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ABSTRACT	 It is a well-established fact that the determination of reservoir facies and zones with 
high-quality plays a pivotal role in reservoir modelling and future drilling in developing 
gas fields. As an index that varies in line with changes in the reservoir characteristics, 
Flow Zone Indicator (FZI) could be an influential factor in determining the reservoir 
facies. The present study attempts to propose a modern, improved model by combining 
intelligent systems to estimate the FZI cube in the entire oil/gas field. This Committee 
Machine Inference System (CMIS) integrates the predicted results obtained from 
the intelligent neural, fuzzy, and neuro-fuzzy systems with proper weights. Optimal 
weights for each method are predicted using Ant Colony Optimisation for Continuous 
Domains (ACOR). To apply the aforementioned approaches, well logs and seismic 
data were extracted from one of the gas fields in south of Iran. At the first stage, 
seismic attributes which establish a stronger correlation with the target data (FZI) were 
selected through the application of stepwise regression. Subsequently, a 3D FZI cube 
in the entire field was estimated. At the final step, various facies were delineated by 
means of Fuzzy C-Means clustering algorithm. The results illustrate that CMIS, which 
utilises ACOR, outperforms other single systems acting alone.

Key words:	 reservoir facies, Flow Zone Indicator (FZI), Fuzzy C-Means (FCM) clustering, neuro-fuzzy 
systems, Ant Colony Optimisation for continuous domains (ACOR).
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1. Introduction

What significantly contributes to the development of oil and gas fields in the analysis of the 
facies, is taking into consideration the relationship between the reservoir parameters and the seismic 
attributes. A glance over the literature suggests that investigating such an issue has enjoyed the 
close attention of researchers for a long time; to name but a few, Carr and Oliver (1996) depicted 
different parts of reservoir analysing seismic attributes in Caddo Conglomerate in the Boonsville 
(Bend Conglomerate) gas field. Michelena et al. (1998) benefited from self-organising maps with 
seismic attributes as the inputs to delineate the reservoir facies. Moreover, to produce seismic 
facies classes, Barnes (2000) combined a set of seismic attributes, including amplitude variance, 
spacing, parallelism, continuity, divergence, and hummockiness based on the descriptions of the 
seismic stratigraphic reflection patterns. Additionally, West et al. (2002) classified seismic facies 
of stack and AVO (Amplitude Versus Offset) data using the textural attributes and neural network.
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Taner and Treitel (2004) used the instantaneous amplitude spectral information obtained 
from seismic sub-band analyses as the input of the Kohonen Self Organizing Map (SOM) neural 
networks to produce seismic lithology and facies map. Farzadi and Hesthammer (2007) integrated 
hierarchical classification facies technique and Principal Component Analysis (PCA) to classify 
seismic facies in the Meishrif gas bearing formation, southern Persian Gulf. 

Furthermore, Harilal et al. (2008) interpreted massive buildups, buildups, and off-buildups 
by studying seismic stratigraphy and applying seismic attributes in the central graben within the 
Mumbai Basin of the west coast of India.

There is basically not a known relationship between seismic attributes and reservoir parameters; 
this can contribute to the increased uncertainty in the estimation of reservoir properties. In 
recent years, researchers have paid close attention to fuzzy approaches, which have proved to be 
appropriate to deal with the nature of system uncertainty and the human errors. In a fuzzy system, 
function membership and if-then rules are used to calculate the weight factors which are extracted 
from the nature of the input data. The results are combined and defuzzified, finally.

Amongst those researchers working in the central Iranian oilfield, Rastegarnia and Kadkhodaie 
(2013) followed the fuzzy rules and integrated the seismic attributes to estimate the reservoir 
parameters. What is more, Diogo and André (2013) benefited from fuzzy rules to recognise 
reservoir facies from well logs. Following them, also, Yarmohammadi et al. (2014) delineated 
high porosity and permeability zones using the seismic-derived Flow Zone Indicator (FZI) data 
at Shah Deniz sandstone packages.

In addition, the neuro-fuzzy approach, i.e. the improved version of the fuzzy algorithm, is one 
of the advanced algorithms which can be used to extract the reservoir facies. In this algorithm, 
fuzzy system parameters are optimised by the neural networks. Mohebian et al. (2017) used the 
neuro-fuzzy method to determine reservoir facies from well log and seismic attribute in an Iranian 
oil field. Their other research has shown the different application of this approach (Mohebian et 
al., 2018).

