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ABSTRACT The aim of this study is to propose and test a new method for detection of oil spills in 
the world oceans using Sea-viewing wide Field-of-Wiew Sensor (SeaWiFS) imagery 
embedded in SeaStar satellite. The colour masking technique is proposed to extract 
the maximum oil spill pixels from the SeaStar/SeaWiFS satellite images by using 
fusion by arithmetic combination of the spectral bands method. Each image used is 
converted from RGB (red, green, blue) to HSI (hue, saturation, intensity) system. The 
resulting oil slicks are obtained visually in the intensity and saturation images. Then, 
the values of intensity and saturation are analysed to be potentially applied in other 
images. In this research, we applied our detecting oil spills algorithm in six different 
scenes, including different regions of the world oceans, and different dates. Finally, to 
validate our results, the method has been tested by using the oil spill pixel reference 
ratio. We found that the method can be used to support the detection of oil slicks, in 
spite of some limitations.

Key words: ocean pollution, remote sensing, oil spills detection, SeaStar/SeaWiFS images, colorimetric 
methods.
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1. Introduction

Oil slicks on sea surface can have different sources such as man-made slicks from illegal 
discharges of ships or spills resulting from ship accidents, slicks originated from biological 
activities such as photo-oxidation processes or by planktons, and geological slicks originated as 
natural hydrocarbon seeps from a reservoir. Including every kind of slick, 10% of ocean surface 
is estimated to be covered by slicks (Girard-Ardhuin et al., 2005). Natural seepage detection is 
considered to be one of the significant preliminary works for offshore petroleum exploration. 
However, it does not explain the whole petroleum system by itself, and it should be combined 
with regular exploration techniques such as seismic interpretation, sample collection from the 
sea bottom, and geological survey. The oil slick detection and mapping are becoming one of 
the standard tools for hydrocarbon exploration activities and have been applied to most of the 
hydrocarbon basins in the world such as Gulf of Mexico (Friedman et al., 2002; Migliaccio et al., 
2011), Santa Barbara Channel, California (Leifer et al., 2006), Australian Shelf (O’Brein et al., 
2005), and south Caspian Sea (Williams and Lawrence, 2002).
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One of the remote sensing sensors used in oil spill detection is synthetic aperture radar (SAR). 
SAR capabilities are widely well demonstrated (Brekke and Solberg, 2005; Akar et al., 2011; 
Migliaccio et al., 2011; Lu et al., 2013; Linlin et al., 2014; Mihoub and Hassini, 2014). SAR is 
particularly useful for its all-weather and all-day capability, which is in observing the sea at night 
and at cloudy weather conditions. SAR measurements allow not only observing sea oil slicks but 
also discriminating them from a broad class of look-alikes, i.e. those calling for weak-damping 
properties (Mihoub and Hassini, 2014; Migliaccio et al., 2015; Buono et al., 2016). SAR data has 
been subject to many efforts to use mathematical techniques to detect and distinguish oil spills 
from look-alikes based on external information about weather conditions, differences in shape, 
and contrast to surroundings (Solberg et al., 1999; Gambardella et al., 2010; Mihoub and Hassini, 
2014). The spatial extent of the 2010 Deepwater Horizon oil slick is large enough to be resolvable 
by the European Space Agency advanced scatterometer (ASCAT) on meteorological operational 
satellite (MetOp-A), particularly when processed with resolution-enhancement algorithms. By 
exploiting the effects of surface oil on the radar backscatter from ocean waves, a coarse mapping 
(resolution ≈ 5 km) of oil surface extent is made by examining data processed from ASCAT. 
Although originally designed for only low-resolution ocean wind measurements, ASCAT can be 
used to map the surface extent of large bodies of oil on the ocean surface (Lindsley and Long, 
2012). However, SAR has some limitations: SAR data are expensive, not available daily (long 
revisit time, several days) and cover small areas (reduced swath, 100-500 km).

