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ABSTRACT	 Modelling of multivariate complex deposits with the presence of several correlated 
attributes is a very challenging issue in the mining industry which can be addressed 
using existing multivariate analysis method. In this study, some of these multivariate 
methods, such as Step-wise Conditional Transformation (SCT), Minimum/maximum 
Autocorrelation Factors (MAF) and Projection Pursuit Multivariate Transform 
(PPMT), were applied to a data set of Mehdiabad deposit. The data set is containing 
core samples to be analysed for Pb, Zn, Cu, and Ag. At the first stage, the variables 
were transformed by mentioned methods and a set of validations were performed 
to the transformation results. Next, the transformed variables were simulated using 
sequential Gaussian simulation and the results were analysed as well. Based on the 
validation reviews, it was concluded that the PPMT could present more reliable 
outcomes. Furthermore, for every transformation, the grade-tonnage curves for each 
transformed variable were calculated based on the E-type values of the simulations 
and the discrepancies between them were also investigated. The results of this study 
can be also used in mine planning and risk measurement during mining.

Key words:	 multivariate modelling, Step-wise Conditional Transformation, Minimum/maximum 
Autocorrelation Factors, Projection Pursuit Multivariate Transform, grade-tonnage curve.
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1. Introduction

Evaluation of the mineral resources can be done by estimation of the tonnage and grade 
that are expected to be recovered during mining. This may affect the further mining planning 
and also the financial benefits of the mining operation at the early stage of production (David, 
2012; Peattie and Dimitrakopoulos, 2013; Hosseini et al., 2017). Geostatistical estimation 
methods are the most common approaches in the case of mineral resource estimation which 
provide conditionally unbiased value as close as possible to the actual value. However, these 
methods have an unavoidable drawback which is the smoothing effect that will generally lead to 
overestimating the tonnage above the economic cut-off grade (Assibey-Bonsu et al., 2015). To 
overcome this issue, stochastic simulation methods can be used in order to omit the smoothing 
effect (Chilès and Delfiner, 1999). These methods present a more accurate evaluation of the grade 
uncertainty through the multiple realisations, and also try to minimise the spatial variability of 
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the true grades. It also can be useful in mine design, mine planning studies (Dimitrakopoulos, 
2010; Rossi and Deutsch, 2013). Simulation of individual variables is more prevalent using easily 
accessible methods (Deutsch and Journel, 1992; Goovaerts, 1997; Dimitrakopoulos and Luo, 
2004; Chilès and Delfiner, 2012). However, in the case of multivariable deposits, the matter is to 
jointly simulate the interested attributes (especially for the deposits with more than two interested 
variables) in the way that the original features can be reproduced.

There are several approaches proposed for joint simulation of attributes (David, 1988; 
Myers, 1989; Verly, 1993; Goovaerts, 1997; Soares, 2001; Chilès and Delfiner, 2012). Some of 
them, especially those that rely on the Linear Model of Coregionalisation (LMC) are difficult 
to apply for more than three variables. Furthermore, the multivariate geostatistical simulation 
should be applied to variables with multivariate Gaussian distribution which rarely exists in the 
case of coregionalised data (Hosseini and Asghari, 2019). Besides, integration of the univariate 
transformed Gaussian variables would not satisfy the assumption of multi-Gaussian (Barnett, 
2015; Battalgazy and Madani, 2019). As an alternative, it is possible to implement multivariate 
analysis methods which transform the variables to an orthogonal space (uncorrelated), so that the 
variables can independently be simulated and back-transformed to an original space (Boucher and 
Dimitrakopoulos, 2012).

The most common method for multivariate analysis of data set is Principal Component Analysis 
(PCA) which is widely used in hundreds of research. PCA is a linear combination of variables 
which aims to reduce the dimensionality of the data set providing uncorrelated factors. A modified 
version of the PCA called Minimum/maximum Autocorrelation Factor (MAF) (Desbarats and 
Dimitrakopoulos, 2000) is able to produce spatially uncorrelated factors rather than just for lag 
zero based on the LMC with two structures (Bandarian et al., 2008). Also, MAF can be applied 
with no need to model the coregionalisation (Rondon, 2012). Silva and Costa (2014) used MAF 
for grade estimations of the variables instead of using cokriging. In another research, MAF was 
applied to a geochemical data set in order to extract and model the mineralisation factor (Ghane 
and Asghari, 2017).

