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ABSTRACT The study investigates the problem of uncorrelated noise variance in least-squares 
spatial prediction of geophysical phenomena. This issue is commonly solved by the 
regularisation or variance-component estimation, however, the attempts at physical 
explanations of the issue are scarce or very cautious. In this study, an equivalent 
procedure to the regularisation is performed numerically, but the meaning of noise 
variance level is explained, and the source of the noise is more carefully examined. The 
presented numerical test uses spatial prediction technique i.e. least-squares collocation 
and reveals its relationships with the spectral signal properties. The numerical test 
is based on terrestrial Bouguer anomalies, which have a large variance at higher 
signal frequencies, i.e. their power spectral density decreases slowly when the spatial 
resolution increases. The same quantity is calculated from the EGM2008 model using 
various maximum degrees of the harmonic expansion. The different degrees of applied 
harmonics remove some spectral part of the signal from the data, which leads to the 
observations of the suspected relation of the estimated values of noise variance with 
medium and high-frequency signal parts. The observed statistical quantities prove that 
the noise has some relations with signal spectral range and data spatial resolution. The 
paper provides a relevant proof that the noise is not solely dependent on the survey 
error and introduces some physical interpretations of the regularisation requirement.
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1. Introduction

Least-squares collocation (LSC) is a spatial technique of data modelling, which uses a 
composed signal spectrum. Typically, physical fields have a multi-spectral signal, because 
the phenomena generating them act from various distances and directions and with different 
magnitudes. Therefore, geophysical signals can be represented by the series in the frequency 
domain (e.g. spherical harmonics or Fourier series). All these parts compose the signal, which is 
received by the sensors together with noise. The local residual data sets that are often applied in 
LSC are also multispectral, and two of their spectral bands can be found at once: a lower band, 
depending on the data area range, and an upper one, depending on the spatial resolution and 
measurement accuracy. The lower bound is usually determined by the detrending process, i.e. the 
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removal of some lower-frequency signal, and it is related with the size of the local data area. The 
lower-order trend is composed of the lowest spherical harmonics of the signal and can be derived, 
e.g. from any global model like spherical harmonic expansion of geopotential. The upper spectral 
bound of the local data will be discussed in this article with special attention.

LSC interpolation, characterised by a similarity to simple kriging (SK) (Dermanis, 1984) 
assumes known expectation of the stochastic field. Satellite measurements have provided many 
global models of the phenomena occurring in the oceans, on the Earth and in the atmosphere, 
which creates an opportunity to apply a very accurate long-wavelength expected values of gravity, 
magnetic field intensity, ocean topography, total electron content in the ionosphere, etc. The data 
can be reduced, which provides a substantial advantage: one has to estimate and apply a local 
correlation of the data, which has a smaller range and reduces the number of the observations 
applied in the computations. Nevertheless, we never work with the pure signal only; there 
are no errorless observations, because there is no errorless measuring equipment. The general 
assumption about the lack of spatial correlation of noise has been made in the article. This choice 
is made due to the simplicity of the selected option, which is very helpful in the actual recognition 
of the problem. The author decides to avoid literature examples with non-correlated noise and 
correlated noise cases, because it is obvious that both types of noise are comparably frequent in 
the literature and this depends for instance on measuring equipment or kind of the observational 
technique. Nevertheless, it is easy to notice in the following paragraphs that most of the cited 
literature refers to uncorrelated noise, as it is a more convenient and universal option. This is 
especially true when we meet lack of a more precise information about the noise (Gilardoni et al., 
2013). An article about high-frequency random errors, however, is worth reference here, as it also 
suggests a need for a more insightful investigation of the gravity data noise. Saleh et al. (2013) 
analyse high-frequency gravity errors of U.S. gravity database mainly by crossover comparisons 
and obtain values at the level of a few milliGals, which is much more than the measurement noise 
of the static gravimeters. These errors can originate from different sources and the present work 
attempts to study medium and high-frequency signals and data spacing as some of the probable 
reasons, which are jointly called a second presumption in this paper.

The paper investigates two possible sources of data noise, i.e. measurement error and high 
frequency signal corresponding to the resolution higher than data spatial resolution. The former 
can be found as an old and well-established norm in the cited works, whereas the latter one 
occurs in the literature as uncertain and informal principle, which in practice helps, however, to 
decrease the estimation errors. Some researchers notice problems related to the application of 
the measurement error in the noise covariance matrix and apply an additional manipulation to 
the diagonal, calling this process a regularisation (Marchenko et al., 2001). They then explain 
the regularisation from the mathematical point of view, referring it to matrix algebra problems 
and the measurement noise. The question raised in this article concerns possible relationships 
of the regularisation with physical data properties, i.e. such high-frequency signals, which can 
contribute to the noise directly.

