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ABSTRACT	 A	short	overview	on	superstatistics	applied	in	various	complex	systems	is	firstly	provided	
by roughly outlining the methodology, including the deduction of superstatistical 
parameters from time series and the characterisation of the complex system as a special 
type of superstatistics. Applications of superstatistics on various physical systems 
are reported and originally performed on Greek seismicity. The application of the 
superstatistical methodology, investigating the dynamics of seismogenesis in Greece, 
revealed	the	complex	turbulent	nature	of	the	earthquake	data.	The	verification	of	the	
superstatistical hypothesis strongly depends on the parameter used for differencing. 
In	the	case	the	hypothesis	is	verified	the	results	evidence	log-normal	superstatistics,	
otherwise the results indicate either Gaussian distributed random variables of constant 
variance with outliers or Tsallis qstat-Gaussian	variables	with	constant	variance.
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1. Introduction

1.1. Theory
Superstatistics is a concept developed for describing the statistics of complex systems far 

from equilibrium, in which the stationary states are characterised on long time scales by large 
fluctuations	 of	 their	 intensive	 quantities	 (e.g.	 inverse	 temperature,	 friction	 constant,	 chemical	
potential	or	energy	dissipation).	Variations	of	the	statistical	properties	of	these	fluctuations	lead	
to	different	effective	statistical	mechanical	descriptions	(Beck	and	Cohen,	2003).	The	simplest	
example	of	a	superstatistical	system	is	the	motion	of	a	Brownian	particle	of	mass	m through a 
d-dimensional	inhomogeneous	medium	in	which	the	temperature	varies	both	in	space	and	time.	
In this example, the particle wanders in a certain cell with a given temperature for a very short 
period,	 then	moves	 to	 the	next	 cell	with	 a	different	 temperature	 and	 so	on	 (Beck	and	Cohen,	
2003).	This	indicates	that	there	are	two	dynamics:	one	fast	corresponding	to	the	velocity	of	the	
Brownian	particle	and	a	 slow	one	 related	 to	 the	 temperature	variations	of	 the	medium	(Beck,	
2006).	Now,	the	particle	velocity		can	be	efficiently	described	by	a	linear	Langevin	equation:

(1)

where W➞(t) corresponds to Gaussian white noise component, γ >	 0	 is	 a	 friction	 constant,	 σ 
determines the strength of noise component and F(υ➞)	=	–	(∂/∂ υ➞) E	(υ➞) is	a	drift	force	(Beck,	2004).	
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Each spatial cell is characterised by an intensive parameter β	(here	this	parameter	coincides	with	
inverse temperature) given by β	=	2γ	/	(mσ2). If the medium is homogeneous, then the parameters 
γ and σ are constant and so is the intensive parameter β,	resulting	an	ordinary	Brownian	motion.	
Nonetheless,	in	a	non-equilibrium	situation,	γ and σ	are	parameters	slowly	fluctuating	on	a	much	
higher time scale than velocity υ➞	(Beck,	2009).	Hence,	β	also	fluctuates	from	one	cell	to	another	
getting a probability density f(β).	Locally,	for	a	time	scale	T and for each cell, β can be considered 
approximately constant and then the local stationary distribution in each cell is Gaussian, given 
by:

(2)

where 

 

is	the	kinetic	energy	of	the	particle.	However,	in	the	long	term	behaviour	of 
 
the particle, namely for times t >> T, the marginal distribution p(υ➞), namely the probability of 
observing a certain value of υ➞ irrespective of what β	is	(Beck,	2004),	is	given	by:

(3)

As	 it	 will	 be	 described	 analytically	 in	 Section	 2,	 depending	 on	 the	 behaviour	 of	 f(β) 
generalisations of different superstatistical models are possible such as χ2, inverse χ2,	log-normal,	
F-superstatistics	among	others	(Beck,	2006).

Similar to this example and keeping the same mathematical formalism, one may consider a 
more	general	case	in	which	a	macroscopic	system,	under	non-equilibrium	steady	states,	consists	
of	many	smaller	cells	which	reach	local	equilibrium	very	fast	(e.g.	relaxation	time	τ for each cell 
is very small). In this system there exists an intensive parameter β	 exhibiting	spatio-temporal	
fluctuations,	while	locally,	i.e.	in	spatial	regions	(cells),	is	approximately	constant	for	a	time	scale	
T. In addition, depending on the physical problem, the variable υ➞ can be appropriately replaced 
with another variable describing the problem considered. For example, for modelling turbulence 
in superstatistical framework, υ➞ can be replaced with the velocity difference u➞ or acceleration a➞ 
on	smallest	scales	(Beck	et al.,	2005).