In some deposits, relations between the variables do not follow a linear relationship. Hence, the 
application of non-linear based methods would yield better results for such cases. Leuangthong 
and Deutsch (2003) proposed a multivariate non-linear Gaussian transform named Step-wise 
Conditional Transformation (SCT) to produce uncorrelated variables for lag zero. This method, 
as a prerequisite of all Gaussian-based simulation algorithms, orthogonalises and normalises 
simultaneously the variables into Gaussian distribution. However, this method has a restriction 
when dealing with several attributes or small data set. To explore this issue, Barnett et al. (2014) 
introduced the Projection Pursuit Multivariate Transformation (PPMT) which is able to model 
and transform highly multivariate and complex data. The uncorrelated transformed variables will 
be modelled independently and back-transformed subsequently producing original correlations 
and complexity such as heteroscedasticity, nonlinearity, and constraints among the variables.

The main aim of this study is to evaluate the performance and efficiency of transformations 
and their affects on grade-tonnage curves and resource estimation. Therefore, three different 
multivariate transformation methods, namely MAF, SCT, and PPMT, were applied for the joint 
simulation of the interested variables. Then, the efficiency and the performance of the mentioned 
methods were assessed based on several factors (reproduction of original mean, variance, 
variograms, and correlations between the variables and the cross-variograms) and the best one was 
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chosen. Finally, the grade-tonnage curves for each transformed variable (for every method) were 
calculated and compared to find which method can produce the grade and tonnage of variables 
for optimum resource modelling. 

2. Geology and data set

2.1. Geology and deposit description
The Mehdiabad deposit is located 116 km SE of the city of Yazd in the central Iranian tectonic 

block. It is a world-class Cretaceous deposit and one of the most important metallogenic province 
for zinc-lead mineralisation (Ghazanfari, 1999; Ghorbani, 2013). The geologic map of the 
Mehdiabad area is shown in Fig. 1. According to Maghfouri (2017), Mehdiabad deposit is a 
syn-sedimentary mineralisation related to SedEx (sedimentary exhalative) type based on the host 
rocks, minerals and rock forming, petrographical evidence, and other geological/geochemical 

Fig. 1 - The geological map of the Mehdiabad area (Hosseini and Asghari, 2019).
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features. The main geological formations of the deposit are Sangestan, Taft, and Abkouh which 
are formed by different geological units. The mineralisation is mainly controlled by the faults 
which are the most important structural characteristics of the studied area. The Mehdiabad deposit 
is divided into two parts: the sulfide and the oxide zones. The sulfide part, which is covered by 
alluvial sediments (up to 250 m thickness), occurs mainly in the Taft formation and consists of 
dolomite and ankerite limestone, where the main sulfide minerals are Galena, Sphalerite, Barite, 
Pyrite, and Chalcopyrite. The oxide part is located in the north-western part of the deposit and it is 
separated from the sulfide zone by faults. The mineralisation in the oxide zone occurred within the 
Abkouh formation and in karst limestones and it is divided into two mineral associations: a) the 
red zinc minerals consist of Iron Hydroxide, Goethite, Hematite, Hemimorphite, and Smithsonite; 
b) the white zinc minerals consist of Hydrozincite, Hemimorphite, and Smithsonite (Reichert, 
2007).

