing	 it	which	makes	 it	 convenient	 for	
data	processing.	Second,	 its	excellent	ability	 to	preserve	the	signal	waveform	after	
application.	 The	 proposed	 method	 is	 applied	 on	 two	 synthetic	 models	 and	 real	
seismic	data.	For	a	more	accurate	investigation	of	the	method’s	efficiency,	the	results	
are	 compared	 with	 the	 techniques:	 frequency	 offset	 deconvolution	 filter,	 wavelet	
transform,	and	singular	value	decomposition.	The	final	results	in	both	synthetic	and	
real	data	show	that	the	proposed	method	is	as	powerful	as	other	well-known	techniques	
for	random	noise	attenuation,	also	the	signal	information	is	preserved	during	filtering.
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1. Introduction

The	 reflection	 seismic	 method	 is	 one	 of	 the	 most	 common	 methods	 used	 in	 exploring	
hydrocarbon	reservoirs.	Seismic	signals	that	are	reflected	from	different	layers	of	the	Earth	contain	
important	information,	so	the	high	quality	of	these	seismic	signals	helps	extract	information	of	
Earth	interior	(Sheriff	and	Geldart,	1995).	In	a	reflection	seismic	method,	noise	is	a	significant	
factor	in	affecting	the	signal	and	hiding	important	information	associated	with	it.	Various	noises	
are	observed	in	seismic	data,	an	important	category	of	which	is	random	noise	that	is	observed	
as	random	oscillation	at	all	times	and	all	frequencies.	The	attenuation	of	random	noise	is	very	
important	in	seismic	data	processing,	and	proves	very	difficult	when	the	signal-to-noise	ratio	is	
low.	There	are	several	ways	to	suppress	this	type	of	noise,	including	some	relatively	new	methods	
described	here	in	brief:

-	 wavelet	and	curvelet	 transforms.	 In	wavelet	 transform,	 the	coefficient	of	correlation	of	a	
signal	with	 a	 base	wavelet	 is	 calculated	 in	 different	 scales	 and	 shifts.	Then,	 because	 the	
random	noise	 has	 high	 frequencies,	 the	 coefficients	 associated	with	 the	high	 frequencies	
are	removed	and,	then,	the	inverse	wavelet	transform	is	used	(Anvari	et al.,	2017).	Curvelet	
transform	has	a	rotation	property	in	addition	to	the	scaling	and	shifting	properties	and	enables	
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this	transform	to	identify	the	edges	of	the	events	and	is	suitable	for	processing	signals	having	
singularities	(Oliveira	et al.,	2012);

-	 Empirical	Mode	Decomposition	(EMD)	method.	In	this	method,	a	signal	is	decomposed	into	
simple	oscillatory	functions	named	intrinsic	mode	functions	(IMF).	The	first	IMFs	have	high	
oscillations	and	represent	high	frequency	random	noise,	so	the	first	IMFs	can	be	removed	
and	the	other	IMFs	accumulated	and	a	random	noise-free	signal	can	be	obtained	(Huang	et 
al.,	1998);

-	 Singular	Value	Decomposition	(SVD)	method.	This	method	is	based	on	matrix	algebra	and	
it	 is	 very	 effective	 in	 random	noise	 reduction.	 In	 this	method,	 seismic	data	or	 traces	 are	
considered	as	a	matrix,	then	this	matrix	is	written	as	a	sum	of	some	matrices	that	are	called	
eigen	images.	The	first	eigen	images	represent	high	energies	or	primary	events	and	the	last	
ones	represent	low	energies	or	random	noise.	Therefore,	by	eliminating	the	last	eigen	images,	
random	noise	in	seismic	data	can	be	attenuated	(Bekara	and	Van	der	Baan,	2007);

