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ABSTRACT Cokriging allows predicting variables from sampling information (e.g. boreholes 
and blast holes), taking into account their cross-correlation structures. When the bi-
variate relations among the variables are non-linear and complex, cokriging results 
may suffer from reproducing the complexities of interest. Another property of this 
linear geostatistical algorithm is the smoothing effect in the estimated block model, 
in which it over and underestimates the original distribution of the variables. To come 
up with those difficulties, this paper proposes an innovative algorithm to integrate 
the cokriging approach with a factor-based methodology entitled “projection pursuit 
multivariate transform” to first reproduce the complexity among the variables and, 
second to manage the smoothing effect in traditional cokriging algorithms. To do so, six 
cross-correlated variables obtained from a blast hole campaign belonging to a Nickle-
Laterite deposit are presented and tested with the algorithm proposed. The results 
indicated that this algorithm is dramatically capable of alleviating the smoothing effect 
while the complexity in cross-correlation characteristics among the variables can be 
preserved.
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1. Introduction

Linear interpolation of geo-related variables is important to different aspects of mining 
engineering such as long- and short-term mine planning (Sinclair and Blackwell, 2002; Verly, 
2005; Rossi and Deutsch, 2014). The ore deposit description attained from spatial modelling of 
blast hole data sets, has been widely taken into account, particularly, for short-term mine design 
and grade control, so as to account for prediction of ultimate destination of a mined block (Davis, 
1992; Rossi and Deutsch, 2014). In this step of mine design, ore/waste classification of extractable 
selective mining units are considered and proper choice should be taken into account. These 
models also can be applicable as auxiliary models utilised for amending the local estimation of 
the long-term resources model that obtained already from borehole sampled locations (Rossi 
and Deutsch, 2014). It is approved in practice that making wrong decision leads to losing a huge 
amount of money for choosing the improper destination of a mined block.

In the case of complex ore deposits, the issue of estimation of variables in the region is 
questionable and somehow tedious. Due to this fact, modelling those complications in the co-spatial 
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behaviour of the grades in multi-element deposits prompts one to employ enhanced geostatistical 
techniques. Traditional approaches for this purpose such as polygon, inverse distance weighted, 
and even (co)kriging approaches (Scerbo and Mazzotti, 1991; Wackernagel, 2003; Chiles and 
Delfiner, 2012; Asghari et al., 2016) are incapable of reproduce those complexities such as non-
linearity, heteroscedasticity, and geological constraint that frequently exist among the variables 
of interest (Madani et al., 2018). Another difficulty in employing those techniques in grade 
estimation is smoothing effect in the variability of estimated grades accompanying with over - 
and underestimation (Journel and Huijbregts, 1978; Goovaerts, 1997; Chiles and Delfiner, 2012). 
Therefore, application of such approaches might lead to a significant bias in the generated block 
model and consequently decreases the level of confidence in selection of a proper destination, 
which directly impact on annual revenue of a mining project.