2.2. Data set
In this study, it was used a data set containing 4493 core samples, collected from 85 drillholes. 

The length of samples was between 0.5-1.0 m and the length of composites was considered with 
1.0 m along a NW-SE direction (Fig. 2) within the west sulfide part of the Mehdiabad deposit, 
called zone 220. The mean distance between the drillholes is about 100 m. Also, based on the 
geological knowledge, four elements namely copper, lead, zinc, and silver which are analysed by 
ICP-OES method, were selected for further statistical and geostatistical analysis. The descriptive 
statistics of the mentioned variables are shown in Table 1 and Fig. 3. Furthermore, the correlation 
coefficients between the variables are demonstrated in Table 2 and Fig. 4. The highest correlation 
between the variables belongs to Pb and Ag while the lowest correlation is related to Pb and Cu 
which is near zero. It should be mentioned that the outlier values were replaced using Q-Q plot 
(quantile-quantile plot). The Q-Q plot, is a graphical technique which compares the distribution 
of two data sets. The Q-Q plot is a scatter plot of two sets of quantiles against one another. If same 

Fig. 2 - The distribution of the drillholes located in zone 220.
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Table 1 - Descriptive statistics of the variables.

		  Zn	 Pb	 Ag	 Cu

	 Number	 .4493(%)	 .4493(%)	    4493(ppm)	 4493(%)

	 Mean	   3.28(%)	   1.440(%)	     33.83(ppm)	 0.140(%)

	 SD	   3.52(%)	   1.510(%)	     36.86(ppm)	 0.183(%)

	 Variance	 12.37(%)	   2.280(%)	 1358.93(ppm)	 0.033(%)

	 Skewness	 18.20(%)	   2.340(%)	       2.85(ppm)	 2.110(%)

	 Kurtosis	   5.99(%)	   7.660(%)	     10.68(ppm)	 5.380(%)

	 Min	   0.00(%)	   0.001(%)	       0.00(ppm)	 0.000(%)

	 Max	 20.00(%)	 10.110(%)	   243.60(ppm)	 1.010(%)

	 Quartiles: Q1	   0.99(%)	   0.470(%)	     14.98(ppm)	 0.006(%)

	 Quartiles: Q2	   2.21(%)	   1.050(%)	     26.00(ppm)	 0.076(%)

	 Quartiles: Q3	   4.31(%)	   2.000(%)	     48.60(ppm)	 0.200(%)

Fig. 3 - Histograms of the variables.
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distributions plot against each other, the scatter plot should follow a straight linear structure along 
the 45 degree line. The discontinuity in tails of the Q-Q plot reveals us the outlier values. The 
thresholds obtained using Q-Q plot for zinc, lead, silver, and copper were 20 (%), 10.116 (%), 
243.6 (ppm) and 1.01 (%), respectively.

Table 2 - The Spearman correlation coefficients between the variables.

		  Zn	 Pb	 Ag	 Cu

	 Zn	 -1.00		

	 Pb	 -0.57	 1.00

	 Ag	 -0.48	 0.74	 1.00

	 Cu	 -0.25	 0.02	 0.21	 1.00

3. Methodology

3.1. Step-wise Conditional Transformation (SCT)
SCT, firstly introduced by Rosenblatt (1952), is a multivariate extension of the normal score 

transformation, as it attempts to remove complexity such as heteroscedasticity, nonlinearity, 
and constraints among the variables (Leuangthong and Deutsch, 2003). Furthermore, the 
technique attempts to decorrelate all of the variables at a zero lag distance. The method is 
stepwise application of the normal score transformation. For applying this method the first 
variable simply was transformed to normal score. In next step, the second variable was divided 
according to the conditional probability class of the first variable, before having the normal 
score transformation independently executed on each discretised bin. The third variable was 

Fig. 4 - The scatter plots of the variables along with the Spearman correlations between them.
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transformed conditional to the probability class of the first and second, and so on. This stepwise 
process is given by Eq. 1:

(1)

where Zi, i=1, … , n are the original variables, Fi(zi) are cumulative distribution function (CDF) of 
each original variable, G(.) is the standard Gaussian distribution and Yi’, i=1, … , n are the SCT 
variables.

