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ABSTRACT	 A short overview on superstatistics applied in various complex systems is firstly provided 
by roughly outlining the methodology, including the deduction of superstatistical 
parameters from time series and the characterisation of the complex system as a special 
type of superstatistics. Applications of superstatistics on various physical systems 
are reported and originally performed on Greek seismicity. The application of the 
superstatistical methodology, investigating the dynamics of seismogenesis in Greece, 
revealed the complex turbulent nature of the earthquake data. The verification of the 
superstatistical hypothesis strongly depends on the parameter used for differencing. 
In the case the hypothesis is verified the results evidence log-normal superstatistics, 
otherwise the results indicate either Gaussian distributed random variables of constant 
variance with outliers or Tsallis qstat-Gaussian variables with constant variance.
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1. Introduction

1.1. Theory
Superstatistics is a concept developed for describing the statistics of complex systems far 

from equilibrium, in which the stationary states are characterised on long time scales by large 
fluctuations of their intensive quantities (e.g. inverse temperature, friction constant, chemical 
potential or energy dissipation). Variations of the statistical properties of these fluctuations lead 
to different effective statistical mechanical descriptions (Beck and Cohen, 2003). The simplest 
example of a superstatistical system is the motion of a Brownian particle of mass m through a 
d-dimensional inhomogeneous medium in which the temperature varies both in space and time. 
In this example, the particle wanders in a certain cell with a given temperature for a very short 
period, then moves to the next cell with a different temperature and so on (Beck and Cohen, 
2003). This indicates that there are two dynamics: one fast corresponding to the velocity of the 
Brownian particle and a slow one related to the temperature variations of the medium (Beck, 
2006). Now, the particle velocity  can be efficiently described by a linear Langevin equation:

(1)

where W➞(t) corresponds to Gaussian white noise component, γ > 0 is a friction constant, σ 
determines the strength of noise component and F(υ➞) = – (∂/∂ υ➞) E (υ➞) is a drift force (Beck, 2004). 
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Each spatial cell is characterised by an intensive parameter β (here this parameter coincides with 
inverse temperature) given by β = 2γ / (mσ2). If the medium is homogeneous, then the parameters 
γ and σ are constant and so is the intensive parameter β, resulting an ordinary Brownian motion. 
Nonetheless, in a non-equilibrium situation, γ and σ are parameters slowly fluctuating on a much 
higher time scale than velocity υ➞ (Beck, 2009). Hence, β also fluctuates from one cell to another 
getting a probability density f(β). Locally, for a time scale T and for each cell, β can be considered 
approximately constant and then the local stationary distribution in each cell is Gaussian, given 
by:

(2)

where 

 

is the kinetic energy of the particle. However, in the long term behaviour of 
 
the particle, namely for times t >> T, the marginal distribution p(υ➞), namely the probability of 
observing a certain value of υ➞ irrespective of what β is (Beck, 2004), is given by:

(3)

As it will be described analytically in Section 2, depending on the behaviour of f(β) 
generalisations of different superstatistical models are possible such as χ2, inverse χ2, log-normal, 
F-superstatistics among others (Beck, 2006).

Similar to this example and keeping the same mathematical formalism, one may consider a 
more general case in which a macroscopic system, under non-equilibrium steady states, consists 
of many smaller cells which reach local equilibrium very fast (e.g. relaxation time τ for each cell 
is very small). In this system there exists an intensive parameter β exhibiting spatio-temporal 
fluctuations, while locally, i.e. in spatial regions (cells), is approximately constant for a time scale 
T. In addition, depending on the physical problem, the variable υ➞ can be appropriately replaced 
with another variable describing the problem considered. For example, for modelling turbulence 
in superstatistical framework, υ➞ can be replaced with the velocity difference u➞ or acceleration a➞ 
on smallest scales (Beck et al., 2005).