In this paper, it is of interest to utilise one of the factor-based approaches to populate the cross-
correlated variables integrating with the cokriging paradigm, for which whole the abovementioned 
complexities are present in the data set. This factor-based method is entitled Projection Pursuit 
Multivariate Transform (PPMT) (Barnett et al., 2014), a multivariate Gaussian technique, based 
upon modified components of projection-pursuit density estimation (Friedman, 1987; Hwang et 
al., 1994) that transforms data of any multivariate characters with any number of variables and 
samples to an uncorrelated multi-Gaussian global distribution. The rationale of this method is to 
find the vector that yields the most non-Gaussian projection. This algorithm and Gaussianised 
associated steps is iterated many times up to the level that converges to the univariate Gaussian 
model (Barnett et al., 2014, 2016). In comparison to some other factor-based methods such 
as Principle Component Analysis (PCA) (Hotelling, 1933a, 1933b) and Minimum/maximum 
Autocorrelation Factors (MAF) (Switzer and Green, 1984; Desbaratas and Dimitrakopoulos, 
2000), PPMT method improves the reproduction of non-linear multivariate properties while 
requiring fewer steps and suppositions. This method, through transformation to the factors, is able 
to handle any complexity among the cross-correlated variables and reproduce its complicated 
spatial structures. Cokriging as a linear estimation methodology was also applied in this research 
in combination with PPMT in order to establish an innovative workflow for short-term mine 
planning in complex ore deposits. The fundamental of this algorithm is that, the data in PPMT 
can be transferred to Gaussian distribution and through the estimation by cokriging, the estimated 
values on the block can be back-transferred to original space. The benefit is in alleviation of the 
smoothing effect and overcoming the problem in under and over estimation that often happen in 
conventional cokriging. To do so, a data set obtained from a blast hole campaign pertaining to 
a Nickel-Laterite deposit is considered and six cross-correlated variables (Fe, Ni, MgO, SiO2, 
Al2O3, and Cr) with complexity in multivariate characteristics are selected for further analysis. 
The primary inspection of bi-variate relation (scatter-plot) exposed many aspects of complexity 
such as non-linearity and heteroscedasticity. In order to track the workflow, the summarised items 
are consecutively considered:

1) declustering: in a first step, the data set is declustered in order to obtain the representative 
distributions;

2) apply the PPMT to the six variables and yield the six PPMT equivalent-factors;
3) variogram analysis: building the cokriging systems needs the information of covariance 

matrix. The most straightforward approach for such a variance-covariance matrix calculation 
is variogram that describes the spatial variability of the underlying variables in the region. 
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It also contributes to the knowledge of the spatial correlation between different points in a 
deposit (Journel and Huijbregts, 1978). The experimental variograms are then calculated 
over the PPMT factors and the proper structures are fitted by semi-automatic approaches. 
Since there are six variables and the cross-dependency is critical, cross-variograms (linear 
model of coregionalisation) are also taken into account;

4) estimation: as mentioned above, cokriging as an estimation technique is applied to model 
six PPMT factors in each block. A moving neighbourhood is considered for simple 
cokriging with maximum and minimum ranges equal to the variogram ranges containing 
50 surrounding data;

5) back-PPMT-transformation: the estimated factors are then back-transformed to the original 
distribution as the same information was required for PPMT forward transformation.

The spatial distribution of each variable is considered. In order to check whether the cross-
correlation in bivariate distribution is reproduced after modelling process, the scatterplots of 
the desired variables are presented. This consistency in bi-variate distributions corroborates 
that the goal in modelling the complexities is successfully achieved and one can reproduce the 
complexity in multivariate distribution by integration of PPMT to the co-estimation approaches. 
The workflow is also applicable to short-term mine planning wherever the grade control is the 
subject of making-decision and one needs to check the reliable spatial variability of the variables 
of interest in the deposits with complex characteristics in ore formation.

2. Methodology: simple cokriging

Simple cokriging is a generalisation of simple kriging, i.e. kriging with a known mean value, 
and aims to predict primary and secondary variables by taking into account their joint spatial 
correlation structure (Journel and Huijbregts, 1978; Goovaerts, 1997; Wackernagel, 2003; Chilès 
and Delfiner, 2012; Madani and Emery, 2019). Provided that these variables are represented by 
second-order stationary random fields, the cokriging predictor and the variance of the prediction 
error (known as the simple cokriging variance) for the primary variable (hereafter denoted with 
index 1) given one secondary variable (denoted with index 2) are defined as (Myers, 1982):

(1)

(2)

where ωi
α (i = 1, 2) is the weight assigned to the data Zi(xi,α) of the i-th variable Zi at the a-th 

data location xi,α (a = 1, … ni) of this variable, x0 is the location targeted for prediction; mi is 
the mean value of the i-th variable Zi; Cij is the direct (i = j) or cross (i ≠ j) covariance between 
variables Zi and Zj (i, j = 1, 2). The previous equations can be generalised to the case with more 
than one secondary variable, at the price of heavier notation, which will not be considered in this 
work. Note that the numbers of data are not necessarily the same for the primary and secondary 
variables, a case known as a heterotopic sampling design (Wackernagel, 2003) in opposition to 
the isotopic (equally-sampled) case. The weights ωi