3.2. Min/max autocorrelation factors (MAF)
MAF is modified version of PCA method that provides uncorrelated factors for all lag distances 

(spatially uncorrelated factors). This method can be divided into two different approaches: the 
model-based and the data-driven methods. The model-based method is based on the application 
of two structure LMC. LMC is a geostatistical tool which investigates the linear combination 
between two regional variables by calculating the direct variograms of the variables and the 
cross-variogram between the variables. Calculating LMC is somehow tough to apply especially 
with the presence of several variables (Vargas-Guzmán and Dimitrakopoulos, 2003; Boucher 
and Dimitrakopoulos, 2009). In the data-driven method the factors are derived directly from the 
original variables (Switzer and Green, 1984). In this study, the data-driven method was used to 
produce spatially uncorrelated factors. The steps are discussed below:

1)	 calculating the correlation coefficient matrix B;
2)	 decomposing matrix B as B = QT ΛQ where Q is eigenvector and Λ is eigenvalue;
3)	 second rotation of the variable using matrix A as A = Λ-1/2Q
4)	 calculating PCA scores through matrix YPCA(u) = AZ(u) where Z(u) is normal transformed 

data;
5)	 calculating matrix ΓYPCA

 (h) containing PCA factors experimental variogram values for 
determined lag distances. The lag distance would be determined based on the horizontal 
separation of the drillholes (Debsbarats, 2001) or it can be achieved according to better 
decorrelation of the factors (Dimitrakopoulos, and Fonseca, 2003);

6)	 further rotation of PCA factors for producing MAF factors can be done using matrix Q1 
which is extracted from spectral decomposition of the matrix ΓYPCA

 (h);
7)	 the MAF factors are calculated as FMAF(u) = Q1AZ(u) = MZ(u) = Q1YPCA(u) (Rondon, 2012).
The produced factors should have normal distributions and also the cross-variograms between 

the factors should obtain values near zero for all lag distances.
 

3.3. Projection Pursuit Multivariate Transform (PPMT)
PPMT is an exciting new technique that facilitates independent Gaussian geostatistical 

modelling in highly complex multivariate settings. The PPMT is a modified version of Projection 
Pursuit Density Estimation (PPDE) method in which high dimensional complex data are 
transformed iteratively to multivariate Gaussian distribution from a geostatistical point of view. 
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PPMT will iteratively transform the data to be multivariate Gaussian. When multi-Gaussian are 
implemented, the final transform locations of the data are recorded for mapping purposes. The 
algorithm runs in three steps as shown below (Barnett et al., 2014; Barnett, 2017):

a)	 normal score to transform variables to Gaussian units through y = G-1[F(z)];
b)	 the second step is data sphering, which transforms the data to be uncorrelated and with unit 

variance as below:

x = S-1/2y

S-1/2 = UD-1/2UT

	

(2)

where S-1/2 is the sphering matrix which is calculated by spectral decomposition of 
the covariance matrix of y (D is diagonal eigenvalue matrix and U is corresponding 
eigenvectors);

c)	 in final step, the projection pursuit algorithm would be run. Assume α as vector with 
unit length and K dimention. p = αT X. If x is multi-Gaussian, any α should produce a p 
that is univariate Gaussian. Therefore, a test statistic (named projection index), I(α), that 
evaluates univariate non-Gaussianity is defined. For any α that associated p is perfectly 
Gaussian, I(α) will be zero. Using an optimised search, projection pursuit finds the α that 
produces the maximum I(α). Then the multivariate data, X, are transformed to have a 
univariate Gaussian projection along α using the Gaussianisation transform. Treating the 
Gaussianised multivariate data as Y, the projection p = αTY is univariate Gaussian. Iterating 
this search and Gaussianise procedure, Y is eventually transformed to be multivariate 
Gaussian (Barnett et al., 2014; Barnett, 2017).