Optical sensors also have showed potential in oil spill detection. These optical sensors are 
characterised by very large swaths, short revisit times, and free of charge (Pisano, 2011). Optical 
sensors measure the solar irradiance being reflected by the sea and the radiance emitted by the 
sea surface itself, within the visible, infrared (IR), and microwave spectral windows (Bulgarelli 
and Djavidnia, 2012; Lu et al., 2012; Fingas and Brown, 2014). The radiation that have interacted 
with, or being emitted from, the sea surface, influenced by the optical processes in the surface layer 
of water, carries the oceanographic information from the sea to the sensor. Thus, the presence of a 
floating oil film will modify the radiance leaving the sea surface (water-leaving radiance) (Pisano, 
2011). The mechanism of this phenomenon mainly depends on the optical properties of the sea 
surface and of the oil film (i.e. absorption and scattering coefficients), which in turn depend on sea 
state (wind and waves) and on the zenith angle of the incident light and of satellite (Taylor, 1992; 
Fingas and Brown, 1997; Pisano, 2011).

It has been known for some time that oil on the water surface is better viewed with polarised lenses. 
Several workers have noted the polarising effects of oil on water and have proposed methods to use 
this phenomenon to distinguish oil (Yuan et al., 2010, 2011; Fingas and Brown, 2014). Sun glitter is 
a particular problem in visible remote sensing. Sun glitter can sometimes be confused for oil sheens. 
Several workers have found ways to reduce or to deal with sun glitter (Fingas and Brown, 2014).

High resolution optical sensors such as Landsat ETM+, SPOT, IKONOS do not provide daily 
observations, and the data with limited spatial coverage are expensive. The new optical sensor 
technologies provide an unprecedented capability for oil spill monitoring in marine environments. 
Oil spills detection is better achieved by using the Sea-viewing wide Field-of-Wiew Sensor 
(SeaWiFS) radiometer of the SeaStar satellite because it has wide spectral coverage comprising 
the visible (ch1, 0.41 μm, to ch6, 0.67 μm), and near-infrared (ch7, 0.76 μm and ch8, 0.86 μm) 
wavebands. All channels pertain to certain attributes of oil spill, but contain different information.

SeaWiFS measures light intensity in several bands. The measurements allow quantification of 
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light absorption and subsequent estimation of slicks. SeaWiFS improves by having better bands 
for atmospheric correction (i.e. removing the effect of light scattering by the Earth’s atmosphere), 
which will particularly aid the estimation of oil slicks places.

In light of their unique and important role in oil spill detection, SeaWiFS images are the focus 
of this work. This paper presents an idea which derives from the fusion of the satellite images. 
The images resulting from only one process are not enough with the thematic requests for the 
diagnosis and the treatment. However, to separately observe a series of multimode images of the 
same object is not a better solution. The fusion of these data is thus a paramount stage. There are 
three methods of fusion (Hassini et al., 2008):

• statistical methods, like the principal component analysis (PCA) method;
• methods resulting from signal processing, like the wavelet transformer (WT) method;
• colorimetric methods, like the fusion by arithmetic combination (FAC) of spectral bands 

method.
The FAC method is classified in the colorimetric part, because it is often used with an aim 

of visual improvement of the data. Of all the methods used, it is the simplest; however, its 
effectiveness depends on the data input. The images are mixed by addition and/or subtraction 
and/or product, after D-sampling of the data to the same size. This method is selected in this work.

Each image in this paper is converted from RGB (red, green, and blue) field to HSI (hue, 
saturation and intensity) field. We seek to obtain the maximum of oil spill pixels on the images; 
then, one looks at the values taken by intensity and saturation for potentially applying them to 
other images in routine.

2. Material

2.1. Sensor description
The SeaWiFS on board the SeaStar spacecraft is an advanced sensor designed for ocean 

monitoring. It consists of eight spectral bands of very narrow wavelength ranges, between 402-885 
nm (see Table 1). Applications for imagery include ocean primary production and phytoplankton 
processes, ocean influences on climate processes (heat storage and aerosol formation), and 
monitoring of the cycles of carbon, sulfur, and nitrogen. The orbit altitude is 705 km with a local 
equatorial crossing time of 12 PM. Table 1 is a listing of the central wavelengths and bandwidths 
for SeaWiFS (Grégoire et al., 2002; Hassini et al., 2008).