In each cell, the system is described by ordinary statistical mechanics, i.e. ordinary Boltzmann 
factors e–βE, where E is an effective energy in each cell (in the previous example E was the kinetic 
energy). However, in the long term (t >> T), the system is described by a spatio-temporal average 
over the fluctuating β and in this way one obtains a superposition of two statistics, namely that 
of β and that of e–βE. This is the base for the term of “superstatistics” (Beck and Cohen, 2003; 
Beck, 2004, 2006; Beck et al., 2005) for which the stationary distribution can be given as a 
superposition of Boltzmann factors e–βE weighted by the probability density f(β) to detect a value 
β in a random cell, namely:

(4)

where ρ (Ε) is the density of states and Z(β) is the normalisation constant of ρ(Ε) e–βE for a given 
β (Beck et al., 2005). In Fig. 1, inspired and modified from Beck (2011), a macroscopic system is 



Superstatistics, complexity and earthquakes	 Boll. Geof. Teor. Appl., 60, 531-548

533

depicted where the ellipses with different colours represent different mesoscopic systems (cells) 
embedded into a fluctuation environment with different intensive parameters β.

1.2. Applications
Superstatistics has been applied to describe efficiently various physical phenomena. For 

example, the measured densities of velocity differences in the fully developed hydrodynamic 
turbulence are in excellent agreement with log-normal superstatistics, whereas the velocity 
differences of defect turbulence (a phenomenon related to convection) coincide quite well with 
typical predictions of Tsallis non-extensive models (Beck, 2004). In the same study, a paradigm 
from high energy physics is described concerning high-energy collision processes induced by 
astrophysical sources, which lead to the creation of cosmic ray particles verifying the non-
extensive behaviour of the measured cosmic rays. Atmospheric turbulence was also studied 
(Rizzo and Rapisarda, 2005) applying superstatistics to a temporal series of turbulent wind 
measurements and reproducing very well the fluctuations and the probability density functions of 
wind velocity returns and differences. Superstatistical analysis of train delay data was performed 
(Beck, 2008) revealing their Tsallis q-exponential distributions. Summarising, other applications 
include spectral fluctuations of billiards (Abul-Magd et al., 2008), financial dynamics (Van der 
Straeten and Beck, 2009; Denys et al., 2016; Xu and Beck, 2016), cancer survival statistics (Leon 
and Beck, 2008), currents in complex polymers (Yalcin and Beck, 2012), temperatures (Yalcin 
and Beck, 2013), sea level fluctuations (Rabassa and Beck, 2015), atmospheric Hg0 concentration 
data series from different latitudes (Carbone et al., 2018), among others. In all these studies, at 
least one of the four superstatistical classes was verified, indicating the superstatistical nature of 
the overall processes.

Earthquake generation processes are very complex, characterised by intermittency and 
nonstationary clustering (Orlecka‑Sikora et al., 2019). Even though results derived from the 
superstatistics theory are not yet reported for describing seismic process complexity, at least 
based on authors’ knowledge, a connection exists since in many studies the concept of Tsallis 

Fig. 1 - An example of spatially inhomogeneous macroscopic system where the ellipses with different colors represent 
different mesoscopic systems (cells) embedded into a fluctuation environment with different intensive parameters β 
[inspired and modified from Beck (2011)].
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nonextensive statistical mechanics (NESM) (Tsallis, 1988) was effectively applied. As it will be 
shown in next paragraphs, these results can be related to the sub-class of superstatistics, namely 
χ2-superstatistics (or Gamma distribution), as presented in Section 2.1. In particular, in a series of 
papers (this is a non-exhaustive list), a thorough investigation of seismicity behaviour, known to 
exhibit fractality and long-range interactions, took place based on NESM, which was proved as a 
very efficient approach for the statistical description of the nonlinear dynamics and evolution of 
various seismogenic systems, such as Greek region (Vilar et al., 2007; Sarlis et al., 2010; Telesca, 
2010, 2012; Iliopoulos et al., 2012; Vallianatos et al., 2012, 2013, 2014a, 2014b, 2016, 2018; 
Michas et al., 2013; Papadakis et al., 2013, 2016; Antonopoulos et al., 2014; Pavlos et al., 2014, 
2018; Efstathiou et al., 2017; Papadakis and Vallianatos, 2017; Chochlaki et al., 2018; Michas 
and Vallianatos, 2018; and references therein). Various models were also developed based on 
NESM, such as the fragment asperity model (e.g. Sotolongo-Costa and Posadas, 2004; Silva et 
al., 2006) in which a mechanism of earthquake triggering is derived by the combination of the 
roughness of the fault planes and the fragment-size distribution. Overall, the NESM seems to 
provide an efficient framework for the description of seismicity, with significant input towards 
understanding the way that this extreme complexity is manifested in multi-spatiotemporal scales. 
A special mention must be given to a Bayesian model which, through Mathai’s pathway model, 
can be related to superstatistics, the application of which to Chilean strong earthquakes provided 
promising results (Sánchez and Vega-Jorguera, 2018).