4. Results

In this study, three different multivariate methods namely SCT, MAF, and PPMT were 
applied to the west sulfide zone of Mehdiabad deposit. The analysis was done using four 
elements which are Pb, Zn, Ag, and Cu. The transformed variables were simulated using the 
conditional Sequential Gaussian Simulation (SGS) and, then, back-transformed to original 
distribution. SGS needs variables to be transformed to a Gaussian distribution with zero mean 
and unit variance. In this method, the points are first estimated using simple kriging system 
and, then, the variable is simulated using the normal CCDF obtained for each point (Soltani et 
al., 2104). The application of simulation provides us an opportunity to obtain any number of 
realisations so that we could better assess the efficiency of our methods. The simulations were 
carried out within a block model of 25×25×10 m3 and number of nudes in X, Y, and Z dimension 
is 167,282. The performance of the mentioned methods was evaluated by several tools such as 
histograms of the simulation realisations, correlation coefficients of the simulated transformed 
variables, cross-variograms of the transformed variables, and variograms of the transformed 
simulated variables. Finally, considering the mentioned factors, the best multivariate method 
was identified and the grade-tonnage curves of the variables were calculated using the results of 
the best-selected approach.



Multivariate simulation of a deposit	 Boll. Geof. Teor. Appl., 60, 599-620

607

4.1. Application of SCT
Due to the fact that the SCT has provided more reliable results in the case of three variables 

rather than four variables, two series of the data set containing three variables were considered in 
order to apply SCT. The first series consists of Zn, Pb, and Ag and the second series consists of 
Zn, Pb, and Cu. The priorities of the variables were determined based on their spatial continuity, 
and Zn was considered as Z1, Pb was considered as Z2 and also Ag-Cu were considered as Z3. A 
schematic graph of the SCT steps is shown in the Fig. 5.

Fig. 5 - Example of schematic steps of SCT algorithm.

Application of the SCT yielded normal transformed variables with approximately mean 
zero and unit variance. In order to evaluate the functionality of the method, the scatter plots of 
the transformed variables were calculated to explore the decorrelation between them (Fig. 6). 
According to Fig. 4, most of the variables are well decorrelated except Ag and Cu which can be 
due to the separation of the variables to two series.

Besides, cross-variograms of the transformed variables were computed to investigate the 
decorrelations in space (Fig. 7). The experimental cross-variograms have shown values around 
zero for different lag distances except for Ag-Cu. Based on the experimental cross-variograms, it 
can be concluded that the transformed variables have not decorrelated well in space.

Furthermore, the transformed variables were simulated individually within the block model. To 
reach this purpose, variography was done for all variables and the anisotropies of each one were 
determined. Next, the simulation was performed for 100 realisations using sequential Gaussian 
simulation. Then, all the realisations were back-transformed to the original distributions of the 
variables. Moreover, the mean values of all realisations were calculated for every variable. Also, 
the correlation coefficients of the variables were calculated per each realisation. The validation of 
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the results was done by comparison of the mean values and correlations of original data with the 
mean and correlation histograms of the simulated data (Figs. 8 and 9). The results showed that 
the simulations could reasonably reproduce the original mean values and also the correlations 
between the variables. As another validation, the experimental variograms of all 100 realisations 
were computed for all variables to check whether they reproduce the original variograms (from the 
aspects of range and sill value) or not (Fig. 10). It can be inferred that the realisation variograms 
could acceptably reproduce the original variograms.

Fig. 6 - The scatter plots of the SCT transformed variables along with the Spearman correlations between them.

Fig. 7 - The cross-variograms of 
the SCT transformed variables. The 
red lines correspond to Pb-Zn, the 
purple lines correspond to Zn-Cu, 
the yellow lines correspond to Zn-
Ag, the black lines correspond to 
Pb-Cu, the green lines correspond 
to Pb-Ag and the blue lines 
correspond to Cu-Ag.
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4.2. Application of MAF
As mentioned before, a data-driven MAF method is applied in this study which is able to 

produce decorrelated factors with no need to calculate LMC. Firstly, the variables were transformed 
to normal Gaussian distribution with zero mean and unit variance [Z(u)]. Second, the correlation 
coefficient matrix B was computed as:

where the columns are corresponding to Zn, Pb, Cu, and Ag, respectively. Then, the PCA scores 
were achieved using matrix A by spectral decomposition of matrix B. For the next step, the 

Fig. 8 - The mean histogram of SCT simulated back-transformed variables. The black dots are the original averages of 
the variables.
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Fig. 9 - Histograms of the correlation coefficients calculated through 100 simulation realisations of the SCT transformed 
variables. The black dots indicated the original correlation between the variables.