As a result, what will go under the close scrutiny in the current study is the individual operation 
of each system together with the integration of these systems in order to determine the facies in the 
form of a Committee Machine Inference System (CMIS). The CMIS, which is used to integrate 
different approaches, benefits from Ant Colony Optimisation algorithms. Such an algorithm was 
initially used for discrete space, however, it has recently undergone some changes and this has 
led to the development of Ant Colony Optimisation for Continuous Domains (ACOR) algorithm 
whose superior performance and robustness over other similar algorithms in this area is well-
established (Socha and Dorigo, 2008).

The current study seeks to apply neural, fuzzy, and neuro-fuzzy systems and combine the 
obtained results using ACOR to analyse the reservoir facies. To do so, the aforementioned 
algorithms are applied to real data (i.e. one of the Iranian southern offshore gas fields) and the 
results are validated against the well log data. Moreover, the results obtained from the CMIS 
are compared with those of single approaches so as to shed light on its superior efficiency and 
robustness over others. Having extracted the FZI in the entire field by the CMIS, the reservoir 
facies are delineated by means of the Fuzzy C-Means (FCM) clustering algorithm and the results 
are compared with thin sections analyses.
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2. Methodology and procedure

The proposed methodology for this study consists of three stages. At the first stage, the 
optimum seismic attributes that correspond more strongly with the target data (FZI) are selected 
by a stepwise regression algorithm. Second, the intelligent approaches such as neural, fuzzy, and 
neuro-fuzzy systems are applied to the seismic attributes, and the achieved FZI cube is calculated 
for the entire field. Next, to combine the results obtained from the previous approaches, a CMIS 
will be employed using ACOR. At the final stage, the FCM algorithm is applied to the CMIS 
outputs and various facies are delineated.

2.1. Back Propagation Neural Network
A Back Propagation Neural Network (BP-NN) is a supervised training technique. Back 

propagation is shorthand for “the backward propagation of errors”, since an error is computed 
at the output and distributed backwards throughout the network’s layers. It is commonly used to 
train deep neural networks (Nielsen, 2015).

The error is propagated backwards through the net and the weights are adjusted through a 
number of iterations. The training ceases when the calculated output values best approximate 
the desired values (Bhatt and Helle, 2002). A flowchart of the training procedure in a supervised 
neural network is depicted in Fig. 1.

Fig. 1 - Flowchart of the training procedure in a supervised neural network (Matlab User’s Guide, 2004). 

2.2. Fuzzy system
The term fuzzy logic was first introduced by Zadeh (1965). Fuzzy logic uses the concept of 

fuzzy sets to solve ill-posed problems.
Fuzzy inference is the process of formulating a given input data to an output data using fuzzy 

logic. There are three different types of fuzzy inference systems which are described in the works 
of Mamdani and Assilian (1975) and Sugeno (1985). These methods attempt to organise a system 
by synthesising a set of linguistic control rules obtained from experienced human operators. The 
Fuzzy Interference System (FIS) consists of three major parts, i.e. the Fuzzifier, the Inference 
Engine (fuzzy rule base), and the Defuzzifier (see Fig. 2).



572

Boll. Geof. Teor. Appl., 60, 569-582	 Mohebian and Riahi

2.3. Neuro-fuzzy system
In recent years, considerable attention has been devoted to the use of fuzzy logic and hybrid 

neural network techniques. Neuro-fuzzy modelling is a technique for describing the behaviour of 
a system using a neural network structure in order to optimise fuzzy inference rules (Nikravesh 
et al., 2003). Applying a given output/input data set, Adaptive Neuro-Fuzzy Inference System 
(ANFIS) constructs a FIS whose membership functions (MF) parameters are tuned using a back 
propagation algorithm (Matlab User’s Guide, 2004). 

An ANFIS system using the following fuzzy rules (Fig. 3) in layer 1 and 2 (Suparta and 
Alhasa, 2016):

Rule 1: if (is) and (is), then (class is 1).
Rule 2: if (is) and (is), then (class is 2).
Rule 3: if (is) and (is), then (class is 1).
When several fuzzy rules have the same result class, layer 3 combines their firing strengths. 