In	each	cell,	the	system	is	described	by	ordinary	statistical	mechanics,	i.e.	ordinary	Boltzmann	
factors e–βE, where E	is	an	effective	energy	in	each	cell	(in	the	previous	example	E was the kinetic 
energy).	However,	in	the	long	term	(t >> T),	the	system	is	described	by	a	spatio-temporal	average	
over	the	fluctuating	β and in this way one obtains a superposition of two statistics, namely that 
of β and that of e–βE.	This	is	the	base	for	the	term	of	“superstatistics”	(Beck	and	Cohen,	2003;	
Beck,	 2004,	 2006;	Beck	 et al.,	 2005)	 for	which	 the	 stationary	 distribution	 can	 be	 given	 as	 a	
superposition	of	Boltzmann	factors	e–βE weighted by the probability density f(β) to detect a value 
β	in	a	random	cell,	namely:

(4)

where ρ (Ε) is the density of states and Z(β) is the normalisation constant of ρ(Ε) e–βE for a given 
β	(Beck	et al.,	2005).	In	Fig.	1,	inspired	and	modified	from	Beck	(2011),	a	macroscopic	system	is	
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depicted	where	the	ellipses	with	different	colours	represent	different	mesoscopic	systems	(cells)	
embedded	into	a	fluctuation	environment	with	different	intensive	parameters	β.

1.2. Applications
Superstatistics	 has	 been	 applied	 to	 describe	 efficiently	 various	 physical	 phenomena.	 For	

example, the measured densities of velocity differences in the fully developed hydrodynamic 
turbulence	 are	 in	 excellent	 agreement	 with	 log-normal	 superstatistics,	 whereas	 the	 velocity	
differences	of	defect	turbulence	(a	phenomenon	related	to	convection)	coincide	quite	well	with	
typical	predictions	of	Tsallis	non-extensive	models	(Beck,	2004).	In	the	same	study,	a	paradigm	
from	high	energy	physics	 is	described	concerning	high-energy	collision	processes	 induced	by	
astrophysical	 sources,	 which	 lead	 to	 the	 creation	 of	 cosmic	 ray	 particles	 verifying	 the	 non-
extensive behaviour of the measured cosmic rays. Atmospheric turbulence was also studied 
(Rizzo	 and	 Rapisarda,	 2005)	 applying	 superstatistics	 to	 a	 temporal	 series	 of	 turbulent	 wind	
measurements	and	reproducing	very	well	the	fluctuations	and	the	probability	density	functions	of	
wind velocity returns and differences. Superstatistical analysis of train delay data was performed 
(Beck,	2008)	revealing	their	Tsallis	q-exponential	distributions.	Summarising,	other	applications	
include	spectral	fluctuations	of	billiards	(Abul-Magd	et al.,	2008),	financial	dynamics	(Van	der	
Straeten	and	Beck,	2009;	Denys	et al.,	2016;	Xu	and	Beck,	2016),	cancer	survival	statistics	(Leon	
and	Beck,	2008),	currents	in	complex	polymers	(Yalcin	and	Beck,	2012),	temperatures	(Yalcin	
and	Beck,	2013),	sea	level	fluctuations	(Rabassa	and	Beck,	2015),	atmospheric	Hg0	concentration	
data	series	from	different	latitudes	(Carbone	et al.,	2018),	among	others.	In	all	these	studies,	at	
least	one	of	the	four	superstatistical	classes	was	verified,	indicating	the	superstatistical	nature	of	
the overall processes.

Earthquake generation processes are very complex, characterised by intermittency and 
nonstationary	 clustering	 (Orlecka-Sikora	 et al.,	 2019).	 Even	 though	 results	 derived	 from	 the	
superstatistics theory are not yet reported for describing seismic process complexity, at least 
based on authors’ knowledge, a connection exists since in many studies the concept of Tsallis 