Fig. 10 - The experimental variograms of the SCT simulated back-transformed variables.
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experimental variograms of the PCA factors were calculated and variogram values for lag 40 m 
were used to construct matrix V:

                                .

Matrix V was decomposed to matrixes Q1 and Λ1
 
and MAF factors were produced using matrix 

M = Q1A so that FMAF = MZ(u):

                                  .

All the MAF factors follow a normal Gaussian distribution. All the validations discussed for 
SCT were done for MAF results. The scatter plots of MAF factors demonstrated that the factors 
are well decorrelated since the correlations are almost equal to zero (Fig. 11). But, MAF factors 
scatter plots could not present multi-Gaussian distribution. It may be due to the non-linear nature 
of the data which is in contrast with the linearity assumption of the MAF. Also, in order to verify 
the spatial decorrelation of the factors, cross-variograms between the factors were calculated and 
they illustrated acceptable decorrelations for several lags (Fig. 12).

As well as the SCT, the transformed factors were simulated for further validation reviews. 
First, the variograms of the factors were computed considering the anisotropy and the factors were 
simulated for 100 realisations subsequently. Next, the simulated factors were back-transformed to 
the original variables for all the realisations. In addition, another back-transformation was applied 

Fig. 11 - The scatter plots of the MAF transformed factors along with the Spearman correlations between them.
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Fig. 12 - The cross-variograms of the 
MAF factors. The red lines correspond to 
F1-F2, the purple lines correspond to F1-F3, 
the yellow lines correspond to F1-F4, the 
black lines correspond to F2-F3, the green 
lines correspond to F2-F4 and the blue lines 
correspond to F3-F4.

Fig. 13 - The mean histogram of simulated back-transformed variables. The black dots are the original averages of the 
variables.
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to transform the variables into the original distribution. The validation of the results was done by 
comparison of the mean values and correlations of original data with the mean and correlation 
histograms of the simulated data (Figs. 13 and 14). The results represent poor relations between the 
actual mean and correlations with the simulated ones. However, the experimental variograms of 
the back-transformed simulated variables present good coincidence with the original variograms 
(Fig. 15).

Fig. 14 - Histograms of the correlation coefficients calculated through 100 simulation realisations of the MAF 
transformed variables. The original correlations do not match the simulated ones at all. The original correlations of Zn-
Cu, Zn-Pb, Pb-Cu, Zn-Ag, Ag-Cu, and Pb-Ag are -0.25, 0.57, 0.02, 0.48, 0.21 and 0.74, respectively.

Fig. 15. The experimental variograms of the MAF simulated back-transformed variables for 100 realisations.
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4.3. Application of PPMT
The PPMT, as the last method used in this study, has the capability of normalising and 

uncorrelating both variables together. This method was applied to the four variables and 
transformed them into the Gaussian distribution in an excellent way after 25 iterations. Also, the 
scatter plots of the transformed variables illustrate very well the decorrelation of all variables 
and Spearman correlation up to 2 decimal place is zero (Fig. 16). The cross-variograms of the 
transformed variables also present fine decorrelations of the variables for different lag distances 
(Fig. 17).

Fig. 16 - The scatter plots of the PPMT transformed variables along with the Spearman correlations between them.

Fig. 17 - The cross-variograms of 
the PPMT transformed variables. 
The red line correspond to Pb-Zn, 
the purple lines correspond to Zn-
Cu, the yellow lines correspond to 
Zn-Ag, the black lines correspond 
to Pb-Cu, the green lines 
correspond to Pb-Ag and the blue 
lines correspond to Cu-Ag.
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Similar to the two previous methods, the transformed variables were simulated for 100 
realisations using SGS. The validation of the results was done by comparison of the mean values 
and correlations of original data with the mean and correlation histograms of the simulated data 
(Figs. 18 and 19). The results represent very well the coincidence between the actual mean 
and correlations with the simulated ones. Also, the experimental variograms of the simulation 
realisations have an appropriate match with the original data variograms (Fig. 20).