Usually, the maximum operator is used. The fuzzy values of the classes are available in layer 
4. The values demonstrate how well the input of the system matches to the classes. In layer 5 

Fig. 2 - Main parts of a FIS.

Fig. 3 - ANFIS system structure (adapted from Suparta and Alhasa, 2016).
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the best-matching class for the input is chosen as output if the crisp classification is needed (i.e. 
defuzzification).

2.4. Committee Machine with Intelligent Systems
Generally speaking, a CMIS consists of a group of intelligent systems which combine 

the outputs of each system and, therefore, reaps the benefits of all work with little additional 
computation. Thus, the model could outperform the best single network. A schematic diagram of 
CMIS is presented in Fig. 4.

There are different ways to integrate the output of the intelligent system in the combiner. The 
simple ensemble averaging method is the most popular one (Naftaly et al., 1997; Chen and Lin, 
2006). The proper combination of the contribution of the intelligent system (i.e. the weight) in a 
CMIS could be achieved by a genetic algorithm (Lim, 2005; Chen and Lin, 2006; Kadkhodaie et 
al., 2009).

This study is benefitting from the innovation of using the ACOR algorithm to combine neural, 
fuzzy, and neuro-fuzzy models in the form of a CMIS. Such an algorithm is depicted in Fig. 4.

Fig. 4 - Schematic diagram of CMIS (Kadkhodaie et al., 2009).

2.5. Ant Colony Optimisation algorithm for continuous optimisation problems
Proposed by Socha and Dorigo (2008), the ACOR is an optimisation algorithm based on ant 

colonies. The Ant Colony Optimisation (ACO) is a metaheuristic optimisation method and its 
structure provides the possibility for tackling mixed (discrete-continuous) optimisation problems.

The purpose of this algorithm, alike other methods of optimisation, is to find the choice of the 
best path. During this procedure, the best weight factors would be selected.

The fundamental idea underlying ACOR is to estimate a continuous probability density function 
(PDF) based on a discrete probability distribution. One of the most popular functions to be used 
as a PDF is the Gaussian function. However, a single Gaussian function is not individually able 
to cover the whole domain of the data and accordingly, a Gaussian kernel PDF is needed, which 
is a weighted sum of several one-dimensional Gaussian functions of g units. The Gaussian kernel 
PDF equation is presented as following:

(1)
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where ω stands for the vector of weights associated with the individual Gaussian functions, µ is 
the vector of means, and σ is the vector of standard deviations.

Such a PDF allows a reasonably easy sampling, and yet, provides a much-increased flexibilities 
in the possible shape, compared with a single Gaussian function. An example of how such a 
Gaussian kernel function may look like is presented in Fig. 5.

Fig. 5 - Example of Gaussian function and Gaussian 
kernel.

In ACOR, a number of solutions are stored in a solution archive. Before the algorithm is 
started, the archive is initialised with k random solutions. The solutions, {s1.s2. ... sl. ... sk}, and 
their target functions, {f (s1).f (s2). ... ... f (sk)}, are saved in the archive as a set of k functions. There 
are k separate Gaussian functions making up the Gaussian kernel PDF, i.e.:

{f (s1).f (s2). ... ... f (sk)}.	 (2)
 
The solutions are ordered in archive according to their value, that is to say, for a minimization 

problem:

f (s1) ≤ f (s2) ≤ ... ≤ f (sl) ≤ ... ≤ f (sk).	 (3)

Each solution has a weight according to its value, that is to say:

ω1 ≥ ω2 ≥ ... ≥ ωl ≥ ... ≥ ωk.	 (4)

The weight of the solution is calculated according to the following formula:

(5)

where q is a parameter of the algorithm which specifically designed to control the diversification 
of the research process. When q is small, the best-ranked solutions are strongly preferred, and 
when it is large, the probability becomes more uniform (Socha and Dorigo, 2008).

2.5.1. Steps taken in ACOR
On the whole, the following steps are taken in the ACOR approach:
1 -	the solutions are initialised, generated, evaluated, and ordered;



Continuous domains to determine carbonate reservoir facies	 Boll. Geof. Teor. Appl., 60, 569-582

575

2 -	weight factors and probabilities for each solution are computed;
3 -	a probabilistic model is generated for each solution;
4 -	each iteration of the algorithm and specific numbers of the random solutions are 

probabilistically constructed:

	 X ~  G = (G1, ... ... . Gn);

5 -	new and available solutions in the archive are integrated and ordered. Then, the worst 
solutions are removed from the archive;

6 -	the best solutions are updated with the generated solutions;
7 -	if the final conditions are not met, the process is iterated from Step 3 onwards; otherwise, 

the algorithm ends.