The interest in superstatistics is substantiated from the above retrospection, since for many 
physical systems this concept yields a plausible explanation for non-trivial, non-Gaussian 
distributions p(E) (e.g. Tsallis distributions) occurrence (Beck, 2004). Within its framework, 
the observed non-Gaussian, non-extensive behaviour arises naturally due to the spatio-temporal 
fluctuations of β, while locally the behaviour is described by ordinary statistical mechanics.

2. Types of superstatistics

As mentioned above, different examples of possible superstatistics can be generated depending 
on different realisations of distributions f(β), which cannot be Gaussian since β is always positive 
by construction (Beck et al., 2005).

2.1. χ2-superstatistics
If the probability density of β is given by the χ2-distribution (or equivalently the Gamma 

distribution):

(5)

then the distribution resulting from Eqs. 4 and 5 exhibits power-law tails for large |υ➞|, leading 
to Tsallis statistics (Beck et al., 2005). Considering the simple dynamic realisation paradigm 
described in introduction with linear drift forces namely F(υ➞) = – υ➞ and β=γ/σ2, the marginal 
probability of an observed variable υ➞ is given by:
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(6)

where n is the number of degrees of freedom, β0 is the average of β given by  

and the variance . The degrees of freedom, n, under appropriate modifications (Beck,

2004) can be related to a parameter q with q = 1+2 /n which is very close to Tsallis entropic index
given by qstat = 1 + 2/(n+1)  (Beck et al., 2005), and, therefore, Eq. 6 yields the generalised canonical
distributions of nonextensive statistical mechanics (Beck, 2009).

2.2. Inverse χ2-superstatics
If we consider β-1 instead of β the resulting f(β) is the inverse χ2-distribution given by:

(7)

which generates superstatistical distributions that present exponential decays (Beck et al., 2005).

2.3. Log-normal superstatistics
If f(β) follows the log-normal distribution:

(8)

where m and s are parameters, the average of β is given by β0 = m�
–
w and the variance 

σ2 = m2w(w – 1) where w: = eS2. Again, considering the paradigm of the moving particle for linear 
drift forces, the generalised canonical distribution of υ➞ is given by the superstatistical distribution:

.                            (9)

Even though the integral in Eq. 9 cannot be evaluated in closed form, it is easily numerically 
estimated.

2.4. F-superstatistics
Another example concerns superstatistics based on F-distributions given by:

(10)
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where a and w are positive integers and b > 0 is a parameter. For a = 2 a Tsallis distribution is

obtained in β-space and not in υ-space. In this case, the average of β is given by  and

the variance . Similarly to log-normal distribution for β, the integral in

Eq. 10 can be easily numerically estimated, even though a closed form cannot be obtained.

3. Methodology

Given some experimental time series u(t), the hypothesis of superstatistics is tested (Rizzo 
and Rapisarda, 2005) by extracting the two basic scales τ and T, as well as the PDF f(β) (Beck 
et al., 2005). For the realisation of this test, u(t) is sliced in small pieces in which the time series 
becomes almost Gaussian. The superstatistical approach is also given schematically in Fig. 2, 
inspired and modified from Laubrich et al. (2008). As already mentioned u(t) could be any time 
series measured for a physical system, but it can be also a differenced time series (or incremented 
series) such as u(t) = υ(t+δ)–υ(t) of a time series υ(t), where δ is a time difference, δ = 2j with 
j = 0, 1, 2, … (Beck et al., 2005).

Fig. 2 - Schematic sketch of the superstatistical approach. The increment (differenced) series is considered to consist of 
successive normally distributed segments of length T [inspired and modified from Laubrich et al. (2008)].
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3.1. Large time scale T
For the estimation of the large time scale T, the time series is firstly divided into N equal time 

intervals of size Δt. Therefore, the total length of the signal u(t) is tmax= NΔt, and a function κ(Δt) 
(e.g. kurtosis function) is then defined as:

(11)

where ū is the average of u(t) and  stands for an integration over an interval of 
 
length Δt starting at t0 (Beck et al., 2005). Practically, Eq. 11 implies that local flatness is estimated 
for each window of length Δt and then the result is averaged over all t0’s. Finally, the large time 
scale T is given by:

κ(T) = 3	 (12)

since κ(Δt) = 3 for a Gaussian process. Deviation from 3 implies intermittency and non-Gaussian 
behaviour and, in particular, bigger/smaller values imply super/sub-Gaussian distributions 
respectively, and intermittency (Iliopoulos and Aifantis, 2018). For very small values of window 
Δt, particularly as short as only one measurement of u can be contained in each window, then 
κ(Δt) = 1. On the other hand, for large values of window Δt, particularly as high as that the window 
Δt almost equals to the length of the time series, κ(Δt) > 3, as expected from superstatistical 
distributions that are heavy-tailed. This practically means that since the function k(Δt) is lower 
than 3 for small values of Δt and higher than 3 for large values, there should be a Δt = T for which 
κ(T) = 3. Hence, for each time difference δ the relevant large time scale T can be extracted.

3.2. Short time scale τ
The short time scale τ corresponds to the relaxation time of the dynamics and can be evaluated 

from the short-time exponential decay of the (auto)-correlation functions of the time series u(t). 
In particular, we are looking for ru(k) = e–k/τ (Abul-Magd et al., 2008). When autocorrelation 
functions do not follow this trend, the empirical value can be parameterised in the form of a 
superposition of two exponentially decaying functions, as:

ru(k) = A1e
–k/τ1 + A2e

–k/τ2	 (13)

where A1=1.5 and A2=-0.5 (Abul-Magd et al., 2008), and τ is estimated as the mean value of τ1 
and τ2. Finally, the short time scales τ are compared with the large time scales T and the ratio T/τ 
is evaluated. If the ratio is large compared to unity, then it is sufficient to claim that two well-
separated time scales exist justifying the superstatistics’ hypothesis.

3.3. Estimation of the parameter distribution f(β)
The slowly varying stochastic variable β(t) is determined from the time series u(t) as:

.                                            (14)
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A necessary condition of superstatistics is that this variable, β, should fluctuate more smoothly 
(e.g. slow changes) compared to u(t), namely characterised by a long memory and slow correlation 
decay. Then, the probability density f(β) is obtained as a histogram of β(t0) for all values of t0 and 
usually it is compared with inverse χ2, χ2 (Gamma) and log-normal distributions which have the 
same mean and variance of β (Beck et al., 2005).

3.4. General superstatistical q-parameters
A general parameter q can be defined as (Beck and Cohen, 2003):

(15)

where q measures the deviation from Gaussianity and is valid for any superstatistics. When variable 
β does not fluctuate (e.g. constant) then q = 1, since f(β) = δ(β-β0). In addition, the q coincides 
with qstat (stat stands for stationary) from Tsallis statistics if β follows a χ2 distribution, namely 
q = qstat=1 + 2/(n+1), where n is the number of effective degrees of freedom. The Tsallis qstat can 
be evaluated for u(t) time series using various methods like the one presented in Iliopoulos and
Aifantis (2018). On the other hand, if log-normal superstatistics is the case, then q = qlog= 1/3,

where F is the flatness  of the distribution p(u). It must be noted here that q < 1 is not

applicable for superstatistics (Beck, 2004).

3.5. Additional constraint
In a recent study (Van der Straeten and Beck, 2009) an extra condition was proposed that 

should hold before assuming that a time series at hand can be described by superstatistics. If θT,l

is defined as the deviation of the fourth momentum from for the time series slices of 
length T:

(16)

then the Gaussian approximation is expected to hold when |ε|<<1, where:

.                                                    (17)

4. Application of superstatistics in Hellenic seismicity

In this study, for the application of superstatistics in seismicity of the Aegean and surrounding 
area, we consider the interevent times of 1221 earthquakes of M ≥ 5.2 that occurred in the study 
area since 1911. The data set used is a subset of the regional earthquake catalogue compiled by 
the Geophysics Department, Aristotle University of Thessaloniki (http://geophysics.geo.auth.gr/
ss/station_index_en.html) and is considered complete at this magnitude threshold. Hereafter, M52 
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denotes the interevent times of earthquakes with magnitude greater or equal to 5.2.
In Fig. 3 the epicentral distribution of earthquakes considered in this study with magnitudes 

and occurrence periods given in the legend are shown. In particular, the red circles correspond 
to epicentral distribution of earthquakes with 5.2 ≤ M < 5.5, the green to 5.5 ≤ M < 6.5 and the 
yellow stars to M ≥ 6.5.