Fig. 18 - The mean histogram of the PPMT simulated back-transformed variables. The black dots are the original 
averages of the variables.

5. Discussion

In the previous section, three multivariate transformation methods were applied to a data set 
containing Pb, Zn, Cu, and Ag with the purpose of stimulating the interested variables in an 
uncorrelated space. Also, the performance of each method was evaluated by several factors which 
are the decorrelation of the variables in lag zero, the decorrelation of the variables in space, the 
reproduction of the original mean and correlations of the variables and, also, the reproduction of 
the original variograms parameters.
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The statistical decorrelation of the variables (lag zero) was investigated via the scatter plots 
of the transformed variables. The results showed that the three methods were almost successful 
except a specific case for Ag-Cu which was related to the SCT. Note that these variables were 
transformed in different series due to the weakness of SCT in transforming four-variable data 
set. Besides, the scatter plots of the MAF transformed factors did not follow a multi-Gaussian 

Fig. 19 - Histograms of the correlation coefficients calculated through 100 simulation realisations of the PPMT 
transformed variables. The black dots are the original correlations.

Fig. 20 - The experimental variograms of the PPMT simulated back-transformed variables for 100 realisations.
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distribution. The linear nature of the MAF may cause the problem to emerge. Generally, PPMT 
provides better results for all variables in comparison with other methods (Figs. 6, 11, and 16).

The geospatial decorrelation of the variables (for all lag distances) was explored using the 
experimental cross-variograms of the transformed variables. Reaching the variogram values to 
about 0.3 for several increments shows that the SCT did not spatially decorrelate the variables 
well, especially for Ag-Cu. However, the MAF could decorrelate the factors better than the SCT. 
Among the methods, PPMT gained more acceptable decorrelations due to the lower values of the 
cross-variograms for all lags (Figs. 7, 12, and 17).

The capability of the original mean and correlation reproduction were other factors which 
were assessed through 100 simulation realisations in this study. The results showed that the SCT 
reproduced the original mean and correlations reasonably while MAF was not able to do the same 
due to the linear nature of the MAF. But, in contrast with the MAF, the PPMT reproduced the 
mentioned parameters more accurately (Figs. 8, 9, 13, 14, 18, and 19). Furthermore, the variogram 
parameters reproduction was the last validation to be utilised in this study. The experimental 
variograms of the variables for all 100 realisations were calculated and compared to the original 
one. The results demonstrated that all the methods could appropriately reproduce the original data 
variograms (Figs. 10, 15, and 20). Finally, considering all the validation results, it was concluded 
that the PPMT is the optimum method for modelling multivariate deposits.

Besides, for elaborating the effects of the type of the transformations on mineral resources 
modelling, the grades and tonnages of the interested variables were calculated using the simulated 
transformed variables, and the grade-tonnage curves were achieved based on several cut-off grades 
subsequently (Fig. 21). To reach this purpose, the 100 simulation realisations were averaged 

Fig. 21 - The grade-tonnage curves of the transformed variables based on the averages of the simulations.
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(E-type map) for each variable in order to present a representative value for each block. Besides, 
the total tonnage of the zone 220 of the Mehdiabad deposit was calculated as 0.45 MT by simply 
multiplying the volumes of the blocks by the density of the rock type. According to Fig. 19, 
there are differences between the tonnages of the variables for different applied transformations. 
It can be inferred that the SCT and MAF transformations may underestimate the tonnages for 
Pb and Zn as the major elements while they overestimate the tonnages for Cu comparing to the 
PPMT results. All the transformations provided similar results for simulation of the Ag tonnages. 
To describe such discrepancies in detail, the tonnages and average grades of the elements for 
specific cut-off grades are demonstrated in Table 3. Also, the differences between the SCT and 
MAF results with the PPMT outcomes are calculated. These discrepancies may strongly affect 
the future mine planning.

Table 3 - The differences of the SCT and MAF tonnages and grades with respect of the PPMT results. 