3. Application of methods on real data

The present study aims at determining reservoir facies by using ACOR as the CMIS. In 
so doing, 3D seismic data and well log data were extracted from 4 wells in one of the Iranian 
offshore gas fields, the Arab (Upper Surmeh) reservoir. Altogether, 400 data samples were used, 
300 of which were used to construct the model and 100 to validate it. As aforementioned, at the 
first step, the stepwise regression algorithm was used to select the most optimal seismic attributes 
that establish stronger correlations with the target data (FZI). The results are displayed in Table 1. 
As it is evident from the table, by adding the 4th attributes the validation error starts to increase; 
this suggests that acoustic impedance, integrated absolute amplitude, and average frequency are 
optimal/improved attributes for this operation. It was done via the instrumentality of Hampson 
Russell Software (Russell, 2004).

Subsequently, neural, fuzzy, and neuro-fuzzy systems were provided with the selected seismic 
attributes as the input data, and the 3D FZI model for each approach was generated. The approaches 
were applied in Matlab Software.

3.1. Integration of approaches using CMIS (ACOR)
Here, in order to combine the outputs obtained from neural, fuzzy, and neuro-fuzzy approaches, 

a Committee machine is constructed using the ACOR algorithm. As a cumulative optimisation 
technique, the ACOR is able to compute the weights of every single approach to be used in the 

Table 1 - The list of selected seismic attributes to estimate FZI.

		  Target	 Final Attributes	 Training Error	 Validation Error

	 1	 Log(FZI)	 Inversion Result	 1.205663	 1.316607

	
2	 Log(FZI)

	 Integrated Absolute	
1.154679	 1.297056

 
			   Amplitude

	 3	 Log(FZI)	 Average Frequency	 1.048055	 1.247190

	 4	 Log(FZI)	 Apparent Polarity	 1.006541	 1.533980

	 5	 Log(FZI)	 Filter 45/50-55/60	 0.791833	 1.531778
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CMIS and obtain the final results by integrating the above-mentioned approaches with optimal 
weights.

In this study, the mean square error (MSE) is used as criteria for optimisation by the ACOR 
and is represented by:

(6)

Here, the MSE value for the CMIS model is calculated, where β1, β2, and β3 stand for weight 
factors corresponding to outputs from the neural, fuzzy, and neuro-fuzzy approaches, respectively. 
The Oi and Li are the target values, and k is the number of the test data (100 samples). A schematic 
representation of the FZI extraction using the Committee FIS (CFIS) is illustrated in Fig. 6.

Parameters used in the ACOR are explained as follows:
1) the number of solution variables: 3;
2) initial population size: 10;
3) sample size: 50;
4) intensification factor: 5;
5) deviation-distance ratio: 1;
6) highest number of iteration: 100.

Fig. 6 - The relationship between cost function and the 
number of iterations in ACOR.

Finally, the CFIS outputs for each neural, fuzzy, and neuro-fuzzy were calculated by weights 
predicted using the ACOR. The final estimation of the FZI from the obtained weights can be 
represented by the following equation:

FZICFIS = 0.15 × FZIPNN + 0.24 × FZIF + 0.61 × FZINf	 (7)

Fig. 7 schematically demonstrates steps to predict FZI from the seismic data by the CFIS.

3.2. Results and discussion
Graphical comparison and correlation coefficient (CC) between predicted and measured FZI 

values using neural, fuzzy, and neuro-fuzzy approaches and the CMIS applied on the sample data 
are demonstrated in Figs. 8a to 8d and 9a to 9d, respectively.
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According to the results obtained from Figs. 8 and 9 and Table 2, the MSE for neural, fuzzy, and 
neuro-fuzzy approaches are 0.295, 0.259, and 0.204, which correspond to the CC values of 0.859, 
0.891, and 0.935, respectively. As evident from the results, the neuro-fuzzy approach provides 
more accurate results in comparison with the other two. Applying the CMIS and obtaining the 

Fig. 7 - Schematic 
representation of the FZI 
extraction from the seismic 
data by the CMIS.