Fig.	1	-	An	example	of	spatially	inhomogeneous	macroscopic	system	where	the	ellipses	with	different	colors	represent	
different	mesoscopic	systems	(cells)	embedded	into	a	fluctuation	environment	with	different	intensive	parameters	β 
[inspired	and	modified	from	Beck	(2011)].
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nonextensive	statistical	mechanics	(NESM)	(Tsallis,	1988)	was	effectively	applied.	As	it	will	be	
shown	in	next	paragraphs,	these	results	can	be	related	to	the	sub-class	of	superstatistics,	namely	
χ2-superstatistics	(or	Gamma	distribution),	as	presented	in	Section	2.1.	In	particular,	in	a	series	of	
papers	(this	is	a	non-exhaustive	list),	a	thorough	investigation	of	seismicity	behaviour,	known	to	
exhibit	fractality	and	long-range	interactions,	took	place	based	on	NESM,	which	was	proved	as	a	
very	efficient	approach	for	the	statistical	description	of	the	nonlinear	dynamics	and	evolution	of	
various	seismogenic	systems,	such	as	Greek	region	(Vilar	et al.,	2007;	Sarlis	et al.,	2010;	Telesca,	
2010,	2012;	 Iliopoulos	et al.,	2012;	Vallianatos	et al.,	2012,	2013,	2014a,	2014b,	2016,	2018;	
Michas	et al.,	2013;	Papadakis	et al.,	2013,	2016;	Antonopoulos	et al.,	2014;	Pavlos	et al.,	2014,	
2018;	Efstathiou	et al.,	2017;	Papadakis	and	Vallianatos,	2017;	Chochlaki	et al.,	2018;	Michas	
and	Vallianatos,	 2018;	 and	 references	 therein).	Various	models	were	 also	developed	based	on	
NESM,	such	as	the	fragment	asperity	model	(e.g.	Sotolongo-Costa	and	Posadas,	2004;	Silva	et 
al.,	2006)	in	which	a	mechanism	of	earthquake	triggering	is	derived	by	the	combination	of	the	
roughness	of	 the	 fault	planes	and	 the	 fragment-size	distribution.	Overall,	 the	NESM	seems	 to	
provide	an	efficient	framework	for	the	description	of	seismicity,	with	significant	input	towards	
understanding	the	way	that	this	extreme	complexity	is	manifested	in	multi-spatiotemporal	scales.	
A	special	mention	must	be	given	to	a	Bayesian	model	which,	through	Mathai’s	pathway	model,	
can	be	related	to	superstatistics,	the	application	of	which	to	Chilean	strong	earthquakes	provided	
promising	results	(Sánchez	and	Vega-Jorguera,	2018).

The interest in superstatistics is substantiated from the above retrospection, since for many 
physical	 systems	 this	 concept	 yields	 a	 plausible	 explanation	 for	 non-trivial,	 non-Gaussian	
distributions p(E)	 (e.g.	 Tsallis	 distributions)	 occurrence	 (Beck,	 2004).	Within	 its	 framework,	
the	observed	non-Gaussian,	non-extensive	behaviour	arises	naturally	due	to	the	spatio-temporal	
fluctuations	of	β, while locally the behaviour is described by ordinary statistical mechanics.

2. Types of superstatistics

As mentioned above, different examples of possible superstatistics can be generated depending 
on different realisations of distributions f(β), which cannot be Gaussian since β is always positive 
by	construction	(Beck	et al.,	2005).

2.1. χ2-superstatistics
If the probability density of β is given by the χ2-distribution	 (or	 equivalently	 the	Gamma	

distribution):

(5)

then	the	distribution	resulting	from	Eqs.	4	and	5	exhibits	power-law	tails	for	large	 |υ➞|, leading 
to	Tsallis	 statistics	 (Beck	 et al.,	 2005).	Considering	 the	 simple	 dynamic	 realisation	 paradigm	
described in introduction with linear drift forces namely F(υ➞) = – υ➞ and β=γ/σ2, the marginal 
probability of an observed variable υ➞	is	given	by:
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(6)

where n is the number of degrees of freedom, β0 is the average of β given by  

and the variance . The degrees of freedom, n,	under	appropriate	modifications	(Beck,

2004)	can	be	related	to	a	parameter	q with q	=	1+2	/n which is very close to Tsallis entropic index
given by qstat	=	1	+	2/(n+1)		(Beck	et al.,	2005),	and,	therefore,	Eq.	6	yields	the generalised canonical
distributions	of	nonextensive	statistical	mechanics	(Beck,	2009).

2.2. Inverse χ2-superstatics
If we consider β-1 instead of β the resulting f(β) is the inverse χ2-distribution	given	by:

(7)

which	generates	superstatistical	distributions	that	present	exponential	decays	(Beck	et al.,	2005).

2.3. Log-normal superstatistics
If f(β)	follows	the	log-normal	distribution:

(8)

where m and s are parameters, the average of β is given by β0 = m�
–
w and the variance 

σ2 = m2w(w	–	1)	where	w:	=	eS2. Again, considering the paradigm of the moving particle for linear 
drift forces, the generalised canonical distribution of υ➞	is	given	by	the	superstatistical	distribution:

.	 	 	 	 	 	 	 	 	 	 	 	 	 	 (9)

Even	though	the	integral	in	Eq.	9	cannot	be	evaluated	in	closed	form,	it	is	easily	numerically	
estimated.