2.2. SeaWiFS level - 1A data
There are Level-1A products for each of the following data types: global-area coverage 

(GAC), local-area coverage (LAC), lunar calibration, solar calibration, and high resolution picture 
transmission (HRPT) for direct-readout data (Leblon et al., 2007). GAC data are sub sampled from 
full-resolution data with every fourth pixel of a scan line (from LAC pixels 147 to 1135) and every 
fourth scan line being recorded for each swath (the Earth data collection portion of an orbit). Thus, 
GAC data are comprised of 2048 pixels per scan line, whereas all other types are comprised of 
1285 pixels per scan line. A GAC scene will also represent an entire swath; whereas LAC scenes 
are defined by the number of continuously recorded scans, and HRPT scenes are defined by the 
number of continuously received scans from one satellite pass (Hassini et al., 2005).
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Table 1 - SeaWiFS sensor description.

Instrument Bands

 Band Wavelength

 1 402-422 nm

 2 433-453 nm

 3 480-500 nm

 4 500-520 nm

 5 545-565 nm

 6 660-680 nm

 7 745-785 nm

 8 845-885 nm

Mission Characteristics

 Orbit Type Sun Synchronous at 705 km

 Equator Crossing Noon +20 min, descending

 Orbital Period  99 minutes

 Swath Width 2,801 km LAC/HRPT (58.3 degrees)

 Swath Width 1,502 km GAC (45 degrees)

 Spatial Resolution 1.1 km LAC, 4.5 km GAC

 Real-Time Data Rate 665 kbps

 Transmission Frequency 1702.5 MHz (encrypted)

 Revisit Time 1 day

 Digitization 10 bits

2.3. Oil spills detection
This paper presents an idea which derives from the fusion of the satellite images. 
SeaStar/SeaWiFS radiometer has two major advantages for oil spills monitoring. First, 

the instrument provides daily coverage of the entire planet at a moderate spatial resolution 
(approximately 1 km), which is critical for operational global oil slicks monitoring. Second, it 
has wide spectral coverage comprising the visible (ch1, 0.41 μm, to ch6, 0.67 μm), and near-
infrared (ch7, 0.76 μm and ch8, 0.86 μm) wavebands. All channels pertain to certain attributes 
of oil slicks, but contain different information (Kaufman and Remer, 1994; Hassini et al., 2008). 
Oil is more discernible in the visible channels, which has been employed to estimate oil spills 
location. However, the detection of oil slicks is better achieved with RGB and HSI combinations 
of SeaWiFS channels.

3. Method

3.1. RGB to HSI components conversion
The RGB colour model is an additive colour model in which red, green, and blue light are 

added together in various ways to reproduce a broad array of colours. The main purpose of the 
RGB colour model is for the sensing, representation, and display of images in electronic systems, 
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such as televisions and computers, though it has also been used in conventional photography. 
Before the electronic age, the RGB colour model already had a solid theory behind it, based in 
human perception of colours, colour images are always perceived in terms of hue, saturation, and 
luminance in human visual system.

The HSI format, one of the most widely-used colour coordinate system in colour image 
processing, was developed by Munsell (1969) and are compatible with the scheme human perceive 
colour (Munsell, 1969; Uchiyama and Arbib, 1994). It is based on intuitive sensation of colour, 
and closely simulates the behaviour of human eyes (Horng et al., 2005).

The geometric conversion from the familiar RGB colour model to the HSI colour model can be 
found in Fig. 1. Hue represents a dominant (pure) colour as perceived by an observer. Saturation 
refers to the amount of white light mixed with a hue.

Fig. 1 - Geometric representation of RGB and HSI systems.

Two important facts make the HSI colour model useful to simulate the colour sensing 
properties of the human visual system. First, the intensity component is decoupled from the 
colour information in an image. Second, the hue and saturation components are intimately related 
to the way in which human beings perceive colour. In the following Eqs. 1 to 4, the formulae for 
conversion are listed for reference (Horng et al., 2005; Hassini et al., 2008).

(1)

(2)

(3)

where:
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(4)

3.2. Building an oil spill feature model
In the study of image-based oil spill detection, it is necessary to build a more precise oil slicks 

feature model for vision-based oil spill detection systems. In this research, we used two SeaStar/
SeaWiFS images carrying various dates and areas to analyse the colour features of oil spills 
according to the HSI colour model.