Following the descriptions in previous paragraphs, the two time scales τ and T and their ratio 
namely Τ/τ were estimated, as well as the slow varying intensive parameter β(t) was constructed 

Fig. 3 - Epicentral distribution of earthquakes with magnitudes and occurrence periods considered in this study. In 
particular, the red circles correspond to earthquakes with 5.2 ≤ M < 5.5, the green to 5.5 ≤ M < 6.5 and the yellow stars 
to M ≥ 6.5.
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and, then, its probability density with Gamma and log-normal distributions was compared. In 
particular, using differenced time series u(t) = υ(t+δ)-υ(t), where υ(t) are the interevent times (or 
else waiting times) between sequential earthquakes, and δ = 2j, j = 0, 1, 2 …, n with n = 7, eight 
differenced time series were constructed, one for each δ. In Fig. 4 the original interevent times 
is presented (Fig. 4a) along with one example of the differenced series (Fig. 4b) corresponding 
to δ = 4.

Fig. 4 - a) Interevent time series for earthquakes with M ≥ 5.2 that occurred in the study area since 1911; b) an example 
of differenced series u(t) generated with δ = 16 for the interevent time series shown in panel a.

Using Eq. 11 the kurtosis κ(Δt) was estimated for each differenced series (δ1, δ2, ..., δ128)  
and the results are depicted in Fig. 5, where the function κ(Δt) = 1 when Δt = 1 and κ(Δt) > 3 
when Δt = length of interevent times = 1221, implying intermittency and non-Gaussian behaviour, 
as expected in superstatistical systems. However, even though in previous papers this function 
seems to be a smooth linear increasing monotone function (e.g. Beck et al., 2005), in this case 
k(Δt) does not exhibit a profile of this type. In addition, in most differenced series (e.g. δ1, δ4, 
δ16, δ32, δ64) this function oscillates around 3 for a considerable interval of Δt = 10-60. This 
result could be attributed to the short earthquake time series considered and/or to the complexity 
inherent in the series. All the relevant superstatistical time scales T were estimated based on Eq. 
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12, namely κ(T) = 3, as depicted by the black dotted line in Fig. 5, for each time difference δ. In 
the cases where function k(Δt) fluctuates and equals to 3 multiple times, all relevant time scales T 
were estimated and the final value considered was the one corresponding to the lowest constraint 
ε (see next paragraph). For example, for the differenced series δ4, the relevant times Ts were: 8, 
14, 15, but, as shown in Table 1, T = 8 was kept, since it is associated with the smallest ε.

In order to further validate the results an additional constraint was estimated according to 
Eq. 17. When this constraint is smaller than one, namely ε << 1 or more loosely ε < 1 for small 
data sets, then the time windows used for the evaluation of large time T can be assumed to be 
characterised by Gaussian distributions. Basically, this constraint evaluates the contribution of 
the deviations from the Gaussian approximation in these time slices to the value of k(T). As it 
can be seen in Table 1, only two values of constraint (ε) are small enough compared to unity, to 
validate the superstatistical hypothesis and these values correspond to time differences δ = 4, 32. 
Small values compared to unity, also were attained for δ = 1 and 64, taking into account the short 
length of the time series. On the other hand, all the remained values of the constraint reject the 
hypothesis of superstatistics for the corresponding differences, namely δ = 2, 8, 16, 128 (Van der 
Straeten and Beck, 2009). The rejection of the superstatistical hypothesis could be due to either 
the presence in the time series of  Gaussian distributed random variables of constant variance 
with outliers and, if this is not the case, qstat-Gaussian (instead of Gaussian) distributed random 
variables with constant variance (Van der Straeten and Beck, 2009). These cases can falsely be 
classified as superstatistical (Van der Straeten and Beck, 2009). In addition, as mentioned above, 
the small length of the original interevent times could also induce spurious results.