The first presumption on the possible dependency of the noise and the measuring errors is very 
popular amongst geodetic and geophysical community and can be easily found in the literature 
dealing with least-squares modelling of different data types. Denker (1998) analyses GPS/levelling 
geoid modelling by LSC with the application of the noise based on survey documentation. The 
same type of data is analysed by Kavzoglu and Saka (2005), who consider noise covariance matrix 
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as a matrix of measurement errors. Bouman (1997), although investigates an application of the 
regularisation in the development of global geopotential models, also perceives the measurement 
noise as the principal physical contributor to noise covariance. Vergos et al. (2005) also indicate a 
dependency between the quality of the data and the noise covariance matrix in LSC and assign a 
presumed error value to the gravity data, due to the limited knowledge of the measurement error. 
El-Fiky et al. (1997) state that vector of the noise directly represents measuring error in the LSC 
modelling of crustal movement rates from the levelling data. Egli et al. (2007) apply LSC to the 
interpolation of crustal deformation and also incorporate observational error in the noise matrix, 
as the main component. Darbeheshti and Featherstone (2010) similarly associate data noise with 
the accuracy of surveying techniques in relation to GPS and geometric levelling.

The second presumption has become an objective of this study and refers to the relation 
between the noise covariance matrix and signal at frequencies higher than data resolution. At 
the beginning, however, let us refer to some existing works, which, as opposed to those listed 
in the previous paragraph, find some other factors contributing to the noise covariance matrix. 
An extended study on the relationship between the noise, regularisation and data spacing can be 
found in Rummel et al. (1979). The data of different resolutions have been tested in the numerical 
test and the conclusion has been drawn, that the stability of downward continuation solutions 
depends on the number and geographical distribution of the data, aside from the observational 
error. Xu and Rummel (1994) continue investigations on the regularisation problems related 
to gravity and find data sampling as a factor seriously affecting the reliability and accuracy of 
least-squares solutions. They also see some incompleteness in the description of the influence of 
regularisation on the error of the solution and its physical meaning. The spatial resolution, as a 
factor affecting the accuracy of the results is also discussed in Eshagh and Sjöberg (2011). The 
same problem has been investigated using different data resolutions by the author in Jarmołowski 
(2016).

Klees et al. (2004) analyse satellite gradiometry data and existing problems in least-squares 
solutions based on these data. They provide some suspected spatial factors affecting the 
covariance matrices of the signal and noise. Aside from the problem of the coloured noise, they 
mention data gaps due to the orbit geometry. Such gaps make differences in the spatial resolution, 
which can be large in case of satellite data, especially at lower latitudes. Andersen and Knudsen 
(1998) investigate marine gravity field from altimetry and apply noise variances larger than the 
observational errors. They also introduce additional covariance function for the high-frequency 
noise along the satellite tracks. This function is also related with different data resolutions in 
along-track and cross-track directions. Kim et al. (2008) also investigate altimetry data and apply 
filtering, pointing out its direct relation with the spacing between the profiles. The studies on 
altimetry data filtering showing its close relation with along-track and cross-track resolution can 
be also found in Sandwell (1992) and Sandwell and Smith (1997). Jarmołowski and Łukasiak 
(2016) estimate the across-track and along-track noise characteristics by maximum likelihood 
(ML) method and confirm the observations from the abovementioned papers. Some research on 
the correlation between the data spacing choice and LSC solution accuracy is presented in Lee 
et al. (2013). Their work refers to the geoid fitting problems, where GNSS/levelling points have 
often different spacing than the gravimetric geoid model resolution.

Other works go further in the studies of relations between the noise and data spacing. The 
spacing along the satellite tracks is used for the estimation of the standard error by Paolo and 
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Molina (2010). They provide an approximate formula linking altimeter noise level with along-
track spacing in the computation of a priori error. Another example of similar formulae for the 
noise approximation can be found in Hwang and Parsons (1995). A comprehensive study on 
gravity data resolution is provided by Filmer et al. (2013), who discuss the problem of sampling 
in the case of interpolation. The prediction of the gravity at the benchmarks, necessary for 
physical height determination, can be inaccurate due to the signal omission. A non-representative 
sampling and related omission of higher-frequency signal can be especially easily detected in 
moderate mountains and can be really significant, as stated by Filmer et al. (2013). This point 
of view is close to the hypothesis of the presented study, which presents the influence of the 
mentioned signal omission on the noise variance. This research provides some observations on 
the contribution of the signal components to the noise variance, aside from the contribution from 
the survey accuracy.