A colour set, C, is a set of colours such that for each colour in the set, represented as a triplet 
(h, s, i) in the HSI colour model, the following conditions are satisfied: [smin ≤ s ≤ smax], and, 
[imin ≤ i ≤ imax] in which [hmin, hmax] is the range of hue, [smin, smax] is the range of saturation, 
and [imin, imax] is the range of intensity of the colour set C. Formally, the colour set may be 
denoted as:

C (h, s, i) = {(h, s, i) | hmin ≤ h ≤ hmax, smin ≤ s ≤ smax, imin ≤ i ≤ imax} (5)

The colour separation algorithm for an input image f(x, y) based on oil spills colour set C 
is as follows: or each pixel in the image, if the colour of the pixel does belong to the colour 
set, then set the pixel colour to red; otherwise, keep the pixel colour unchanged (a background 
colour, unchanged). The result image g(x, y) after performing the above colour separation can be 
represented as:

(6)

3.3. Hue values in oil spills
Today several techniques for the detection and analysis of oil spilled in water are available: 

gravimetry, infrared spectrum-photometry, fluorimetry spectra, UV absorption, and surface 
reflection.

According to colour pixel, the oil slick images belonging to these two classes are fairly 
different in colour: as regards the first case, pixels appears with a brownish yellow colour, so the 
dominant colour is brownish, whereas in the second case there are more blueish pixels; colour is 
between cyan and blue.

Therefore, in several studies, in order to distinguish these two classes, the hue average is 
adopted as discriminating criterion: images with diluted oil have an average of hue lower than 75, 
while the images with thick oil passed through by beams have an average of hue greater than 75 
(Munsell, 1969). In this study, we assume that the interval of hue values is the same for all images, 
so the hue value does not affect the results of the applied method.
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4. Results and discussions

The form of a Level-1A file name is Syyyydddhhmmss.L1A_ttt, where S is for SeaWiFS, yyyy 
is the year, ddd is the day of the year (001-366), hh is the hour UTC (00-23), mm is the minute 
(00-59), and ss is the second (00-59) when the sensor began collecting the scene’s data (the first 
scan line), and ttt is a three- or four-character data type code. In our case, we have used LAC Level 
1A images with spatial resolution of 1.1 km at nadir; the form of file name is Syyyydddhhmmss.
L1A_MLAC.

Each image product in this paper is generated from a corresponding Level-1A product. The 
main data contents of the product are the geophysical values for each pixel, derived from the 
Level-1A raw radiance counts by applying the sensor calibration, and atmospheric corrections.

The radiometric operation of calibration is used to eliminate the side effects on the rough 
images. They are corrections of the true brightness measured by the radiometer SeaWiFS in order 
to eliminate the effects of the atmosphere and the solar angle of illumination. Therefore, the effect 
of incoming solar radiation on the model colorimetric is compensated.

Fig. 2a shows the eight raw channels (6 visible and 2 NIR) of image A (labelled in this work); 
all channels are splitted and radiometrically calibrated by using ENVI Software (the Environment 
for Visualizing Images, Research Systems, Inc., Boulder, USA). The file of this image named 
S2010124202916.L1A_MLAC was received from official source (OCEANCOLOUR GSFC 

Fig. 2 - Eight spectral channels with the representation of the central spectral wave of each band: a) image A (reference 
image); b) image B.
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NASA US data base). In this case, our image was received on day 124 (4 May) of year 2010 at 
20:29:16 UTC, from level 1A MLAC type.

For each band, the detector measures the intensity of the light that reaches the sensor. When 
these data are displayed visually, the result is a series of gray-scale images. Notice how different 
features have different intensities in the various bands. For example, the water appears bright 
in the blue and purple bands, while land is dark. In the red and infrared bands, it is the land 
that is bright, while the water is dark. Image A is used to process oil spill pixels covering the 
Louisiana coast from Deepwater Horizon explosion (2010 Gulf of Mexico oil spill; www.epa.
gov/enforcement/deepwater-horizon-bp-gulf-mexico-oil-spill). Because of the important number 
of oil spill pixels on this image, it is considered like the reference image in this work.