-	 Frequency	offset	deconvolution	filter	(FX	filter).	The	basis	of	this	method	is	that	if	seismic	
events	are	linear	in	a	seismic	section,	then	these	events	are	periodic	and	predictable	in	the	
frequency-offset	domain,	while	 the	 random	noise	 is	uncorrelated	and	unpredictable	 from	
one	trace	to	another.	So,	by	designing	a	filter	in	frequency-offset	domain	that	can	predict	the	
behaviour	of	data	in	the	next	steps,	one	can	obtain	the	predictable	part	of	data	or	primary	
events	 and	delete	 the	 random	noise.	This	filter	 is	named	Frequency	offset	deconvolution	
filter	(FX	filter)	and	designed	by	applying	complex	Wiener	filter	theory	(Treitel,	1974;	Harris	
and	White,	1997);

-	 median	filter.	The	basis	of	this	method	is	to	smooth	data.	In	this	filter,	the	algorithm	used	to	
smooth	the	data	is	such	that	a	finite	number	of	data	samples	are	selected,	then	arranged	in	
ascending	order	and	the	median	of	this	data	is	selected	as	smoothed	value.	Then,	a	sample	is	
moved	forwards	and	this	algorithm	is	repeated	for	later	examples	(Bagheri	and	Riahi,	2016).	
This	filter	has	been	developed	in	many	ways,	such	as	a	weighted	median	filter	(Kumar	et al.,	
2007)	and	the	Decision	Based	Medians	(DBM)	filter	that	has	a	very	good	performance	for	
data	with	low	signal-to-noise	ratio	(Bagheri	et al.,	2017);

-	 Savitzky-Golay	(S-G)	filter.	Savitzky	and	Golay	(1964)	applied	this	method	to	attenuate	high	
frequency	noise	of	chemical	spectrum	data;	it	was	demonstrated	that	this	filter	reduces	high	
frequency	noise	while	maintaining	the	shape	and	the	height	of	the	signal	waveform	(Schafer,	
2011a,	2011b).	In	recent	years,	other	researchers	have	applied	this	method	in	various	fields,	
such	as:	reconstruction	of	Normalized	Difference	Vegetation	Index	(NDVI)	time-series	data,	
reconstruction	 of	 Moderate-Resolution	 Imaging	 (MODIS)	 -	 Enhanced	 Vegetation	 Index	
(EVI)	time-series	data,	electrocardiogram	(ECG)	denoising,	remote	sensing	image	merging,	
and	seismic	random	noise	reduction.	Liu	et al.	(2016)	applied	an	S-G	filter	on	synthetic	and	
real	seismic	data	for	random	noise	reduction.	They	demonstrated	that	the	S-G	filter	performs	
better	than	other	more	renowned	methods.	

In	this	paper,	the	method	Local	Least	Squares	Polynomial	(LLSP)	approximation	based	on	the	
S-G	filter	is	proposed	to	diminish	seismic	random	noise.	The	method	is	applied	to	two	synthetic	
models	and	real	seismic	data.	For	an	accurate	investigation,	the	results	of	the	filter	are	compared	
with	the	results	of	the	FX	filter,	wavelet	transform	and	SVD.	We	used	these	three	methods	for	
comparison	because	the	FX	filter	is	specifically	designed	for	seismic	random	noise	attenuation	and	
gives	good	results	(Liu	et al.,	2012);	the	wavelet	method	has	been	widely	used	in	the	geophysical	
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field	and	has	acceptable	results	(Miao	and	Moon,	1994)	and	SVD	is	a	very	effective	method	in	
the	decomposition	and	processing	of	data	and	gives	excellent	results	for	random	noise	attenuation	
(Bekara	and	Van	der	Baan,	2007).	The	results	in	both	synthetic	and	real	data	confirm	the	power	of	
the	LLSP	smoothing	method	for	reducing	the	level	of	random	noise	and	increasing	the	signal-to-
noise	ratio,	while	the	signal	is	not	affected	significantly.	

2. S-G filter

In	1964,	the	chemist	Abraham	Savitzky	and	physicist	Marcel	Golay	proposed	a	method	of	data	
smoothing	based	on	local	least	squares	polynomial	approximation.	Savitzky	and	Golay	(1964)	
were	interested	in	attenuating	the	high	frequency	noise	of	data	obtained	from	chemical	spectrum	
analysers,	and	they	demonstrated	that	least	squares	smoothing	reduces	noise	while	maintaining	
the	shape	and	height	of	the	waveform	(Savitzky	and	Golay,	1964).	