2.4. F-superstatistics
Another example concerns superstatistics based on F-distributions	given	by:

(10)
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where a and w are positive integers and b >	0	is	a	parameter.	For	a =	2	a	Tsallis	distribution is

obtained in β-space	and	not	in	υ-space.	In	this	case,	the	average	of	β is given by  and

the variance .	Similarly	to	log-normal	distribution	for	β, the integral in

Eq.	10	can	be	easily	numerically	estimated,	even	though	a	closed	form	cannot	be	obtained.

3. Methodology

Given some experimental time series u(t),	 the	hypothesis	of	superstatistics	 is	 tested	 (Rizzo	
and	Rapisarda,	2005)	by	extracting	the	two	basic	scales	τ and T,	as	well	as	the	PDF	f(β)	(Beck	
et al.,	2005).	For	the	realisation	of	this	test,	u(t) is sliced in small pieces in which the time series 
becomes	almost	Gaussian.	The	superstatistical	approach	 is	also	given	schematically	 in	Fig.	2,	
inspired	and	modified	from	Laubrich	et al.	(2008).	As	already	mentioned u(t) could be any time 
series	measured	for	a	physical	system,	but	it	can	be	also	a	differenced	time	series	(or	incremented	
series) such as u(t)	=	υ(t+δ)–υ(t) of a time series υ(t), where δ is a time difference, δ	=	2j with 
j =	0,	1,	2,	…	(Beck	et al.,	2005).

Fig.	2	-	Schematic	sketch	of	the	superstatistical	approach.	The	increment	(differenced)	series	is	considered	to	consist	of	
successive normally distributed segments of length T	[inspired	and	modified	from	Laubrich	et al.	(2008)].
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3.1. Large time scale T
For the estimation of the large time scale T,	the	time	series	is	firstly	divided	into	N equal time 

intervals	of	size	Δt. Therefore, the total length of the signal u(t) is tmax= NΔt, and a function κ(Δt) 
(e.g.	kurtosis	function)	is	then	defined	as:

(11)

where ū is the average of u(t) and  stands for an integration over an interval of 
 
length Δt starting at t0	(Beck	et al.,	2005).	Practically,	Eq.	11	implies	that	local	flatness	is	estimated	
for each window of length Δt and then the result is averaged over all t0’s. Finally, the large time 
scale T	is	given	by:

κ(T)	=	3	 (12)

since κ(Δt)	=	3	for	a	Gaussian	process.	Deviation	from	3	implies	intermittency	and	non-Gaussian	
behaviour	 and,	 in	 particular,	 bigger/smaller	 values	 imply	 super/sub-Gaussian	 distributions	
respectively,	and	intermittency	(Iliopoulos	and	Aifantis,	2018).	For	very	small	values	of	window	
Δt, particularly as short as only one measurement of u can be contained in each window, then 
κ(Δt)	=	1.	On	the	other	hand,	for	large	values	of	window	Δt, particularly as high as that the window 
Δt almost equals to the length of the time series, κ(Δt)	>	3,	 as	expected	 from	superstatistical	
distributions	that	are	heavy-tailed.	This	practically	means	that	since	the	function	k(Δt) is lower 
than	3	for	small	values	of	Δt	and	higher	than	3	for	large	values,	there	should	be	a	Δt = T for which 
κ(T)	=	3.	Hence,	for	each	time	difference	δ the relevant large time scale T can be extracted.

3.2. Short time scale τ
The short time scale τ corresponds to the relaxation time of the dynamics and can be evaluated 

from	the	short-time	exponential	decay	of	the	(auto)-correlation	functions	of	the	time	series	u(t). 
In particular, we are looking for ru(k) = e–k/τ	 (Abul-Magd	 et al.,	 2008).	When	 autocorrelation	
functions do not follow this trend, the empirical value can be parameterised in the form of a 
superposition	of	two	exponentially	decaying	functions,	as:

ru(k) = A1e
–k/τ1 +	A2e

–k/τ2	 (13)

where A1=1.5	and	A2=-0.5	(Abul-Magd	et al.,	2008),	and	τ is estimated as the mean value of τ1 
and τ2. Finally, the short time scales τ are compared with the large time scales T and the ratio T/τ 
is	evaluated.	If	the	ratio	is	large	compared	to	unity,	then	it	is	sufficient	to	claim	that	two	well-
separated time scales exist justifying the superstatistics’ hypothesis.