α required in Eqs. 1 and 2 are obtained by 
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solving the following system of linear equations:

(3)

Different neighbourhood strategies can be used to reduce the number of data for cokriging. 
For instance, a single search strategy selects the data locations that are geographically the closest 
to the target location x0, irrespective of which variables are known at those locations, whereas 
a multiple search strategy consists in selecting the closest data of each (primary or secondary) 
variable.

3. Projection pursuit multivariate transform

One of the new developed factor-based approaches, is PPMT which is targeted to handle 
with multivariate complexities such as non-linearity and heteroscedasticity that exist intrinsically 
among the variables (Barnett et al., 2014; Barnett, 2017) and is suitable in the cases wherever the 
traditional normal score transformation is not able to manage those mentioned complexities. The 
general steps for implementation of PPMT is based on two forward and backward transformations 
(Barnett et al., 2014; Battalgazy and Madani, 2019). Forward transformation converts the original 
data to uncorrelated multi-Gaussian distribution taking into account any complexity existing 
among the variables. This transformation is based on the Projection Pursuit Density Estimation 
algorithm (PPDE) (Friedman, 1987). Provided that these variables are represented by second-
order stationary random fields, PPMT transformation steps for two variables can be defined as:

1. transform the original variables to normal score values with a mean of zero and variance 
one N(0, 1): this can be implemented by normal score transformation methodologies such 
as Gaussian anamorphosis (Rivoirard, 1994) or quantiles-based approach (Deutsch and 
Journel, 1998):

(4)

 where G–1(.) is standard normal cumulative distribution function, Fi(.) are the cumulative 
distribution function of the original variables Yi(u) and Zi(u) are the normal score values;

2. data sphering (A): compute the experimental variance-covariance matrix at lag 0 since 
we are dealing with normal score values, this matrix is identical to the sample correlation 
matrix. In the case of two variables, this matrix (V) is as:

(5)

 where the principal diagonal element equals one which is identical to the total variance, 
upper and lower diagonal elements ρ12(0) and ρ21(0) equal the linear correlation coefficient 
between two normal score variables Z1(u) and Z2(u), respectively;

3. data sphering (B): perform the spectral decomposition of above matrix (V) to derive the 
orthonormal eigenvectors matrix (M1), associated with the underlying diagonal eigenvalues 
matrix (E1), such that:
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(6)
 It is necessary to check that the entries of E are in decreasing order;
4. data sphering (C): calculate the sphering transformations at locations u by:

(7)

 where ϕi(u) are the scores with normal standard distribution due to the a priori multivariate 
Gaussian assumption and are decorrelated;

5. projection pursuit: although the ϕi(u) are decorrelated, however, the complexity still 
manifests itself in bivariate relation. Projection pursuit can transform the decorrelated 
variables ϕi(u) to the multi-Gaussian variables free of the underlying complexity. To do 
so, taking into account that projection of the data is τ = ϕi(u)α, where k*1 is a unit vector 
α, projection index test statistic is defined as A(α) that determines the univariate non-
Gaussianity. When related projection is appropriately Gaussian, projection index, A(α)= 0. 
According to Friedman (1987), the optimised search is used to determine the θ which will 
identify maximum A(α). ϕi(u) is transformed to standard Gaussian, ϕi(u)' where related 
projection is τ' = ϕi(u)'α after the optimum α is identified. The transformation starts with 
application of Gram-Schmidt algorithm to compute the orthogonal matrix (Eq. 8) (Reed 
and Simon, 1972):

(8)

 and transformation can be reached by multiplication of ϕi(u) and U (Eq. 9):

(9)

 Then, in order to get the transformation that outputs Gaussian standard projection, τ', 
normal score transform is computed as in Eq. 10:

(10)

 and back-transformation to the original basis is computed by Eq. 11:

 
(11)

 The data transformed ϕi(u)' outputs Gaussian projection by α where projection index, A(α) 
is zero. Additionally, in order to get other complexities, optimised search can be repeatedly 
used to determine maximum projection index;

6. stopping criteria: this step focuses on the selection of target projection index. Increase of 
dimensions leads to difficult resolution and discovery of complexities, while the number 
of observations results in the reliability of the projections for identification of appropriate 
multivariate structure. Random samples from Gaussian CDF can be used by implementation 
of bootstrapping algorithm, where m is distribution, k is dimension and n is number of 
observations for choosing the target projection index for PPMT stopping. After, value of 
the projection index can be computed;

7. back-transform: Gaussian realisations can then be back-transformed based on the mapped 
data on an original space, where configuration between simulated and mapped one is 
preserved.
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4. Coregionalisation modelling: Linear Model of Coregionalisation (LMC)

Solving the cokriging system requires the knowledge of the direct and cross-covariances 
between the primary and secondary variables. In this respect, the linear model of coregionalisation 
is widely used to fit such covariances, owing to its mathematical simplicity and tractability 
(Journel and Huijbregts, 1978; Goovaerts, 1997; Wackernagel, 2003). In this model, the direct 
and cross-covariances Cij(h) (i, j = 1, 2) are defined as weighted sums of L basic covariances, also 
called basic nested structures:

(12)

where, for each structure (l = 1,...L), (bl
ij)i,j=1, 2 is a 2×2 real-valued, symmetric, positive semi-

definite matrix (coregionalisation matrix) and cl(h) is a permissible stationary covariance model 
(basic nested structure). In practice, such a model can be fitted to a set of experimental direct and 
cross-covariances by means of semi-automated algorithms (Goulard and Voltz, 1992; Emery, 
2010).

In this study, the PPMT is integrated with (co)kriging approach in order to circumvent the 
problem of smoothing effect in traditional (co)kriging and also to reproduce the complex bivariate 
structure among the cross-correlated variable. To do this, the proposed algorithm is presented as 
a flowchart in Fig. 1.

Fig. 1 - Workflow showing the proposed algorithm for modelling the cross-correlated variables with complex bivariate 
relationship.
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5. Case study

The case study pertaining to a Nickle-Laterite deposit including 9990 sample available from 
blast hole data set with a very dense sampling pattern composited in one metre. Since this grid 
is dense, in order to show the capability of the proposed methodology, 1000 random data are 
selected, for which six cross-correlated variables are isotopically assayed at each sample point. 
Isotopic sampling ensures that all the variables are available through all the sample locations 
(Wackernagel, 2003). The location map of the blast holes for each variable is presented in Fig. 2. 
The name and location of data set cannot be disclosed because of confidentiality reasons.

The data set is declustered by cell declustering approach (Deutsch and Journel, 1998). In this 
method, the area of interest should first be divided into a grid of cells and the weights are required, 
then, to be assigned to each data according to the number of samples falling in the same cell. The 
resulted weights in occupied cells are greater than zero and in total sum to one, while the vacant cells 
receive no weights [see Rossi and Deutsch (2014) and reference herein]. This step is required since 
the sampling pattern is irregular and assigning the weights obtained from this approach contributes 
to alleviation of biasedness in univariate and multivariate statistical parameters derivation. 
Declustering technique is, then, implemented in a dimension of 50×50×15 (in metres) based on the 
primary pattern of the randomly selected blast holes. Statistical parameters are calculated as shown 
in Tables 1 and 2. Declustering also ensures that the statistical parameters are representative and 
they are not impacted from scarcity of data in some regions anymore. The reason of using the blast 
hole data set relates to the paramount importance of this type of information. One of the crucial 
step in reserve evaluation and also ore/waste classification includes the reliable modelling of the 
variable under study in a deposit attained from analysis of blast hole data set. Therefore, employing 
a trustworthy geostatistical algorithm can boost the quality of estimation and reduces the plausible 
penalties that may happen because of biased results obtained from traditional algorithms.