Today,	the	filters	that	are	designed	using	this	method	are	known	as	the	S-G	filter	(Orfanidis,	
1996).	The	S-G	filter,	 acting	as	a	 low	pass	filter,	has	a	 structure	 similar	 to	 the	Finite	 Impulse	
Response	(FIR)	filter,	and	the	function	is	controlled	by	two	parameters:	the	length	of	the	window	
or	the	length	of	the	polynomial	fitting	area	that	is	called	approximation	interval,	and	the	degree	of	
polynomial	(Schafer,	2011a,	2011b).	The	S-G	filter	has	simple	mathematics	and	brief	calculations.	
In	 fact,	 the	 S-G	method	 has	 two	 important	 features,	 one	 of	which	 is	 the	 simple	mathematics	
governing	it	and	another	is	preserving	the	signal	waveform	after	applying	it	to	the	data,	both	being	
the	strengths	of	the	S-G	method.

3. Local Least Squares Polynomial (LLSP) smoothing 

The	basis	of	this	method	is	that	a	polynomial	is	fitted	to	the	odd	number	of	the	data	points	in	
the	least	squares	procedure;	the	value	of	this	polynomial	is	then	calculated	for	the	midpoint	of	this	
subset,	and	this	value	is	equal	to	the	smoothed	amount	of	the	midpoint	(Člupek	et al.,	2007).	Fig.	
1	gives	a	clear	explanation	of	this	method.	

Fig.	 1	 -	 Local	 polynomial	
fitting	 by	 least	 squares	
method.	Red	points	are	input	
samples	and	blue	points	are	
the	smoothed	amount	for	the	
middle	sample.	Green	points	
are	 the	 impulse	 response	 of	
the	LTI	system.
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In	Fig.	1,	samples	of	a	signal	X[n]	are	shown	with	red	points.	2n	+	1	samples	centred	at	n =	0	
are	considered,	we	now	intend	to	find	coefficients	of	a	polynomial	P(n)	of	degree	N	fitted	to	this	
set:		

(1)

The	error	of	this	fit	in	the	least	squares	is	equal	to:

(2)

In	this	equation,	M	is	the	half	width	of	the	approximation	interval.	In	Fig.	1,	a	special	case	is	
considered	for N	=	2	and	M	=	2.	Using	this	polynomial,	we	can	obtain	the	smoothed	value	for	the	
central	point	at	n	=	0.	The	output	value	or	the	smoothed	value	at	n	=	0	is	equal	to:	y(0)

y(0)	=	P(0)	=	a0		 (3)

The	output	value	for	the	next	sample	is	obtained	by	shifting	the	approximation	interval	by	one	
sample	and	repeating	this	operation,	and	this	will	be	repeated	until	the	last	sample.	In	each	step,	
different	polynomials	are	obtained.	Another	example	is	shown	on	the	right	side	of	Fig.	1.	In	this	
case,	the	centre	of	the	approximation	interval	is	n	=	10	and	the	output	value	is	obtained	using	this	
polynomial	for	n	=	10 (Schafer,	2011a,	2011b).

In	general,	the	approximation	interval	does	not	need	to	be	symmetric	around	the	evaluation	
point.	This	leads	to	nonlinear	phase	filters,	which	can	be	useful	for	smoothing	at	the	ends	of	finite-
length	input	sequences	(Schafer,	2011a,	2011b).	Savitzky	and	Golay	(1964)	showed	that	at	each	
position,	the	smoothed	output	value	obtained	by	sampling	the	fitted	polynomial	is	identical	to	a	
fixed	linear	combination	of	the	local	set	of	input	samples;	i.e.	the	set	of	2M +	1	input	samples	
within	the	approximation	interval	are	effectively	combined	by	a	fixed	set	of	weighting	coefficients	
that	can	be	computed	once	for	a	given	polynomial	order	N	and	approximation	interval	of	length	
2M +	1.	That	is,	the	output	samples	can	be	computed	by	a	discrete	convolution	of	the	form:

(4)

In	other	words,	the	selection	of	the	approximation	interval	and	the	fitting	polynomial	can	be	
considered	as	a	Linear	Time-Invariant	(LTI)	system,	so	that	the	output	of	this	system	is	equal	to	
the	smoothed	signal.