3.3. Estimation of the parameter distribution f(β)
The slowly varying stochastic variable β(t)	is	determined	from	the	time	series	u(t)	as:

.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (14)
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A necessary condition of superstatistics is that this variable, β,	should	fluctuate	more	smoothly	
(e.g.	slow	changes)	compared	to	u(t), namely characterised by a long memory and slow correlation 
decay. Then, the probability density f(β) is obtained as a histogram of β(t0) for all values of t0 and 
usually it is compared with inverse χ2, χ2	(Gamma)	and	log-normal	distributions	which	have	the	
same mean and variance of β	(Beck	et al.,	2005).

3.4. General superstatistical q-parameters
A general parameter q can	be	defined	as	(Beck	and	Cohen,	2003):

(15)

where q	measures	the	deviation	from	Gaussianity	and	is	valid	for	any	superstatistics.	When	variable	
β	does	not	fluctuate	(e.g.	constant)	then	q =	1,	since	f(β) = δ(β-β0). In addition, the q coincides 
with qstat	(stat stands for stationary) from Tsallis statistics if β follows a χ2 distribution, namely 
q = qstat=1	+	2/(n+1),	where	n is the number of effective degrees of freedom. The Tsallis qstat can 
be evaluated for u(t) time series using various methods like the one presented in Iliopoulos and
Aifantis	(2018).	On	the	other	hand,	if	log-normal	superstatistics	is	the	case,	then	q = qlog=	1/3,

where F	is	the	flatness	  of the distribution p(u). It must be noted here that q <	1	is	not

applicable	for	superstatistics	(Beck,	2004).

3.5. Additional constraint
In	 a	 recent	 study	 (Van	der	Straeten	and	Beck,	2009)	 an	extra	 condition was proposed that 

should hold before assuming that a time series at hand can be described by superstatistics. If θT,l

is	defined	as	 the	deviation	of	 the	 fourth	momentum	from	 for the time series slices of 
length T:

(16)

then the Gaussian approximation is expected to hold when |ε|<<1,	where:

.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (17)

4. Application of superstatistics in Hellenic seismicity

In this study, for the application of superstatistics in seismicity of the Aegean and surrounding 
area,	we	consider	the	interevent	times	of	1221	earthquakes	of	M ≥	5.2	that	occurred	in	the	study	
area	since	1911.	The	data	set	used	is	a	subset	of	the	regional	earthquake	catalogue	compiled	by	
the	Geophysics	Department,	Aristotle	University	of	Thessaloniki	(http://geophysics.geo.auth.gr/
ss/station_index_en.html)	and	is	considered	complete	at	this	magnitude	threshold.	Hereafter,	M52	
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denotes	the	interevent	times	of	earthquakes	with	magnitude	greater	or	equal	to	5.2.
In	Fig.	3	the	epicentral	distribution	of	earthquakes	considered	in	this	study	with	magnitudes	

and occurrence periods given in the legend are shown. In particular, the red circles correspond 
to	epicentral	distribution	of	earthquakes	with	5.2	≤	M <	5.5,	the	green	to	5.5	≤	M <	6.5	and	the	
yellow stars to M ≥	6.5.

Following the descriptions in previous paragraphs, the two time scales τ and T and their ratio 
namely Τ/τ were estimated, as well as the slow varying intensive parameter β(t) was constructed 

Fig.	3	 -	Epicentral	distribution	of	earthquakes	with	magnitudes	and	occurrence	periods	considered	 in	 this	study.	 In	
particular,	the	red	circles	correspond	to	earthquakes	with	5.2	≤	M <	5.5,	the	green	to	5.5	≤	M <	6.5	and	the	yellow	stars	
to M ≥	6.5.
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and,	 then,	 its	probability	density	with	Gamma	and	 log-normal	distributions	was	compared.	 In	
particular, using differenced time series u(t) = υ(t+δ)-υ(t), where υ(t)	are	the	interevent	times	(or	
else waiting times) between sequential earthquakes, and δ =	2j, j =	0,	1,	2	…,	n with n =	7,	eight	
differenced time series were constructed, one for each δ.	In	Fig.	4	the	original	interevent	times	
is	presented	(Fig.	4a)	along	with	one	example	of	the	differenced	series	(Fig.	4b)	corresponding 
to δ =	4.

Fig.	4	-	a)	Interevent	time	series	for	earthquakes	with	M ≥	5.2	that	occurred	in	the	study	area	since	1911;	b)	an	example	
of differenced series u(t) generated with δ =	16	for	the	interevent	time	series	shown	in	panel	a.