Fig. 2 - Location maps of six cross-correlated variables obtained from a blast hole campaign. The variables are all 
measured in (%).
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6. Projection Pursuit Multivariate Transform

The next step after inference of exploratory data analysis is to transfer the six cross-correlated 
variables [Fe(%), Ni(%), MgO(%), SiO2(%), Al2O3(%), and Cr(%)] into the factors free of 
complexity characteristics (hereafter PPMT). After this forward transformation, the correlation 
among the PPMT factors may not be perfectly zero and decorrelated. Fig. 3 shows the bivariate 
relation between Fe(%) and other five variables before and after PPMT transformation. Barnett 
et al. (2014) recommended to employ the MAF to decorrelate the forward transformed factors. 
However, in this study, the idea is to take into account those small dependency i.e. correlation that 
exist among the forward transformed factors and use cokriging system to co-estimate the obtained 
factors in the region, while the spatial cross-correlation can be quantified through their direct and 
cross-variograms. Although this measure of correlation may be very small, however considering 
the cross-variograms in this respect and subsequently cokriging system, contributes taking into 
account the relationship among the variables for the process of modelling, which is of paramount 
importance for the purpose of ore/waste classification in this study. After implementation of 
cokriging, the last step is, then, to back-transfer the estimated factors to the original scale by 
backward PPMT transformation in order to return their intrinsic complex cross-correlation.

7. Variogram analysis

The experimental direct and cross-variograms are calculated in omni-directional and, then, 
one-structured spherical variogram with 50 m of range is fitted to the experimental ones as the 
theoretical model. Variogram analysis in different direction with confined tolerance showed no 

Table 1 - Declustered univariate statistical parameters computed over six cross-correlated variables.

  Mean (%) Variance Minimum (%) Maximum (%)

 Ni  1.27   0.662 0.18  4.76

 Fe 29.70 257.830 4.50 54.60

 MgO  8.32 108.360 0.10 38.72

 SiO2 26.03 339.050 3.20 71.25

 Al2O3  6.85  35.980 0.20 23.80

 Cr  1.58   0.812 0.19  3.83

Table 2 - Multivariate statistics over six cross-correlated variables.

  Ni Fe MgO SiO2 Al2O3 Cr

 Ni -1.000 – – – – –

 Fe -0.171 -1.000 – – – –

 MgO -0.011 -0.860 -1.000 – – –

 SiO2 -0.301 -0.939 -0.708 -1.000 – –

 Al2O3 -0.384 -0.657 -0.655 -0.749 1.000 –

 Cr -0.090 -0.855 -0.771 -0.817 0.606 1.000
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Fig. 3 - Bivariate 
relation before 
and after PPMT 
transformation among 
Fe and Ni, MgO, 
SiO2, Al2O3, and Cr.
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significant anisotropy, the reason why omni-directional variograms are computed for measuring 
the spatial continuity. In order to obtain the linear model of coregionalizations, it is necessary 
to fit a model that honors the semi-positive definiteness condition in the sill matrices (Journel 
and Huijbregts, 1978; Goovaerts, 1997; Wackernagel, 2003). This step is followed by a semi-
automatic approach (Goulard and Voltz, 1992; Emery, 2010). For brevity, the direct variograms of 
PPMT factors are illustrated in Fig. 4 and the relevant formula provided in Eq. 13. All the cross-
variograms are provided in the Appendix.

(13)

Fig. 4 - Direct experimental and theoretical variograms over six PPMT factors, the dashed lines show the variance of 
PPMT factors.
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8. Spatial 3D estimation

Once the direct and cross-variogram formulae are derived, one can establish the simple 
cokriging system. A grid with mesh dimension of 5×5×5 (in metres) with mesh size of 38, 41 and 
15 along east, north, and elevation coordinates are considered. The neighbourhood is selected 
as moving and the parameters for the range of search neighbourhood are set to 200 m with up 
to 8 number of data per octant. This number is chosen arbitrarily. One of the method to define 
this number optimally can be based on cross-validation or jack-knife approach (Deutsch and 
Journel, 1998) as it is a common practice in geostatistical contexts. However, since the scope of 
this study is mainly on the basis of examination of smoothing effect, the chosen number of data 
for estimation deems not very crucial at this stage. The estimated PPMT factors are then back-
transformed to the original distribution. The produced maps are shown in Fig. 5 for six back-
transformed cross-correlated variables.