In	Fig.	1,	the	values	X(n)	are	the	shifted	impulse	response	of	the	LTI	system,	h	[0	-	m]	and	h 
[10	-	m]. To	show	that	we	can	find	a	single	finite duration impulse response	that	is	equivalent to	
least	squares	polynomial	smoothing for	all	shifts	of	the	2M +	1	-	sample	interval, we	must	first	
determine	the	optimal	coefficients	of	the	polynomial	in	Eq.	1	by	differentiating εN	in	Eq.	2	with	
respect	to	each	of	the	N	+	1	unknown	coefficients	and	setting	the	corresponding	derivative	equal	
to	zero.	These	yields,	for	i	=	0,	1	…,	N:

      

(5)

ε [ [x(n)] x(n)]

y(n)	= h(m)	x	(n – m)	= h (n – m)	x	(m).

[ x(n)]
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which,	by	interchanging	the	order	of	the	summations,	becomes	the	set	of	N+1	equations	in	N+1	
unknowns:

 

(6)

The	Eqs.	6	are	known	as	the	normal	equations	for	the	least	squares	approximation	problem.	
We	now	write	the	normal	Eqs.	6	in	the	matrix	form.	To	do	this,	it	is	helpful	to	define	a	(2M +	1)	
by	(N +	1)	matrix	A	=	{αn,i}	as	the	matrix	with	elements:

 
(7)

This	matrix	is	called	the	design	matrix	for	the	polynomial	approximation	problem	(Press	et al.,	
2007).	The	transpose	of	A	is	AT	and	the	product	matrix	B	=	ATA	is	an	(N +	1)	×	(N +	1)	symmetric	
matrix	with	elements:	

(8)

Furthermore,	if	we	define	the	vector	of	input	samples	as	X	=	{x	[-M],	…..	x	[0],	…..	x	[M]}T 
and	define	a	=	[a0,	a1,	…..	aN]

T	as	the	vector	of	polynomial	coefficients,	then	it	follows	that	the	
Eqs.	6	can	be	represented	in	matrix	form	as:

Ba	=	ATAa	=	ATx.	 (9)

Therefore,	the	solution	for	the	polynomial	coefficients	can	be	written	as:

a	=	(ATA)-1	AT	x	=	Hx.	 (10)

Now	recall	that	the	output	for	the	group	of	samples	centred	on	n =	0	is	y(0)	=	a0,	i.e.	we	only	
need	to	obtain	the	coefficient	a0.	Furthermore,	it	can	be	seen	that	we	only	need	the	1st	row	of	the	
matrix	H.	Then,	by	the	definition	of	matrix	multiplication,	the	output	will	be:

		 (11)

In	Eq.	11,	h0,m	is	the	elements	of	the	1st	row	of	the	matrix	H.	Therefore,	comparing	this	equation	
to	the	second	term	of	Eq.	4	with	n =	0,	we	observe	that:

(12)

Note	that	this	equation	gives	h	[-m]	since,	as	shown	in	Eq.	4,	the	impulse	response	is	flipped	
with	respect	to	the	input	in	evaluating	discrete	convolution.	Efficient	matrix	inversion	techniques	
can	be	employed	to	compute	only	this	first	row	rather	than	the	entire	matrix	H	(Press	et al.,	2007).	
In	Fig.	2,	a	simple	example	of	the	application	of	the	LLSP	smoothing	filter	is	shown.

According	 to	 Fig.	 2,	 the	 lower	 polynomial	 degree,	 the	 higher	 level	 of	 smoothing,	 or,	 the	
narrower	passband.	But	if	the	polynomial	degree	is	higher,	the	level	of	smoothing	is	lower,	but	

x(n)

= βi,k, αi,nαn,k = 

y(0)	=	a0 = x(m).

h(–	m)	=	h0,m     – M	≤	m	≤	M.
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the	waveform	is	better	preserved.	Another	point	is	that	the	level	of	smoothing	is	proportional	to	
the	value	of	M,	that	is,	the	larger	value	of	M,	the	more	smoothing.