The problem of data sampling effect on the parameter representing variance of the noise 
can be also found in the works that refer to the ordinary kriging (OK); although it belongs to 
the same family of parametric geostatistical tools, it differs in relation to LSC and SK due to 
some specific assumptions related to the expected value of the stochastic field. In this case the 
parameter responsible for the noise is called nugget. We can also find the studies that associate 
the nugget with the resolution issues. Tranchant and Vincent (2000) assign uncorrelated noise 
to the nugget parameter in the interpolation of ozone from the satellite data. They interpret the 
nugget as a sampling error at points. Even more questions regarding the nugget are posed issue 
in Clark (2010). That paper discusses inconsistency in the treatment of the nugget parameter in 
the literature and existing software. It also indicates the factors contributing to the nugget, like 
sampling and short-scale variability of the analysed phenomenon. The short-scale variability can 
be also considered as high-order frequencies in terms of spatial spectral decomposition, and this 
will be an objective of special focus in the numerical part of this article.

A comprehensive study of the geophysical signal referred to the data sampling and accuracy of 
the modelling is given by Vassiliou (1988). The power spectral density functions of the continuous 
gravity signal, and also of selected data samples with different grid spacings, are compared. Next 
the conclusions on the aliasing effects related to the data resolution decrease in gravity field 
approximation have been drawn.

The numerical part in the current article illustrates the issue investigated by Vassiliou (1988) 
from the practical point of view, which is possible due to the wide range of spherical harmonic 
degrees of the EGM2008 model and availability of noisy point gravity data from the same area. 
The terrestrial gravity data have been selected in such a way that it represents a spatial resolution 
corresponding to the middle degree between the lowest EGM2008 trend degree applied for the 
selected data area and the highest used degree of this global model. The terrestrial gravity data 
set and nine surfaces of various trend degrees based on the EGM2008 are then applied in two 
numerical tests, prepared for the covariance parameters analysis. In the first test, successively 
increasing harmonic degrees of the signal trend have been subtracted in sequence, starting from 
really low trend order and finally exceeding corresponding data resolution and removing all the 
correlated signal from the data. In the second test the lower order trend was set to a reasonable 
constant value in order to maintain general LSC rule related to the zero mean. Then, the ranges of 
the highest spherical harmonic degrees were removed three times, keeping always some correlated 
signal bandwidth in the residuals. These two tests are designed in order to analyse the influence of 
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lower and upper frequency cutoffs on the covariance parameters, particularly on the uncorrelated 
a priori noise size.

Three estimators are analysed and compared in order to assess noise variance size. The first is 
uncorrelated average a priori noise standard deviation (σ), indicated on the σ-axis by the minimum 
standard deviation (SD) of data-prediction differences in Leave-One-Out (LOO) validation 
(MSDLOO, Figs. 3 and 6, Table 3), the second is just this MSDLOO (minimum of contours in 
Figs. 3 and 6, Table 3) and the last one is a posteriori estimate of the prediction error mP (Eq. 
8, Table 3). The third estimator is strongly dependent on σ, and since σ-values are thoroughly 
analysed here, the discussion on the a posteriori error in this article is limited to the comparison 
with remaining two parameters (Table 3). A special focus is put on the first two estimators: σ (Eq. 
6) and MSDLOO (Eq. 7) and their relations with the subtracted lowest and highest frequencies/
degrees of the signal. The conclusions explain the relation of commonly applied regularisation 
with data spatial resolution to a considerable extent.

2. Lower-order signal, detrending, parametrisation and cross-validation

The Gauss-Markov model is a very popular statistical way for describing the physical 
phenomena such as magnetic anomalies, gravity, and many others. It assumes a split of the signal 
into deterministic and stochastic parts. The former one is often represented by mathematically 
determined polynomial. The global model based on the high-order spherical harmonics is a better 
approximation and, therefore, is applied in this study. The latter part of Gauss-Markov signal 
split is the stochastic part, which is here interpolated by the LSC. Thus, the data in this article is 
divided into two parts:

(1)

where ΔgEGM represents spherical harmonic synthesis of the Bouguer gravity anomalies of different 
maximum degrees/orders and Δgr includes the noise together with the residual part of the signal, 
which will be interpolated by LSC. The long-wavelength part of the signal is generated in the 
numerical study by spherical harmonic synthesis (Pavlis et al., 2012), using various maximum 
degrees/orders (nmax = mmax), i.e.

(2)

where Y-nm(θ, λ) denotes fully-normalised spherical harmonic of two spherical variables: polar 
angle θ and longitude λ and uses fully-normalised Legendre function i.e.