By RGB combination between visible channels 3, 2 and 1 successively (R: ch3, G: ch2, B: 
ch1) from image A, we can watch clearly the oil slicks along the Louisiana coast (Fig. 3a). This 
combination most closely represents oil slicks in the visible spectrum. Winds generated large 
quantities of oil spills, which blanketed the Gulf of Mexico, fortunately there are not clouds, 
which cover the polluted zone, it is one of the optical data limit. This event can be also clearly 
watched on the high right part from image of Fig. 3b. This image was realised by combination 
between the visible and the NIR channels. We have used the following combination R: ch7, G: 
ch4, B: ch1.

The colour separation algorithm is applied to channel 1, 2 and 3 from image A, by using R: 
ch3, G: ch2, B: ch1 combination in Eq. 1. The result image is given in Fig. 4. In this image, we 
can watch the intensity edges of oil slicks presented as red colour separation.

Saturation pixels are calculated by using the same combination (i.e. R: ch3, G: ch2, B: ch1 
combination) in Eq. 2, the result is given in Fig. 5. In this image, the region of interest was 
selected, and the red mask of separation presents the areas of oil slicks.

The other event, on 3 April 2005 incident, which happened near the new port of Dalian in NE 
China’s Liaoning province, oil spills drifts on the water surface in north of the Yellow Sea. This 
event (image B of Fig. 2b) is acquired by SeaWiFS from the SeaStar satellite.

Fig. 3 - Combination result: a) R: ch3, G: 
ch2, B: ch1; b) R: ch7, G: ch4, B: ch1.
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Fig. 2b shows the eight spectral channels of the image B (all channels are radiometrically 
calibrated), whose file is named S2005095041204.L1A_MLAC was acquired on 5 April (095) 
2005 and covers the oil spills pixels in the NE China coast. This image is used to validate our 
research.

The HIS colour model has been adopted because it is intimately related to the way in which 
human beings perceive colours. According to the empirical analysis of the set of oil spills images, 
the hue values for oil slicks pixels are: on the one hand, from brownish yellow colour are usually 
in the range of [0°-60°], on the other hand, from blueish pixels; colour is between cyan and blue, 
the hue values are in the range [180°-240°]. In this study, we suppose that the hue values are the 
same for all images; in the range [0°-60°]. So, the hue value does not affect the results of the 
applied method.

The intensity values in image A are in the range [303, 975] and, on the other hand, the intensity 
values in image B are in the range [462, 956]. The saturation values after normalisation are 
distributed in the range [0, 100] in the two images. By using colour separation algorithm (Eq. 6) in 
image A, the saturation values from the oil spills pixels are in the range [45, 60], and the intensity 
values from the oil spills pixels are in the range [407, 424].

By using the same RGB combination and the same intervals of the oil spills extracted from 
image A and Eqs. 1, 2, and 6 (saturation: 407-424, intensity: 45-60, hue: 0°-60°), the active oil 
spills locations in image B have been enhanced and edged in red colour. In Figs. 6 and 7, we can 
watch respectively, the intensity edges and saturation pixels of oil spills presented as red colour 
separation.

The proposed oil spill detection method is tested with five other scenes of images (image C 
to image F in Table 2) for a variety of conditions, including different regions of the world oceans 
and different times. The limit values for the oil slicks with HSI system are summarised and the 
experimental results of the proposed method are shown in Table 3.

Oil spill pixel reference ratio (OSPRR) denotes the detection rate between each image from 
Table 2 and the reference image (image A). It is defined as the ratio:

Fig. 4 - Extraction of the edge of oil spills pixels 
from the intensity image (image A).
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(7)

for the intensity images and:

  (8)

for the saturation images. In the above equations Vi max and Vs max indicate respectively the 
maximum value of the intensity and the saturation in each image (from image A to image F), 
while Vi min and Vs min are respectively the minimum value of the intensity and the saturation in 
each image (from image A to image F).

Fig. 5 - Extraction of maximum oil spills pixels from 
saturation image (image A).

Table 2 - List of images used.