4. Application 

In	 this	section,	 the	LLSP	smoothing	is	applied	on	synthetic	and	real	seismic	data.	Synthetic	
models	are	linear	and	hyperbolic	so	that	the	operation	of	the	method	is	tested	to	tackle	linear	and	
nonlinear	events.	Also,	synthetic	models	are	designed	to	be	as	close	as	possible	to	real	models.	Real	
data	include	a	Common	Mid-Point	(CMP)	gathered	from	the	Viking	Graben	area	in	the	North	Sea.

4.1. Synthetic model 1
In	Fig.	3,	a	synthetic	CMP	is	shown	that	includes	three	reflectors.	In	this	model,	the	sampling	

interval	is	1	ms	and	the	number	of	traces	is	70.	Random	noise	(white	Gaussian	noise)	with	2dB	
signal-to-noise	ratio	is	added	to	this	model,	then	the	LLSP	smoothing	filter	for	M	=	11,	N	=	2,	FX	
filter,	wavelet	method	with	soft	threshold	and	SVD	method	are	applied	to	it.	

After	applying	the	LLSP	smoothing	filter	on	the	noisy	data,	the	signal-to-noise	ratio	is	equal	to	
19	dB,	after	applying	the	FX	filter,	this	ratio	is	equal	to	15	dB,	after	the	wavelet	method,	this	ratio	
is	8	and	after	the	SVD	method	this	ratio	is	equal	12	dB.	This	indicates	the	better	performance	of	
the	LLSP	smoothing	filter	for	random	noise	reduction.	In	Fig.	4,	the	difference	between	the	noisy	
data	and	the	denoised	data	shows	useful	information.

As	can	be	seen	in	Fig.	4,	we	find	that	the	difference	between	noisy	data	and	denoised	data	by	
LLSP	smoothing	filter	almost	contains	random	noise,	which	means	that	this	filter	maintains	the	
primary	events	or	useful	signals.	But	in	the	case	of	the	FX	filter,	wavelet	transform,	and	SVD	
method,	the	waveform	is	affected	considerably	after	filtering	and	these	methods	have	lost	some	
of	the	main	signals.

Fig.	2	-	Signals:	a)	desired	signal	without	noise;	b)	noisy	signal;	c)	smoothed	signal	for	M =	75	and	N =	2;	d)	smoothed	
signal	for	M =	75	and	N =	6.
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Fig.	3	-	Data:	a)	synthetic	seismic	data;	b)	noisy	data;	c)	denoised	data	with	LLSP	smoothing	filter;	d)	denoised	data	
with	FX	filter;	e)	denoised	data	with	wavelet	method;	f)	denoised	data	with	SVD	method.

Fig.	4	-	Difference	between	noisy	data	and	denoised	data:	a)	LLSP	smoothing	filter;	b)	FX	filter;	c)	wavelet	method;	
d)	SVD	method.
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As	shown	in	Fig.	5,	we	see	almost	the	same	frequency	spectrum	for	the	synthetic	trace	and	
denoised	trace.	In	other	words,	we	find	that	 the	frequency	contents	of	 the	trace	remain	almost	
unchanged	after	applying	the	LLSP	smoothing	filter	and	this	is	another	advantage	of	this	filter.

One	of	the	characteristics	of	a	suitable	filter	is	that	it	does	not	distort	the	frequency	contents	
of	the	main	signal,	namely	that	main	signal	has	the	same	frequency	spectrum	before	and	after	
applying	 the	filter.	For	 this	purpose,	 in	Fig.	5,	 the	 frequency	spectrum	of	 the	first	 trace	of	 the	
synthetic	data,	noisy	data	 and	 the	denoised	data	with	 the	LLSP	smoothing	filter	of	Fig.	3	 are	
shown.