In addition, in Fig. 6 the auto-correlation functions for all the differenced time series are 
presented. As it can be seen, the autocorrelation profiles are not exponential but rather exhibit a 
fast, abrupt decay towards zero, implying the existence of short auto-correlations. Therefore, for 
the estimation of short time scale τ, Eq. 13 was used, since there is not any exponential decay, 
and the results are also given in Table 1. In particular, in Table 1 the values of the superstatistical 
parameters like the long time scale T corresponding to lowest constraint (|ε|), the constraint (|ε|), 
the short time scale τ, and their ration T/τ are presented. As it can be seen the values of T are 

Fig. 5 - Kurtosis k(Δt) as a function of Δt, estimated for all differenced series u(t) generated with δ = 1, 2, 4, 8, 16, 32, 
64, 128.
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larger than the values of τ, and, therefore, the ratio T/τ attains values much larger than unity, 
indicating a clear separation of scales, as predicted by superstatistics. However, taking into 
account the constraint, the superstatistical hypothesis is validated by δ = 1, 4, 32, 64 differenced 
series and rejected for the others. Overall, these results reveal a very complex (super)statistical 
profile for the M52 interevent seismic time series, which strongly depends on the time difference 
δ considered for creating the differenced time series. These results also verify the non-smooth 
fluctuating profile of the k(Δt) function as depicted in Fig. 3.

Fig. 6 - Autocorrelation coefficients r(k) estimated as a function of lag time k estimated for the differenced series u(t) 
(δ = 1, 2, 4, 8, 16, 32, 64, 128).

Table 1 - The values of the superstatistical parameters: long time scale T, the constraint (|ε|), short time scale τ and their 
ratio T/τ estimated for each differenced series u(t) of the interevent time series υ(t).

	 δ	 Τ	 Constraint (|ε|)	 τ	 Τ/τ

  	     1	 11	 0.1856	 1.41	   7.80

  	     2	 61	 0.9590	 1.30	 46.92

  	     4	   8	 0.0395	 1.14	   7.05

  	     8	 61	 1.0778	 1.20	 50.83

 	   16	   9	 0.9873	 1.26	   7.14

 	   32	   4	 0.0140	 1.22	   3.28

 	   64	   7	 0.3185	 1.23	   5.70

	 128	 58	 1.2268	 1.21	 47.90

Fig. 7 presents an example of slow variable β(t) (orange line) and the corresponding 
differenced time series u(t) (blue). For the generation of β(t) we used δ = 4, T = 8 and Eq. 14. 
Other generations of β(t) are possible for different δ’s and T’s. As it can be seen in this figure, the 
variable β(t), changes slowly compared to u(t). This result is also clearly depicted in Fig. 8, that 
shows the autocorrelation functions estimated for the variable β(t) corresponding to differenced 
series δ = 1, 4, 32, 64, since only these validated superstatistical hypothesis. As it can be seen, the 
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profile of the autocorrelation functions exhibit a slow decaying profile, indicating a long memory 
for β(t), verifying the superstatistical framework prediction.

Finally, the probability distributions of β(t) for the differenced series δ = 1, 4, 32, 64, are 
compared with the Gamma and log-normal distributions as described in Section 3.3. Fig. 9 shows 
the comparison of f(β) for beta differenced series corresponding to δ = 4 (red dots), with the 
log-normal (blue line) and Gamma distribution (green line) in a log-linear plot. The probability 
density f(β) is obtained as a histogram of β(t0) for all values of t0 and is compared with χ2 (Gamma) 
and log-normal distributions which have the same mean and variance of β. As it can be seen in 
Fig. 9, log-normal distribution fits the original distribution much better especially in the tails. 
The comparison also took place using two criteria, namely the Akaike Information Criterion 
(AIC) and the Bayesian Information Criterion (BIC) (Aho et al., 2014). For the fitting of Gamma 
distribution the criteria attained the values: AIC = 8341 and BIC = 8351, whereas for the log-

Fig. 7 - Time series of the process β(t) (top-orange) and differenced series u(t). For this example δ = 4 and T = 8, 
respectively. As it can be seen β(t) is a slow varying process, compared to u(t), as predicted by superstatistical theory.

Fig. 8 - Autocorrelation coefficients r(k) estimated as a function of lag time k for the slowly varying variable 
β(t) (δ = 1, 4, 32, 64).
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normal distribution: AIC = 7702 and BIC = 7712. The results indicate that the differenced series 
fall into the log-normal superstatistical class, since both criteria are smaller for the log-normal 
distribution. Similar results were obtained for the other β(t)’s too. Therefore, we can claim that these 
f(β) follow the distribution described by Eq. 8 and u(t) the one of Eq. 9, indicating that β is a result

of the product of n local cascade random Gaussian variables X, namely 
 
and that the

respective differences of M52 interevent times are related to a multiplicative turbulent random 
process (Beck et al., 2005).