		  Elements	 Cut-off	 Tonnage	 Ave Grade	 Tonnage	 Grade 
			   (%)	 difference (MT)	 difference	 difference (%)	 difference (%)

		  Pb	 2.00	 -0.03600	 -0.132000	 14.500	 5.36 
		  Zn	 2.00	 -0.01900	 -0.112000	   7.600	 2.11 
	

PPMT VS SCT
	 Cu	 0.20	 -0.02400	 -0.018000	 30.900	 5.40 

		  Ag	 0.01	 -0.00022	 -0.000167	   0.980	 1.07

		  Pb	 2.00	 -0.01700	 -0.168000	   6.976	 6.83 
		  Zn	 2.00	 -0.07000	 -0.455000	 28.030	 8.57 
	

PPMT VS MAF
	 Cu	 0.20	 -0.03000	 -0.026000	 41.540	 7.60 

		  Ag	 0.01	 -0.00063	 -0.000423	   2.780	 2.71

Moreover, the statistical parameters of the simulated back-transformed variables are present in 
Table 4. The results of the PPMT simulations indicated perfect proximities between the original 
mean and variance of the variables and the ones regarding the averaged simulation (Tables 1 and 
4). However, there are differences between the statistics of the SCT and MAF simulations against 
the original ones in which SCT yielded more acceptable results comparing to the MAF.

Table 4 - The statistical parameters of the simulated back-transformed variables (average of the simulations).

	Transformation	 Elements	 Number of blocks	 Mean	 Variance	 Min	 Max	 Upper quartile	 Lower quartile

		  Pb (%)	 167282	   1.40 	        2.18	 0	   10.12	   1.94	   0.4500

		  Zn (%)	 167282	   3.28 	      12.37	 0	   20.00	   4.50	   0.8600

	
PPMT

	 Ag (ppm)	 167282	 31.74 	  1229.23	 0	 243.6 	  40.69	 11.7000

		  Cu (%)	 167282	 0.143	       0.02	 0	     1.01	   0.15	   0.0040

		  Pb (%)	 167282	   1.33 	        2.00	 0	   10.12	   1.80	   0.4200

		  Zn (%)	 167282	   3.07 	      10.47	 0	   20.00	   4.28	   0.8000

	
SCT

	 Ag (ppm)	 167282	 33.35 	  1261.90	 0	 243.6 	  41.19	 11.9000

		  Cu (%)	 167282	   0.13 	        0.03	 0	     1.01	   0.18	   0.0015

		  Pb (%)	 167282	   2.21 	        4.22	 0	   10.12	   2.90	   0.7800

		  Zn (%)	 167282	   2.82 	      10.27	 0	   20.00	   3.83	   0.7000

	
MAF

	 Ag (%)	 167282	 28.40 	  1013.80	 0	 243.6 	  34.91	   9.7000

		  Cu (%)	 167282	   0.055	       0.01	 0	     1.01	   0.07	   0.0015
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6. Conclusions

Joint simulation of the interested variables in multivariate mineral deposits can be addressed 
using multivariate analysis methods that aim to remove multivariate complexity and transform 
the attributes to an orthogonal space preparing them for further modelling and analysis. In this 
study, three different multivariate methods, namely SCT, MAF, and PPMT, were used for joint 
simulation of a data set containing Pb, Zn, Cu, and Ag related to the zone 220 of Mehdiabad 
deposit. The efficiency of the mentioned methods was assessed by several tools. Generally, the 
results showed that the PPMT yielded more reliable outcomes comparing to other two approaches. 
It decorrelated the variables very well both in lag zero and in other lag distances. Also, the 
simulated PPMT transformed variables and reproduced the original mean and correlations of the 
variables acceptably. Moreover, the experimental variograms of the simulation realisations had 
appropriate coincidence with the variograms of raw data. Moreover, the grade-tonnage curves 
per variables were calculated based on the averaged of the simulations in which SCT and MAF 
transformations may underestimate the tonnages for Pb and Zn as the major elements, while the 
tonnage of copper is overestimated comparing to the PPMT results. Also, the statistics of the 
back-transformed simulation results proved that the PPMT simulations could greatly reproduce 
the original statistics.
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