Fig.	5	-	The	frequency	spectrum	of	the	first	trace	of	Fig.	3	data:	a)	synthetic	data;	b)	noisy	data;	c)	denoised	data	with	
LLSP	smoothing	filter.
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4.2. Synthetic model 2
In	Fig.	6	a	synthetic	CMP	stacked	section	is	shown.	This	section	has	4	reflectors,	the	sampling	

interval	is	2	ms	and	the	number	of	traces	is	100.	Random	noise	(white	Gaussian	noise)	with	signal-
to-noise	ratio	1	dB	has	been	added	to	this	section.	Then	this	section	is	denoised	by	using	the	LLSP	
smoothing	filter	for	N =	4	and	M	=	45,	FX	filter,	soft	threshold	wavelet	method,	and	SVD	method.

Fig.	6	-	Sections:	a)	synthetic	CMP	stacked	section;	b)	noisy	section;	c)	denoised	section	with	LLSP	smoothing	filter;	
d)	denoised	section	with	FX	filter;	e)	denoised	section	with	wavelet	method,	f)	denoised	section	with	SVD	method.

After	denoising,	the	signal-to-noise	ratio	for	the	LLSP	smoothing	filter	was	15	dB,	for	the	FX	
filter	it	was	17	dB,	for	the	wavelet	method	it	was	10	dB	and	for	the	SVD	method	it	was	13	dB.	The	
better	result	of	the	FX	filter	has	two	reasons.	The	first	is	that	this	filter	is	based	on	linear	events	
and	in	this	section	we	have	linear	events.	The	second	is	when	the	signal-to-noise	ratio	is	low,	after	
applying	LLSP	smoothing	filter,	very	weak	oscillations	appear	in	parts	of	the	signal	that	are	zero.	
This	is	the	only	flaw	of	the	S-G	filter,	though	this	filter	still	keeps	the	signal	waveform	very	well.	
The	LLSP	smoothing	filter	also	has	better	results	than	the	wavelet	and	SVD	methods.

In	Fig.	7	the	difference	between	the	noisy	and	denoised	section	for	the	LLSP	smoothing	filter	
is	shown.	Following	Fig.	7,	we	find	that	the	difference	between	the	noisy	and	denoised	section	by	
the	LLSP	filter	only	contains	random	noise,	and	this	filter	maintains	the	primary	events	very	well.	
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Fig.	 7	 -	 Difference	 between	
noisy	 and	 denoised	 model	 by	
LLSP	smoothing	filter.

Fig.	8	-	Frequency	spectrum	of	
the	first	 trace	of	Fig.	6	section:	
a)	 synthetic	 section;	 b)	 noisy	
section;	c)	denoised	section	with	
LLSP	smoothing	filter.
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We	also	investigated	the	performance	of	the	LLSP	smoothing	filter	in	the	frequency	domain	
for	the	section	of	Fig.	6.	In	Fig.	8,	the	frequency	spectrum	of	the	first	trace	of	the	synthetic	section,	
noisy	section	and	denoised	section	with	LLSP	smoothing	filter	of	Fig.	6	are	shown.

As	 indicated	 in	Fig.	8,	we	 see	almost	 the	 same	 frequency	 spectrum	 for	 the	 synthetic	 trace	
and	denoised	trace.	In	other	words,	we	find	that	the	frequency	content	of	the	first	trace	is	almost	
unchanged	after	applying	the	LLSP	smoothing	filter.

4.3. Real data
In	 this	 section	we	use	 real	 seismic	data.	This	data	concerns	 the	Viking	Graben	area	 in	 the	

North	Sea,	which	contains	1001	shot	records	at	a	distance	of	25	m.	Each	shot	is	recorded	by	120	
receivers	at	a	distance	of	25	m	in	6	seconds.	The	sampling	interval	is	4	ms,	the	depth	of	cable	
receiver	is	10	m	and	the	depth	of	the	source	is	6	m.	First,	we	separate	the	data	of	one	CMP	from	
the	shot	 records.	Then	we	apply	 the	LLSP	filter	 for	N	=	2	and	M	=	11,	 the	FX	filter,	wavelet	
method	with	soft	threshold	and	SVD	method	on	this	data.	The	results	are	shown	in	Fig.	9.	