Using	Eq.	11	the	kurtosis	κ(Δt)	was	estimated	for	each	differenced	series	(δ1,	δ2,	...,	δ128)		
and	the	results	are	depicted	in	Fig.	5,	where	the	function	κ(Δt)	=	1	when	Δt =	1	and	κ(Δt)	>	3	
when Δt =	length	of	interevent	times	=	1221,	implying	intermittency	and	non-Gaussian	behaviour,	
as	expected	in	superstatistical	systems.	However,	even	though	in	previous	papers	this	function	
seems	to	be	a	smooth	linear	increasing	monotone	function	(e.g.	Beck	et al.,	2005),	in	this	case	
k(Δt)	does	not	exhibit	a	profile	of	this	type.	In	addition,	in	most	differenced	series	(e.g.	δ1,	δ4,	
δ16,	δ32,	δ64)	this	function	oscillates	around	3	for	a	considerable	interval	of	Δt =	10-60.	This	
result could be attributed to the short earthquake time series considered and/or to the complexity 
inherent in the series. All the relevant superstatistical time scales T were estimated based on Eq. 
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12,	namely	κ(T)	=	3,	as	depicted	by	the	black	dotted	line	in	Fig.	5,	for	each	time	difference	δ. In 
the cases where function k(Δt)	fluctuates	and	equals	to	3	multiple	times,	all	relevant	time	scales	T 
were	estimated	and	the	final	value	considered	was	the	one	corresponding	to	the	lowest	constraint	
ε	(see	next	paragraph).	For	example,	for	the	differenced	series	δ4,	the	relevant	times	Ts	were:	8,	
14,	15,	but,	as	shown	in	Table	1,	T =	8	was	kept,	since	it	is	associated	with	the	smallest	ε.

In order to further validate the results an additional constraint was estimated according to 
Eq.	17.	When	this	constraint	is	smaller	than	one,	namely	ε <<	1	or	more	loosely	ε <	1	for	small	
data sets, then the time windows used for the evaluation of large time T can be assumed to be 
characterised	by	Gaussian	distributions.	Basically,	 this	constraint	evaluates	 the	contribution	of	
the deviations from the Gaussian approximation in these time slices to the value of k(T). As it 
can	be	seen	in	Table	1,	only	two	values	of	constraint	(ε) are small enough compared to unity, to 
validate the superstatistical hypothesis and these values correspond to time differences δ =	4,	32.	
Small values compared to unity, also were attained for δ =	1	and	64,	taking	into	account	the	short	
length	of	the	time	series.	On	the	other	hand,	all	the	remained	values	of	the	constraint	reject	the	
hypothesis of superstatistics for the corresponding differences, namely δ =	2,	8,	16,	128	(Van	der	
Straeten	and	Beck,	2009).	The	rejection	of	the	superstatistical	hypothesis	could	be	due	to	either	
the presence in the time series of  Gaussian distributed random variables of constant variance 
with outliers and, if this is not the case, qstat-Gaussian	(instead	of	Gaussian)	distributed	random	
variables	with	constant	variance	(Van	der	Straeten	and	Beck,	2009).	These	cases	can	falsely	be	
classified	as	superstatistical	(Van	der	Straeten	and	Beck,	2009).	In	addition,	as	mentioned	above,	
the small length of the original interevent times could also induce spurious results.

In	 addition,	 in	 Fig.	 6	 the	 auto-correlation	 functions	 for	 all	 the	 differenced	 time	 series	 are	
presented.	As	it	can	be	seen,	the	autocorrelation	profiles	are	not	exponential	but	rather	exhibit	a	
fast,	abrupt	decay	towards	zero,	implying	the	existence	of	short	auto-correlations.	Therefore,	for	
the estimation of short time scale τ,	Eq.	13	was	used,	since	there	is	not	any	exponential	decay,	
and	the	results	are	also	given	in	Table	1.	In	particular,	in	Table	1	the	values	of	the	superstatistical	
parameters like the long time scale T corresponding	to	lowest	constraint	(|ε|), the	constraint	(|ε|),	
the short time scale τ, and their ration T/τ are presented. As it can be seen the values of T are 

Fig.	5	-	Kurtosis	k(Δt) as a function of Δt, estimated for all differenced series u(t) generated with δ =	1,	2,	4,	8,	16,	32,	
64,	128.
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larger than the values of τ, and, therefore, the ratio T/τ attains values much larger than unity, 
indicating	 a	 clear	 separation	 of	 scales,	 as	 predicted	 by	 superstatistics.	 However,	 taking	 into	
account the constraint, the superstatistical hypothesis is validated by δ =	1,	4,	32,	64	differenced	
series	and	rejected	for	the	others.	Overall,	these	results	reveal	a	very	complex	(super)statistical	
profile	for	the	M52	interevent	seismic	time	series,	which	strongly	depends	on	the	time	difference	
δ considered	for	creating	the	differenced	time	series.	These	results	also	verify	the	non-smooth	
fluctuating	profile	of	the	k(Δt)	function	as	depicted	in	Fig.	3.