Summarising, the results of this application reveal:
•	 fat-tailed non-Gaussian distributions for differenced interevent time series, since κ(Δt) > 3 

for large Δt. In addition, the profile of κ(Δt) deviates from the expected smooth increasing 
monotone one. This could be due to the short length time series considered inducing 
fluctuations in the statistical measures and/or to inherent hidden statistical complexity in 
the data set;

•	 the presence of two separate time scales, verifying superstatistics theory prediction, since 
the time scale ratio T/τ attains values much higher from unity;

•	 the use of the additional constraint revealed that only the differenced series δ = 1, 4, 32, 64 
validate the superstatistical hypothesis, and not the remained ones. This could be attributed 
to false superstatistical profile obtained due to the presence of Gaussian distributed random 
variables of constant variance with outliers or Tsallis qstat-Gaussians with constant variance 
(Van der Straeten and Beck, 2009);

•	 for differenced M52 interevent times corresponding to δ = 1, 4, 32, 64, log-normal 
superstatistics fit better the intensive parameter β compared to Gamma distribution. This 
result implies that β is a result of the product of n local cascade random Gaussian variables

	 X, namely . This is in contrast to Tsallis superstatistics where β results from an

	 additive process, namely  Therefore, the specific differenced M52 interevent 

Fig. 9 - Probability density f(β) (empirical) extracted from the differenced time series δ = 4 (red dots) and compared 
with log-normal (blue line) and Gamma (χ2) (green line) distributions.
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times are related to a multiplicative turbulent random process, which can be described by 
local Boltzmann factors e–(βu2)/2, whose variance parameter β varies slowly according to a 
log-normal distribution function. The slow variation of parameter β was also shown from 
the estimation of the corresponding autocorrelation functions.

It must be mentioned that the used time series is relatively short and, therefore, additional 
analysis is required to verify the aforementioned findings, along with the application of 
Renewal Analysis algorithm (Paradisi et al., 2009), which might be addressed in a forthcoming 
study.

5. Summary and conclusions

The main types of superstatistics are detailed along with the methodology needed for capturing 
superstatistical features and the corresponding necessary time scales from time series. Real-world 
applications were also summarised covering a broad range of different subject areas, focusing 
however in earthquakes. Superstatistics is, thus, a very efficient framework for describing the 
non-Gaussian behaviour of complex non-equilibrium systems. The superstatistical framework is 
based on non-equilibrium statistical mechanics and characterises the system under consideration 
as a superposition of several statistics, which act on different time scales. For example, the 
system statistics could be derived as a superposition of local Gaussian processes weighted 
with a process of a slowly fluctuating intensive variance parameter. Overall, superstatistics can 
provide valuable information both on practical (e.g. time series analysis, modelling), as well 
as on theoretical studies of complex systems. Themes like extreme value theory (Rabassa and 
Beck, 2014), fractional kinetics and heterogeneous anomalous diffusion (Itto, 2014), reaction 
rate theory and fractional calculus (Mathai and Haubold, 2010), and other concepts closely 
related to complexity theory, can be valuably updated in the prism of superstatistics, leading to 
advanced theoretical frameworks and mathematical models, for the thorough understanding of 
complex systems behaviour.

The application of superstatistical methodology investigating the complex turbulent dynamics 
of seismogenesis in Greece, namely to interevent time series of earthquakes with M ≥ 5.2, 
revealed a complex profile for the differenced interevent time series. In particular, depending on 
the parameter δ the superstatistical hypothesis can be either verified or not. When the hypothesis 
is verified, the analysis revealed the log-normal superstatistical character of the differenced 
interevent time series, indicating a multiplicative turbulent random process. This result deviates 
from the ones claiming Tsallis superstatical distribution which is related to additive random 
process of squared Gaussian random variables (Beck et al., 2005). When the superstatistical 
hypothesis is not verified, the results can be related to Gaussian distributed random variables of 
constant variance with outliers or Tsallis q-Gaussian variables with constant variance, as indicated 
in Van der Straeten and Beck (2009). However, a more extensive and thorough study concerning 
superstatistics and Hellenic seismicity, for various magnitude thresholds and time intervals, needs 
to verify the aforementioned results and this will be the topic of a future paper.
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