In	Fig.	10,	to	better	understand	the	operation	of	the	LLSP	smoothing	filter,	the	part	of	the	data	
of	Fig.	9	separated	with	the	red	frame	is	zoomed.

Fig.	9	 -	Data:	 a)	noisy	 real	data;	b)	denoised	data	with	LLSP	smoothing	filter;	 c)	denoised	data	with	FX	filter;	d)	
denoised	data	with	wavelet	method;	e)	denoised	data	with	SVD	method.
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As	shown	in	Figs.	9	and	10,	we	find	that	the	LLSP	smoothing	filter	effectively	attenuates	the	
random	noise	and,	due	to	the	non-linearity	of	the	events,	it	has	a	better	performance	than	the	FX	
filter,	wavelet	and	SVD	methods.	

5. Discussion and conclusion 

The	LLSP	smoothing	filter	 is	a	novel	 tool	for	seismic	processing	and	we	have	applied	 this	
method	to	eliminate	seismic	random	noise	and	recover	the	valid	seismic	signals	in	synthetic	and	
real	seismic	data.	This	filter	is	based	on	data	smoothing	by	fitting	the	local	polynomial	with	the	
least	squares	method.	This	filter	has	two	notable	advantages.	First,	simple	mathematics	governing	
it	which	make	 it	 convenient	 for	 data	 processing.	 Second,	 its	 excellent	 ability	 to	 preserve	 the	
signal	waveform	after	application.	This	means,	when	we	use	this	filter,	we	do	not	lose	the	main	
signals.	In	other	words,	this	filter	keeps	the	frequency	spectrum	of	the	signal	unchanged	and	the	
main	 signal	 has	 the	 same	 frequency	 spectrum	before	 and	 after	 applying	 the	LLSP	 smoothing	
filter.	However,	the	LLSP	smoothing	filter	has	one	weakness:	when	the	signal-to-noise	ratio	is	
low,	after	applying	the	filter,	very	weak	oscillations	appear	in	parts	of	the	signal	that	are	zero,	
but	it	still	maintains	the	main	signal.	The	function	of	this	filter	is	controlled	by	two	parameters,	

Fig.	10	-	A	close-up	of	the	data	in	Fig.	9	in	red	box:	a)	noisy	real	data;	b)	denoised	data	with	LLSP	smoothing	filter;	c)	
denoised	data	with	FX	filter;	d)	denoised	data	with	wavelet	method;	e)	denoised	data	with	SVD	method.
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polynomial	degree	and	approximation	interval.	There	is	no	special	procedure	to	select	these	two	
parameters.	In	fact,	the	smaller	the	polynomial	degree	or	the	larger	the	approximation	interval,	the	
narrower	passband	or	the	more	data	smoothing.	In	other	words,	selecting	the	optimal	parameters	
depends	 on	 the	 amount	 of	 required	 smoothing.	Another	 point	 is	 that	 in	 the	 LLSP	 smoothing	
filter,	a	specific	cut-off	frequency	can	be	obtained	by	a	different	combination	of	parameters.	The	
difference	between	these	filters	is	only	within	the	width	of	the	transition	regions.	This	is	inversely	
proportional	to	the	length	of	the	impulse	response	and	is	a	familiar	property	of	FIR	discrete-time	
low	pass	filters	and	the	larger	approximation	interval,	the	longer	impulse	response	length.	In	this	
paper,	the	filter	was	applied	on	synthetic	and	real	seismic	data	to	reduce	the	random	noise.	For	
a	more	accurate	analysis,	the	results	of	the	proposed	filter	were	compared	with	the	results	of	the	
FX	filter,	wavelet	and	SVD	methods.	We	have	seen	that	the	LLSP	smoothing	filter	yields	better	
results.	Also,	the	simpler	mathematics	of	the	filter	is	another	advantage	compared	to	the	FX	filter,	
wavelet	and	SVD	methods	which	makes	it	much	easier	to	apply.	Therefore,	it	can	be	confidently	
concluded	that	the	LLSP	smoothing	filter	is	more	efficient	the	than	FX	filter,	wavelet	and	SVD	
methods.
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