Fig.	6	-	Autocorrelation	coefficients	r(k) estimated as a function of lag time k estimated for the differenced series u(t) 
(δ =	1,	2,	4,	8,	16,	32,	64,	128).

Table	1	-	The	values	of	the	superstatistical	parameters:	long	time	scale	T,	the	constraint	(|ε|),	short	time	scale	τ and their 
ratio T/τ estimated for each differenced series u(t) of the interevent time series υ(t).

 δ Τ Constraint (|ε|) τ Τ/τ

     1 11 0.1856 1.41  7.80

     2 61 0.9590 1.30 46.92

     4  8 0.0395 1.14  7.05

     8 61 1.0778 1.20 50.83

   16  9 0.9873 1.26  7.14

   32  4 0.0140 1.22  3.28

   64  7 0.3185 1.23  5.70

 128 58 1.2268 1.21 47.90

Fig.	 7	 presents	 an	 example	 of	 slow	 variable	 β(t)	 (orange	 line)	 and	 the	 corresponding	
differenced time series u(t)	(blue).	For	the	generation	of	β(t) we used δ =	4,	T =	8	and	Eq.	14.	
Other	generations	of	β(t) are possible for different δ’s and T’s.	As	it	can	be	seen	in	this	figure,	the	
variable β(t), changes slowly compared to u(t).	This	result	is	also	clearly	depicted	in	Fig.	8,	that	
shows the autocorrelation functions estimated for the variable β(t) corresponding to differenced 
series δ =	1,	4,	32,	64,	since	only	these	validated	superstatistical	hypothesis.	As	it	can	be	seen,	the	
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profile	of	the	autocorrelation	functions	exhibit	a	slow	decaying	profile,	indicating	a	long	memory	
for β(t), verifying the superstatistical framework prediction.

Finally, the probability distributions of β(t) for the differenced series δ =	1,	4,	32,	64,	 are	
compared	with	the	Gamma	and	log-normal	distributions	as	described	in	Section	3.3.	Fig.	9	shows	
the comparison of f(β) for beta differenced series corresponding to δ =	4	 (red	dots),	with	 the	
log-normal	(blue	line)	and	Gamma	distribution	(green	line)	in	a	log-linear	plot.	The	probability	
density f(β) is obtained as a histogram of β(t0) for all values of t0 and is compared with χ2	(Gamma)	
and	log-normal	distributions	which	have	the	same	mean	and	variance	of	β. As it can be seen in 
Fig.	9,	 log-normal	distribution	fits	 the	original	distribution	much	better	especially	 in	 the	 tails.	
The	 comparison	 also	 took	 place	 using	 two	 criteria,	 namely	 the	Akaike	 Information	Criterion	
(AIC)	and	the	Bayesian	Information	Criterion	(BIC)	(Aho	et al.,	2014).	For	the	fitting	of	Gamma	
distribution	the	criteria	attained	the	values:	AIC	=	8341	and	BIC	=	8351,	whereas	for	the	log-

Fig.	7	-	Time	series	of	 the	process	β(t)	(top-orange)	and	differenced	series	u(t). For this example δ =	4	and	T =	8,	
respectively. As it can be seen β(t) is a slow varying process, compared to u(t), as predicted by superstatistical theory.

Fig.	 8	 -	 Autocorrelation	 coefficients	 r(k) estimated as a function of lag time k for the slowly varying variable 
β(t)	(δ =	1,	4,	32,	64).
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normal	distribution:	AIC	=	7702	and	BIC	=	7712.	The	results	indicate	that	the	differenced	series	
fall	into	the	log-normal	superstatistical	class,	since	both	criteria	are	smaller	for	the	log-normal	
distribution. Similar results were obtained for the other β(t)’s too. Therefore, we can claim that these 
f(β)	follow	the	distribution	described	by	Eq.	8	and	u(t)	the	one	of	Eq.	9,	indicating	that	β is a result

of the product of n local cascade random Gaussian variables X, namely 
 
and that the

respective	differences	of	M52	interevent	times	are	related	to	a	multiplicative	turbulent	random	
process	(Beck	et al.,	2005).