Fig. 8 - Predicted FZI and measurement error using the neural, fuzzy, and neuro-fuzzy approaches and the CMIS 
applied on the sample data.
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optimal weights, the results gained from the aforementioned approaches were integrated. The 
weighted derived by applying neuro, fuzzy and neuro-fuzzy approaches on the sample data using 
the ACOR are 0.15, 0.24, and 0.61, respectively.

The MSE value of the CMIS for the test data is 0.195 which corresponds to the CC of 0.965. 
Accordingly, the results obtained from the CMIS show a significant improvement in the estimation 

Fig. 9 - CC between predicted and measured FZI values from sample data using: a) Probabilistic Neural Network 
(PNN); b) Mambani FIS (MFIS); c) ANFIS; d) CFIS. 

Table 2 - Comparison of correlation coefficient and the sum of mean square errors of the intelligent systems to estimate 
the FZI.

	 Method	 CC	 RMSE

	 PNN	 0.859	 0.295

	 MFIS	 0.891	 0.259

	 ANFIS	 0.935	 0.204

	 CFIS	 0.965	 0.195
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Fig. 10 - Maps showing the FZI obtained from CMIS: a) inline number 25; b) time-slice from 674 ms. 

And finally, in order to delineate the reservoir facies from the 3D FZI cube produced in the 
previous stage, the FCM technique was applied. Specifying the optimal numbers of clusters is 
an important factor to be considered in using the FCM clustering algorithm. In the current study, 
a cumulative density plot for the FZI value was established to obtain the optimal numbers of 
Hydraulic Flow Units (HFUs). This cumulative density plot for the test data is displayed in Fig. 
11 according to which 6 HFUs are recognised. These HFUs suggest 6 separate facies in Surmeh 
(Arab) reservoir estimated from the cumulative density plot:

of the FZI from the seismic attributes. The CMIS turns out to be far more efficient than other 
individual systems. After confirming the efficiency of the committee machine by using ACOR, such 
an approach was applied in converting 3D seismic data to the FZI cube in Surmeh (Arab) reservoir. 
Maps showing the FZI values for this approach in various directions are depicted in Fig. 10.

Fig. 11 - Cumulative density plot for the FZI value based 
on which 6 HFUs were recognised.
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HFU 1: Log FZI<-0.61;
HFU 2: -0.61<Log FZI<0.54;
HFU 3: 0.54<Log FZI<1.13;
HFU 4: 1.13 <Log FZI<1.96;
HFU 5: 1.96<Log FZI<2.51;
HFU 6: Log FZI>2.51.
Determining the numbers of improved classes, an FCM clustering algorithm was applied on 

the 3D FZI cube. Fig. 12 demonstrates the results obtained after applying the FCM algorithm. As 
displayed in this figure, six facies are recognised in the reservoir zone for the entire 3D seismic 
data. Subsequently, to ensure the validity of the results, the obtained results were compared with 
the analyses from thin section studies of the Surmeh reservoir, shown in Fig. 13. It is evident that 
the quality of the reservoir improves from Reservoir 1 to Reservoir 6.

By analysing the thin sections, a good correlation is observed between the quality of the 
reservoir and the facies estimated by applying the FCM clustering algorithm. This illuminates the 
reliability of the obtained results and the methodology proposed in this study.

4. Conclusions

In this study, we have used the intelligent systems such as the neural, fuzzy, and neuro-
fuzzy approaches in order to estimate the FZI from 3D seismic attributes in one of carbonate 
offshore gas fields, south of Iran. This study demonstrates that integrating the outputs resulted 
from applying the intelligent systems, using a CMIS which benefits from the ACOR, leads to a 
significant improvement in the accuracy of reservoir parameters estimation. Based on our results, 
the CMIS provides more accurate estimation of the FZI comparing with the individual systems. 
Additionally, it is concluded that the FCM clustering is a reliable and efficient approach in 
prediction and identification of the reservoir facies from 3D FZI cube. Utilising this approach, six 
facies in the studied gas field were determined which indicate high correlation with thin sections 

Fig. 12 - Generated HFUs by applying 
fuzzy clustering on the seismic derived 
FZI section.
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analyses. It is concluded that the proposed methodology in this study, which benefits from the 
integration of the results achieved by applying the CMIS and FCM clustering algorithms, can be 
utilised as a reliable and efficient approach for reservoir facies delineation.
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