(3)

The set of fully-normalised coefficients of EGM2008 model is used to generate a data trend. 
Increasing degrees/orders of the trends provides more and more detailed approximation of the 
gravity, which at some degree reaches the same level of resolution as the terrestrial data. After 
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detrending, the residuals should follow Gaussian distribution. This is true when we deal with 
enough level of stationarity and a sufficiently large maximum degree/order of EGM2008 spherical 
harmonic expansion is applied. Then, the residuals can be interpolated in the positions of data 
points by LSC:

(4)

where Δgr is the residual data vector. The matrix Cs is the covariance matrix of data residuals, 
CP is the covariance matrix between predicted residuals and data residuals and Cn represents the 
noise covariance matrix. The signal is spatially correlated and Cs, as well as CP, are generated 
using Gauss-Markov third order planar model (Moritz, 1978). This model is selected as an 
example planar model with two parameters, however, signal covariance can be well approximated 
by the other planar models (El-Fiky et al., 1997; Andersen and Knudsen, 1998; Darbeheshti and 
Featherstone, 2010) or by spherical reproducing models (Vergos et al., 2005; Gilardoni et al., 
2013; Jarmołowski, 2016). Every planar model needs specific values of the parameters in order to 
fit the empirical covariance, however it is proven in Jarmołowski (2013) that LOO estimation of 
uncorrelated noise is comparably effective with different planar covariance models. Third order 
Gauss-Markov planar model reads:

(5)

where C0 denotes residual signal variance, spherical distance ψ is used as the variable and correlation 
length (CL) is also in spherical distance units. The noise is assumed to be non-correlated. Thus, 
since we consider uncorrelated noise, Cn becomes diagonal matrix (σ is homogeneous, average 
noise SD):

.                            (6)

LSC described by Eq. 4 is quite common in regular gridding of gravity anomalies. It can be 
used in a regular grid over the data area, but also in sparse points. The latter option can be used 
in cross-validation process, which can be found in the literature in different forms. One of them 
is LOO validation, which removes one point from the data set being used for the prediction in 
the position of the removed one (Kohavi, 1995). The differences between n data values and the 
predictions made in the same positions are often used as a measure of the prediction precision. 
The difference in point P used in LOO validation reads:

(7)

The SD of all n differences calculated by Eq. 7 is a measure of the quality of the estimated 
model. SD of LOO is affected by the noise present in the data set, as it comes from the comparison 
with noisy data. Therefore, if the prediction is optimal in least-squares sense, SD of LOO can 
be assessed as an empirical measure of the noise. In the proposed study LOO differences are 
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calculated for some range of parameters CL and σ and for different residuals Δgr determined by 
the subtraction of the gravity from EGM2008 model for various nmax. An additional measure of 
the noise in LSC is a posteriori error, estimated here by the formula:

.                  (8)

3. Data

The presented numerical test applies Bouguer gravity anomalies downloaded from the U.S. 
gravity database available at the website of University of Texas at El Paso (Hildenbrand et al., 
2002; Saleh et al., 2013) and Bouguer gravity anomalies calculated with various maximum 
degree/order from the EGM2008 geopotential model (Pavlis et al., 2012). Gravity anomalies 
have a significant signal variance at higher degrees of harmonic expansion in contrast to geoid, 
where predominant part of the signal is cumulated at lower degrees. The LSC, as a spatial 
technique, employs a range of signal frequencies that compose the signal. The lower limit of 
the residual data spectrum is always approximately defined by the subtracted trend surface. The 
second presumption in this paper is that the upper limit is related with the spatial resolution and, 
therefore, data sampling plays a crucial role in the experiment. It is obvious that the trend has to 
ensure the assumed distribution of the residuals, i.e. normal distribution; however, this condition 
depends on the maximum degree of the trend spectrum, which must be sufficiently high in order 
to remove all long-wavelength signal part.

The horizontal data resolution is approximately homogeneous and approximately equal 
0.1°×0.1° (Figs. 1a and 2a). The original data resolution was higher, but it was decreased for the 
purpose of the designed experiment. The selected density corresponds to the maximum harmonic 
expansion degree, nmax = 1800, and will have a specific importance in the numerical test. The 
EGM trends start from nmax = 40 and realise maximum degrees equal to 80, 180, 360, 540, 
720, 1080, 1440 and 2160, respectively. Figs. 2a to 2c show really low degrees, which can be 
insufficient to meet the fundamental LSC requirement, i.e. that the expected value of the stochastic 
field should be close to zero. Figs. 2d to 2f show more reasonable degrees of detrending, whereas 
Figs. 2g to 2i describe signal range, which is very close to all of the correlated signal available 
in terrestrial gravity data. The variable degrees/orders of the EGM2008 trends start from much 
lower degree than the threshold value of 1800 and end at the highest degree of EGM2008 (nmax = 
2160). This enables to observe how the trend removes consecutive signal frequencies from those 
included in the data and what happens when the trend degree approaches the degree resulting 
from the data resolution. This will also indicate how the decrease of the signal spectrum affects 
covariance parameters and accuracy of the LSC solution.