Summarising,	the	results	of	this	application	reveal:
•	 fat-tailed	non-Gaussian	distributions	for	differenced	interevent	time	series,	since	κ(Δt) >	3	

for	large	Δt.	In	addition,	the	profile	of	κ(Δt) deviates from the expected smooth increasing 
monotone one. This could be due to the short length time series considered inducing 
fluctuations	in	the	statistical	measures	and/or	to	inherent	hidden	statistical	complexity	in	
the	data	set;

• the presence of two separate time scales, verifying superstatistics theory prediction, since 
the time scale ratio T/τ	attains	values	much	higher	from	unity;

• the use of the additional constraint revealed that only the differenced series δ =	1,	4,	32,	64	
validate the superstatistical hypothesis, and not the remained ones. This could be attributed 
to	false	superstatistical	profile	obtained	due	to	the	presence	of	Gaussian	distributed	random	
variables of constant variance with outliers or Tsallis qstat-Gaussians	with	constant	variance	
(Van	der	Straeten	and	Beck,	2009);

•	 for	 differenced	 M52	 interevent	 times	 corresponding	 to	 δ =	 1,	 4,	 32,	 64,	 log-normal	
superstatistics	fit	better	the	intensive	parameter	β compared to Gamma distribution. This 
result implies that β is a result of the product of n local cascade random Gaussian variables

 X, namely . This is in contrast to Tsallis superstatistics where β results from an

 additive process, namely 	Therefore,	 the	specific	differenced	M52	interevent	

Fig.	9	-	Probability	density	f(β)	(empirical)	extracted	from	the	differenced	time	series	δ =	4	(red	dots)	and	compared	
with	log-normal	(blue	line)	and	Gamma	(χ2)	(green	line)	distributions.
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times are related to a multiplicative turbulent random process, which can be described by 
local	Boltzmann	factors	e–(βu2)/2, whose variance parameter β varies slowly according to a 
log-normal	distribution	function.	The	slow	variation	of	parameter	β was also shown from 
the estimation of the corresponding autocorrelation functions.

It must be mentioned that the used time series is relatively short and, therefore, additional 
analysis	 is	 required	 to	 verify	 the	 aforementioned	 findings,	 along	 with	 the	 application	 of 
Renewal	Analysis	algorithm	(Paradisi	et al.,	2009),	which	might	be	addressed	in	a	forthcoming	
study.

5. Summary and conclusions

The main types of superstatistics are detailed along with the methodology needed for capturing 
superstatistical	features	and	the	corresponding	necessary	time	scales	from	time	series.	Real-world	
applications were also summarised covering a broad range of different subject areas, focusing 
however	in	earthquakes.	Superstatistics	is,	thus,	a	very	efficient	framework	for	describing	the	
non-Gaussian	behaviour	of	complex	non-equilibrium	systems.	The	superstatistical	framework	is	
based	on	non-equilibrium	statistical	mechanics	and	characterises	the	system	under	consideration	
as a superposition of several statistics, which act on different time scales. For example, the 
system statistics could be derived as a superposition of local Gaussian processes weighted 
with	a	process	of	a	slowly	fluctuating	intensive	variance	parameter.	Overall,	superstatistics	can	
provide	valuable	information	both	on	practical	(e.g.	time	series	analysis,	modelling),	as	well	
as	on	theoretical	studies	of	complex	systems.	Themes	like	extreme	value	theory	(Rabassa	and	
Beck,	2014),	fractional	kinetics	and	heterogeneous	anomalous	diffusion	(Itto,	2014),	reaction	
rate	 theory	 and	 fractional	 calculus	 (Mathai	 and	Haubold,	 2010),	 and	 other	 concepts	 closely	
related to complexity theory, can be valuably updated in the prism of superstatistics, leading to 
advanced theoretical frameworks and mathematical models, for the thorough understanding of 
complex systems behaviour.

The application of superstatistical methodology investigating the complex turbulent dynamics 
of seismogenesis in Greece, namely to interevent time series of earthquakes with M ≥	 5.2,	
revealed	a	complex	profile	for	the	differenced	interevent	time	series.	In	particular,	depending	on	
the parameter δ	the	superstatistical	hypothesis	can	be	either	verified	or	not.	When	the	hypothesis	
is	 verified,	 the	 analysis	 revealed	 the	 log-normal	 superstatistical	 character	 of	 the	 differenced	
interevent time series, indicating a multiplicative turbulent random process. This result deviates 
from the ones claiming Tsallis superstatical distribution which is related to additive random 
process	 of	 squared	Gaussian	 random	 variables	 (Beck	 et al.,	 2005).	When	 the	 superstatistical	
hypothesis	is	not	verified,	the	results	can	be	related	to	Gaussian	distributed	random	variables	of	
constant variance with outliers or Tsallis q-Gaussian	variables	with	constant	variance,	as	indicated	
in	Van	der	Straeten	and	Beck	(2009).	However,	a	more	extensive	and	thorough	study	concerning	
superstatistics	and	Hellenic	seismicity,	for	various	magnitude	thresholds	and	time	intervals,	needs	
to verify the aforementioned results and this will be the topic of a future paper.
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