The results are quite satisfying from visual inspection in terms of reproducing the cross-
correlation magnitude in the final maps (Fig. 5). For instance, there is a strong negative correlation 
between Fe and MgO (-0.86). This can be corroborated through the maps, since the high values 
of Fe is spatially distributed in the areas, for which the Al2O3 shows low amount of concentration 
(north and east part of the region) and vice versa.

Fig. 5 - Estimated maps produced by integration of cokriging and PPMT approach.

9. Reproduction of statistical parameters

Validation of produced models are necessary, because the generated values at each block 
obtained from blast holes should be taken into account for further analysis of a mining project 
such as decision-making about the destination of block to be either sent to mill or stockpiled 
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and also for short-term mine planning. The imprecise estimation of the grades inside the blocks 
leads to loose a valuable part of a mine and impacts the economic issues. In this section, it is of 
interest to examine the reproduction of statistical parameters to analyse the proficiency of the 
model. In particular case, bivariate relation is of interest to be taken into account for endorsement 
of reproduction of primary declustered correlation among the variables. For saving the space, 
Fig. 6 shows the scatterplot between Fe and other five variables (Ni, MgO, SiO2, Al2O3, and Cr) 
associated with bivariate distribution of the declustered original values. This bivariate relation 
is well reproduced in all the cases. Table 3 also shows the correlation coefficients values among 
all the variables along with the original correlation coefficients, corroborating that this bivariate 
characteristics among all the variables are suitably reproduced.

Another criterium for validation of the estimation model, is to consider and compare the 
univariate statistical parameters of the produced models with original declustered ones. Since the 
(co)kriging approaches suffer from smoothing effect, it is very significant to consider the variance 
and ranges in the estimate block models. This characteristic of the linear geostatistics, sometimes 
prevents the practitioners to employ the right algorithm and advocates them to use some post-

Table 3 - Reproduced multivariate statistics over six cross-correlated variables. Lower diagonal is original correlation 
coefficients and upper diagonal is the correlation coefficients obtained from cokriging modelling by PPMT approach.

  Ni Fe MgO SiO2 Al2O3 Cr

 Ni -1.000 -0.009 -0.088 -0.240 -0.404 -0.030

 Fe -0.171 -1.000 -0.829 -0.907 -0.559 -0.898

 MgO -0.011 -0.86  -1.000 -0.701 -0.612 -0.795

 SiO2 -0.301 -0.939 -0.708 -1.000 -0.688 -0.828

 Al2O3 -0.384 -0.657 -0.655 -0.749 -1.000 -0.566

 Cr -0.090 -0.855 -0.771 -0.817 -0.606 -1.000

Fig. 6 - Bivariate relation between 
Fe and other five cross-correlated 
variables. (blue circle: estimation 
model produced by PPMT approach; 
red circle: original variables obtained 
from blast holes).
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modification procedures (Deutsch and Journel, 1998; Chiles and Delfiner, 2012). For instance, 
producing the negative values in kriging outputs, which is the results of negative weights assigned 
to the sampling points, can be either manipulated or neglected in the process of block model 
analysis. This might make some bias when one is considering the maximum and minimum values 
of the underlying variables.

The boxplots for both estimated values and original data set are presented in Fig. 6 and 
produced statistical parameters are also presented in Table 4. The distributions of the estimated 
values bear resemblance to the original global variability, in which it means that the proposed 
algorithm is capable of resolving the problem of smoothing effect in conventional techniques of 
(co)kriging paradigms (maximum and minimum values in Table 4). However, the variance is a 
bit different from the original data: this deviation can be influenced from the cokriging algorithm.