Fig. 1b describes the highest degree/order of EGM2008 grid generated from its coefficients, 
namely nmax = 2160, overlaid with data points. The subtraction of the model calculated with 
nmax = 2160 removes all of the correlated signal from the data set, which will be observable in the 
numerical part of the paper. Therefore, the data apparently coincide with the EGM2008 surface 
in Fig. 1b. Fig. 1b confirms the absence of individual outlying values in the data set, because all 
the large peaks of the gravity anomaly surface are modelled from a few close point values. These 
peaks denoting high-order signal frequencies remain in the residuals in case of relatively low-

2
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Fig. 1 - a) Location of selected Bouguer 
gravity data; b) data points together 
with model of maximum degree from 
EGM2008 (nmax = 2160). Data occurring 
in groups over peaks prove that no outliers 
can be suspected there.

Fig. 2 - Bouguer gravity 
anomalies calculated with 
different maximum degree/
order from EGM2008 and 
used for data detrending. 
Terrestrial gravity data 
locations used in test shown 
in panel a.
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order trend subtraction. However, they can be removed from the data with higher order EGM2008 
trends, if the harmonic degrees composing the trend include these small gravity details.

Table 1 describes statistics regarding the actual data and different degrees of the trend. The 
statistics, and first of all the means of the lowest degrees/orders, absolutely disagree with the data. 
It is obvious, therefore, that nmax = 40 and 80 cannot detrend the data to the level necessary in 
LSC for this data sample. Looking at the means of higher degrees, we can observe an apparent 
systematic difference between the data mean and means of EGM2008 solutions equal around 0.60 
mGal. This difference can result from high-order gravity details, which can be different in point 
observations in comparison to EGM2008 trends, due to different cutoff degrees of the signal. The 
local sampling of the gravity can also contribute to this difference, as well as other factors that 
can result e.g. from the EGM2008 modelling process. The investigation of the bias is skipped in 
this study, as it becomes smaller after detrending and the residuals have mean around only 0.25 
mGal, which is one order smaller than the investigated noise estimators in this study (Table 2). 
It is possible that some factors contributing to the bias are common for point data and EGM2008 
and have been removed by detrending.

Table 1 - Statistics of data and different orders of EGM2008 trend.

 Degree of       
Data (mGal)      Trend from EGM2008 (mGal)

 
 detrending

  Min. Max. Mean St.Dev. Min. Max. Mean St.Dev.

 40     -42.88 -0.14 -19.12 11.47

 80     -71.06 1.19 -37.45 21.74

 180     -77.94 1.84 -35.63 16.29

 360     -67.23 4.64 -35.40 16.15

 540 -72.01 8.49 -34.79 16.84 -68.85 4.13 -35.40 16.27

 720     -69.75 5.15 -35.39 16.39

 1080     -71.49 5.98 -35.41 16.50

 1440     -73.92 8.48 -35.42 16.58

 2160     -73.55 10.31 -35.41 16.64

4. The study of the noise with the use of different residual gravity signals

As it was introduced in sections 2 and 3, the study starts from the detrending of terrestrial 
Bouguer gravity data with the use of nine different models of Bouguer gravity anomalies generated 
from EGM2008 harmonic coefficients. The succeeding degrees of gravity trends generated from 
the EGM2008 contain increasingly more higher-order signal, which after subtraction, produces 
decreasing residuals that successively improve their match with the normal distribution. Fig. 3 
describes the results of LOO validation for two covariance parameters: correlation length (CL) 
related to the signal covariance and average uncorrelated noise SD (σ). The variance of the signal 
C0 (Eq. 5) is set to the data variance in the calculations, which limits the number of estimated 
parameters to the abovementioned two (Eqs. 4 to 6). The contours of LOO SD in Fig. 3 show 
LOO validation and MSDLOO indicates proper parameters on CL and σ axes, for optimal LSC 
prediction. Fig. 3f shows LOO for the last case of the residuals, i.e. the largest nmax for which 
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the covariance parameters can be estimated. This level of detrending is based on nmax = 720, 
which corresponds to 0.25° in horizontal resolution. The next trend is calculated for nmax = 1080, 
adequate to the resolution which approximately equals 0.166°, which is close to the resolution 
of the point data equaling 0.1°. This means that nmax = 1080 removes those signal frequencies 
that could be represented by 0.166°×0.166° grid, and the amount of the remaining signal in the 
residuals becomes very small, which significantly impedes the estimation of the parameters. Thus, 
the test with the use of LOO (Eq. 7) allows to observe six cases when the detrended signal remains 
correlated and signal covariance can be efficiently parametrised (Figs. 3a to 3f). In the remaining, 
opposite three cases for three highest maximum degrees of the EGM2008 trend, we observe no 
estimable correlation parameters of the residuals (Figs. 3g to 3i). The MSDLOO in Figs. 3g to 
3i can be found on the plot edges and it is clear that unreasonably large values of CL and σ are 
simply false. After LOO, the LSC solutions based on the best estimated CL’s and σ’s are selected 
to show a representative statistical quantities (Tables 2 and 3), except for the cases from Figs. 
3g to 3i, where the last estimable parameters shown in Fig. 3f are preserved in order to compute 
statistical quantities. All the applied parameters are indicated by the white squares in Fig. 3.