Image 

Image A

Image B 

Image C

Image D

Image E

Image F 

Date of 
acquisition

04/05/2010

05/04/2005 

18/01/2003

31/10/2007

31/07/2006

26/12/2007 

Start time 
of acquisition

20:29:16 UTC

04:19:04 UTC 

16:46:09 UTC

09:50:06 UTC

10:50:08 UTC

14:01:34 UTC 

Region 

Louisiana coast, Gulf of Mexico

Yellow Sea, NE China’s Liaoning 
Province coast

Lake Maracaibo, Venezuela

Arabian Gulf

Lebanese coast

Yellow Sea, west sea coast of 
Taean, Korea

Coordinates 

3.13 N / 95.3 W

41.8 N / 121.3 E 

16.5 N / 73.5 W

31.3 N / 50.3 E

39.0 N / 32.0 E

38.3 N / 131.1 E 

| Vi max – Vios max | + | Vi min – Vios min

| Vs max – Vsos max | + | Vs min – Vsos min

Vi max + Vios max + Vi min + Vios min

Vs max + Vsos max + Vs min + Vsos min

OSPRRi[%] = ––––––––––––––––––––––––––––––––– × 100

OSPRRs[%] = ––––––––––––––––––––––––––––––––––– × 100
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Fig. 6 - Extractions of the edge of oil spills pixels from the intensity 
image (image B).

Fig. 7 - Extraction of maximum oil spills pixels from saturation 
image (image B).

On the other hand, Vios max and Vsos max are respectively the maximum value of the intensity 
and the saturation of oil spills pixels in each image (from image A to image F), Vios min and 
Vsos min are respectively the minimum value of the intensity and the saturation of oil spills pixels 
in each image (from image A to image H). The OSPRR ratio is applied to establish the efficiency 
of our method to localise the oil spills pixels for various environments.
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We can observe in Table 3 that the values of the OSPRRs [%] and the OSPRRi [%] are respectively 
in the interval [0.478, 1.904] and [0.060, 0.301]. In general, these results are very encouraging and 
promising, because the method can detect maximum pixels of oil slicks. The largest values are 
observed in image E, because of a small area of oil slicks in this scene of image (Fig. 8).

5. Conclusion

This paper presents an overview of one of the environmental phenomena: marine oil spills. 
SeaWiFS is an important tool in oil spill monitoring, because of the long field of view in the 
visible spectrum of the onboard sensor. In this paper, we proposed and applied an adapted method 
for monitoring and detection of oil slicks in SeaStar/SeaWiFS images. Each band is displayed 
in a monochromatic scale corresponding to its appropriate colour. When these are mixed, they 
produce the entire range of visible colours, creating an image that is fairly close to what the 
human eye would perceive.

A method derived from the RGB combination based on the computer vision techniques and 
RGB-to-HSI conversion is proposed. The colour masking technique is proposed to extract the 
maximum oil spill pixels from the SeaStar/SeaWiFS images. As a result, oil slicks pixels are 
obtained visually on the images intensity and saturation; then one looks at the values taken by 
intensity and saturation for potentially applying them to other images in routine.

We validated the proposed method by using other scenes of images with different dates and 
different regions. The obtained results show that the method can detect maximum pixels of oil 

Table 3 - Features of oil spills.

Image

Image A

Oil slick coverage

OSPRR [%]

Image B

Oil slick coverage

OSPRR [%]

Image C

Oil slick coverage

OSPRR [%]

Image D

Oil slick coverage

OSPRR [%]

Image E

Oil slick coverage

OSPRR [%]

Image F

Oil slick coverage

OSPRR [%]

Hue [°] 

0-60

0-60

0-60

0-60

0-60

0-60

Saturation (S)

0-100

45-60

0

0-100

46-61

0.943

0-100

45-59

0.478

0-100

44-61

0.952

0-100

43-62

0-100

1.904

45-62

0.943

Intensity (I)

303-975

407-424

0

462-956

406-424

0.060

327-972

407-425

0.060

185-945

406-425

0.120

350-963

404-422

0.301

242-968

408-426

0.180
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Fig. 8 - Image E: Lebanese coast with a small 
area of oil spills.

slicks. We establish that the method can be used to support the detection of oil spills, in spite of 
some limitations:

• small areas of oil spills cannot be depicted by the proposed method in some cases (operational 
oil spills, routine oil spills accident, etc.);

• the proposed method rest on human eyes examination, so we cannot analyse a large number 
of images in a short period of time;

• this method is used only in diurnal period of day;
• when the sky is cloudy, we cannot use this method.
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