Table 4 - Univariate statistical parameters obtained from estimated block models (proposed algorithm) and original 
declustered distribution obtained from blast holes.

   Mean (%) Variance  Minimum Maximum 

 
Ni

 Blast holes  1.277   0.662 0.180  4.760

  Estimate model  1.099   0.394 0.212  4.260

 
Fe

 Blast holes 29.790 257.830 4.500 54.600

  Estimate model 28.180 196.530 4.500 53.730

 
MgO

 Blast holes  8.320 108.360 0.100 38.720

  Estimate model  7.640  98.120 0.100 38.410

 
SiO2

 Blast holes 26.030 339.053 3.200 71.250

  Estimate model 27.320 269.300 3.300 64.160

 
Al2O3

 Blast holes  6.852  35.980 0.200 23.800

  Estimate model  7.130  40.150 0.200 23.800

 
Cr

 Blast holes  1.580   0.812 0.190  3.830

  Estimate model  1.550   0.603 0.200  3.830

Fig. 7 - Boxplot of the six cross-correlated variables obtained from proposed model (a) and original data set (b).

a) Proposed algorithm (cokriging and PPMT). b) Original blast hole data.
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10. Conclusions

Cokriging is a widely used technique in spatial prediction problems. Its implementation 
becomes prohibitive in the cases when there exists a complexity among the interdependency of 
the variables. It also suffers from smoothing effect like other linear geostatistical approaches. An 
innovative algorithm is proposed in this study based on transformation of original cross-correlated 
variables to semi non-correlated factors by PPMT. Then, through inference of linear model of 
coregionalisation (LCM), the co-spatial continuity is fitted over the experimental variograms 
calculated from six cross-correlated variables obtained from a blast hole campaign. The obtained 
factors from PPMT are, then, taken into account for establishing the cokriging system considering 
the simple cokriging. On the other side, the rationale of the proposed algorithm in this study 
is based on integration of a factor based approach (i.e. PPMT) with a traditional (co)kriging 
approach. In this sense, transformed variables (PPMT factors) do not necessarily required to be 
decorrelated after forward transformation. Instead, applying (co)kriging gives this privilege to the 
process of modelling to take into account even small correlations that exist among these PPMT 
factors.

The algorithm showed that the smoothing effect (over - and underestimation) in the blocks are 
alleviated. This also corroborates that the complexity among the variables in bivariate relations 
(through the scatterplot) for all six variables is well reproduced. It is also recommended to use 
the algorithm for the feasibility study of a mining project for mineral resource estimation and 
economic consideration, due to the reliability of the model. It should be noted that using the 
proposed algorithm may not outperform the results obtained from simulation approaches.

In the case that calculation of complex multivariate uncertainty is of paramount importance in 
mineral resource modelling, it is highly recommended to use Gaussian (co)-simulation algorithms 
instead (Hosseini et al., 2017; Khorram et al., 2017; Battalgazy and Madani, 2019; Abildin et al., 
2019; Eze et al., 2019). One may concern to compare these results with some other factorisation 
technique such as PCA and/or MAF such as the one presented in Da Silva and Costa (2014). It 
is worth mentioning that those approaches are suitable for modelling the linearity characteristics 
among the variables and not very common for modelling the complex bi-variate relations (Abildin 
et al., 2019). However, integration of MAF with PPMT is shown to be capable of producing the 
satisfying results in this complex bi-variate context (Barnett et al., 2014).

The future work for this study can be based on employing the proposed algorithm integrating 
with estimation of compositional components that have closure problems. In this respect, 
examination of correlation among the variables might be spurious and draws the careful attention 
for its interpretation.
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Appendix

Fig. A1 - Cross-variograms between 
PPMT1 and PPMT2, PPMT3, 
PPMT4, PPMT5, PPMT6.

Fig. A2 - Cross-variograms between 
PPMT2 and PPMT1, PPMT3, 
PPMT4, PPMT5, PPMT6.
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