Fig. 3 - SD of LOO differences calculated for varying CL and σ and for different detrending degrees/orders. White 
square indicates MSDLOO (panels a to f) or the same MSDLOO as for panel f when no reasonable minima can be 
found (panels g to i).
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The mean of LOO differences in all cases of trends is close to zero and therefore SD can be 
equivalent dispersion parameter of these differences to RMS. In general, the empirical estimate 
of noise, i.e. MSDLOO, remains almost unchanged for the residuals analysed in Figs. 3a to 3f and 
equal to around 2.95 mGal despite slightly decreasing σ (Table 3). A small increase of MSDLOO 
is noticeable only for nmax = 720 (Table 3), which can be related with small SD of the residuals 
approaching the noise SD and related signal aliasing. MSDLOO decreases rapidly only after 
highest-degree trends removal starting from Fig. 3g (Table 3), i.e. when the spatial resolution of 
EGM2008-based trend model reaches and exceeds the data resolution. The degrees of the trend 
in the cases applied for LOO in Figs. 3e to 3f provide the residuals having SD equal to 4.25 mGal 
and 3.45 mGal, respectively (Table 2), which is getting closer and closer to MSDLOO (Table 3). 
The predicted amounts of the signals in these sets have SD’s equal to 3.26 mGal and 2.01 mGal, 
respectively (Table 2), which is close to or even below the noise approximated by MSDLOO. 
Therefore, in practice, one should select a degree of the trend that provides normal distribution 
of the residuals and preserves optimal range of the frequencies for the correct parametrisation of 
the LSC. The optimum trend avoiding non-Gaussian or aliasing signal in the analysed residuals, 
probably exists somewhere between nmax = 360 (Fig. 3d) and nmax = 540 (Fig. 3e).

Table 2 - Statistics of residuals at points, and predictions with parameters inferred from MSDLOO, and CL estimated 
by LOO.

 Degree of     Residual gravity (mGal)      Predicted gravity (mGal)  Estimated 
  detrending         CL 
  (nmax) Min. Max. Mean St.Dev. Min. Max. Mean St.Dev. (degrees)

 40 63.61 33.28 -15.61 19.93 62.60 29.67 15.60 19.76 0.12

 80 43.94 44.04 2.23 15.78 42.51 42.57 2.24 15.52 0.10

 180 27.42 30.44 0.55 8.42 25.65 26.55 0.54 7.97 0.08

 360 19.36 32.01 0.28 5.34 18.79 19.36 0.27 4.43 0.06

 540 16.43 23.50 0.27 4.25 11.98 14.52 0.26 3.26 0.06

 720 13.84 19.72 0.24 3.45 -7.27 10.87 0.21 2.01 0.04

 1080 11.20 14.64 0.26 2.62 -4.47 6.93 0.23 1.13 -

 1440 10.14 13.19 0.29 2.13 -4.13 5.54 0.24 0.85 -

 2160 -8.80 9.42 0.26 1.70 -3.76 2.92 0.20 0.67 -

The parameters C0 and CL always decrease with an increasing order of the subtracted polynomial 
trend, as the variance of the residuals decreases. This is also the case for the EGM2008 trends in 
this study. The noise parameter σ, that represents uncorrelated parts of the data, decreases slightly 
with growing trend degree, as well as CL, which can be found in Figs. 3a to 3f. Figs. 3a and 3b 
depicts LOO contours for the residuals detrended improperly, as the histograms of residuals in 
Figs. 4a and 4b are non-Gaussian at all. The residuals in Fig. 4c can be assessed as approaching 
the normal distribution, but still slightly biased. The estimated σ in Fig. 3c equals to 2.50 mGal 
(Table 3), which is close to MSDLOO (around 2.90 mGal). Figs. 4d to 4f show a relatively good 
normal distribution. The corresponding minima of the contours in Figs. 3d to 3f indicate σ values 
decreasing from 1.75 mGal to 1.25 mGal, which is twice lower than corresponding MSDLOO. 
The unexpected change of σ can be related with an influence of some signal parts from EGM2008 
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due to the following reasons: Figs. 2d to 2f, which correspond to Figs. 3d to 3f, show some 
interesting anomalies of the gravity field that are spatially small and cannot be observed in the 
previous Fig. 2c. These details are really local in relation to the data resolution. Even if these 
local anomalies extend to the area of a few data points, their correlation parameters differ from 
the average parameters that we estimate with LOO and can be hard to handle from 0.1° data 
resolution. It is known that even 3-4 points are insufficient to assess their spatial covariance by 
any method as it is statistically an inefficient sample. Therefore, these anomalies are suspected to 
contribute to σ, rather than to the signal. To summarise, in Fig. 3 we can find:

- LOO validation used in the search of CL and σ parameters for nine degrees of EGM2008 
used in the detrending;

- six cases of efficient LOO parametrisation (parameters in Tables 2 and 3), where the removed 
trend preserves some correlated signal in the residuals, and three cases when no correlation 
can be found after detrending;

- easily explainable decrease of CL with the decrease of nmax and more difficult to explain 
decrease of σ, which is suspected to be related with the single peaks in gravity anomalies in 
Fig. 1b. These peaks are part of the signal, however, can contribute to σ, as they are spatially 
small and their covariance parameters differ from the average covariance parameters for the 
area. Their influence on σ estimation decreases (Figs. 3d to 3f), because we remove them 
with the higher EGM2008 degrees (Figs. 2d to 2f).

Fig. 4 describes the histograms of residual data referred to all nine degrees of the trend 
and LOO differences based on these residuals. Figs. 4a and 4b reveal the distribution of the 
residuals significantly different from Gaussian, which indicates that trends up to degree nmax 
= 80 insufficiently detrend Bouguer gravity data in the area of size 8°×11°. Figs. 4c to 4f show 
continuously decreasing variance of the residuals. Figs. 4g to 4i represent residual data and LOO 
differences with the use of the parameters estimated for the residuals at nmax = 720, which is 
intentional due to the unsuccessful parametrisation for nmax > 720 (Figs. 3g to 3i). The residuals, 
after detrending with the last three EGM2008 trends (Figs. 4g to 4i, Table 2), have small SD, 
at the level of MSDLOO (Table 3). The predictions from these residuals with the parameters 
inferred from Fig. 3f, indicated by the white squares in Figs. 3g to 3i (CL = 0.04° and σ = 1.25 

Table 3 - Statistics of estimated errors at points, and LOO differences at points (used parameters inferred from 
MSDLOO), and σ estimated by LOO.

 Degree     A posteriori errors (mGal)      LOO differences (mGal)  Estimated 
  of Min. Max. Mean St.Dev. Min. Max. Mean St.Dev. σ 
  detrending        (MSDLOO) (mGal)

 40 2.28 5.79 3.25 0.40 -17.81 21.00 -0.01 2.95 3.00

 80 2.54 6.30 3.70 0.42 -17.47 20.94 -0.00 2.94 3.25

 180 2.02 4.72 3.00 0.31 -17.24 20.96 0.00 2.92 2.50

 360 1.51 3.50 2.32 0.23 -17.20 21.05 0.01 2.91 1.75

 540 1.42 3.25 2.28 0.21 -17.05 20.66 0.01 2.91 1.50

 720 1.39 3.01 2.31 0.19 -14.86 19.82 0.13 3.09 1.25

 1080 1.98 2.61 2.53 0.07 -12.82 16.64 0.14 2.61 -

 1440 2.03 2.13 2.13 0.01 -10.15 15.52 0.17 2.25 -

 2160 0.90 1.25 0.94 0.06 -8.51 10.68 0.16 1.85 -
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mGal, Tables 2 and 3) have SD even below MSDLOO, which may indicate that these predictions 
contribute little to LOO SD.

Fig. 5 presents the histograms of LOO differences and histograms of the predictions at points. 
LOO validation assumes a comparison between noisy data and the predicted signal, knowing 
that the noise contributes to LOO differences. A relatively small number of larger values of LOO 
differences reaching 20 mGal can be observed in the black histograms in Figs. 5a to 5d. This 
number decreases in Figs. 5e and 5f and starts to disappear from Fig. 5g becoming lost in Fig. 5i. 
These large LOO differences and their removal have a confirmation in extremum values of LOO 
in Table 3, but it is easier to discuss them using a single individual case. The extrema of LOO 
differences in Table 3 (nmax = 720) are equal respectively to min. = -14.86 mGal and max. = 19.82 
mGal. The extrema of the corresponding residual data (Table 2) are respectively min. = -13.84 
mGal and max. = 19.72 mGal, which is quite close to LOO differences. The prediction however 
(Table 2), has smaller extrema, i.e. min. = -7.27 mGal and max. = 10.87 mGal, and this indicates 
that such large LOO discrepancies must be related with the data residuals. This similarity of LOO 
differences to the residuals and dissimilarity from the prediction, repeats for higher degrees of the 
trend. The residuals can include a contribution from at least three components: signal, noise, and 
outliers. The spherical harmonic model, however, cannot remove uncorrelated noise or outliers 
from these residuals and, therefore, the larger LOO values visible in Figs. 5a to 5f, which are 
lost in Figs. 5g to 5i, must be associated with the high-frequency signal. Additionally, MSDLOO 
for the last three trends in Table 3, coinciding with SD of the last three residual data sets in 
Table 2, proves that SD of the residuals determines directly MSDLOO if the residuals contain no 

Fig. 4 - Histograms of residual data 
and LOO differences for different 
degrees/orders of trend.
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correlated signal. To summarise, Figs. 4 and 5 show:
- non-normal distribution of the residuals for lower order trends;
- aliasing of the correlated residual signal in case of detrending with nmax > 720;
- single large LOO differences (e.g. Figs. 5d to 5f) that are removable by higher-degree EGM 

trend (see Figs. 5g to 5i) and, therefore, are suspected to be based on single signal peaks 
in the data (Fig. 1b). These single peaks can affect LOO and, therefore, contribute to σ 
estimation at lower degrees of detrending.

The detrending with the high-degree (nmax > 720) EGM2008 trend rapidly decreases MSDLOO, 
whereas it remains approximately constant up to nmax = 720 (Table 3). A similar behaviour can 
be observed for the mean of a posteriori errors (Table 3), which are also noise estimators. The 
LOO validation applies differences between the prediction and residuals including correlated 
signal and uncorrelated part, called usually noise. Therefore, MSDLOO cannot be smaller than 
uncorrelated data part. Thus, a noticeable decrease of MSDLOO when nmax >720 suggests that 
the increasing trend degrees remove high-degree gravity signal that contribute to the uncorrelated 
part. This can be observable in Figs. 3g to 3i, as the colours of MSDLOO changing from light 
green to blue. However, this dependence needs some confirmation, as the parametrisation of the 
signal fails for nmax >720 and LSC prediction is uncertain there. Thus, in order to confirm the 
relation of the highest signal degrees with σ, MSDLOO and a posteriori error, an additional test 
was designed. This test investigates a subtraction of the highest signal degrees, keeping some 
lower degrees of the signal at the same time. This test is started with the removal of low-order 

Fig. 5 - Histogram of prediction 
values at data points and LOO 
differences for different degrees/
orders of trend (zoom view to 
frequency = 100). The view is 
zoomed to reveal small numbers of 
large LOO differences.
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EGM2008 gravity up to nmax = 180, in order to assure LSC unbiasedness condition related with 
the expected value of the residuals, which must tend to zero. Then, the highest frequencies are 
also removed, respectively: degrees between n = 1440 and n = 2160 (Fig. 6b), degrees between 
n = 1080 and n = 2160 (Fig. 6c), and degrees between n = 720 and n = 2160 (Fig. 6d). Fig. 6a 
repeats Fig. 3c for the comparison, as it shows the residuals after the removal of the lower-order 
gravity trend only (nmax = 180). The high-pass filtered case of residuals applied in Fig. 6b, shows, 
together with Fig. 6c, a continuous subtraction of the high-order signal. This removal decreases 
σ, but contrary to Figs. 3a to 3f, the change does not follow in the direction of decreasing CL. 
In this case, when the highest-frequency signal is removed from the residuals, the MSDLOO 
indicates increasing CL and slides in the NW direction (Figs. 6b and 6c). Fig. 6d, on the contrary, 
shows an increase of σ along σ axis. The suspected reason is a wide range of the high-order signal 
subtracted from the residuals. This range includes higher-order frequencies together with the ones 
at degrees lower than corresponding point data resolution. These subtracted lower frequencies 
produce the so-called “omission error”, i.e. loss of the frequencies that could be theoretically 
interpolated as correlated. The additional effect is a general decrease of LOO SD (Figs. 6b and 
6c), which is obvious if we know that LOO differences are dependent on the existing data noise 
and this noise is composed of the measurement errors, and also of the high-frequency signal, 
which was removable here. To conclude, the additional test in Fig. 6 reveals:

- a direct relation of the removed high-frequency signal with σ parameter, which decreases 
along with the loss of the signal highest degrees;

- a direct relation of the removed high-frequency signal with MSDLOO, which is an empirical 
estimator of the noise;

- an omission error, occurring when we remove a wide range of higher-order signal including 
lower-order correlated signal.

Fig. 6 - SD of LOO differences 
calculated for different CL and σ 
and for the same detrending degree/
order = 180, but for different high-
frequency cutoffs. White square 
indicates optimal parameters 
inferred from MSDLOO. The 
residuals, aside from detrending, 
have removed also highest part 
of gravity spectrum obtainable 
from EGM2008 (panels b to d), 
whereas panel a is repeated from 
Fig. 3c for comparison.
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5. Conclusions

It is clear from Figs. 3a to 3f that two covariance parameters, CL of the signal covariance 
and σ representing a priori noise SD decrease and get closer to axes together with the increase 
of EGM2008 trend order. A decrease of σ is also observable when removing high degrees of 
the harmonic expansion in Figs. 6a to 6c. However, in the second case CL tends to increase. All 
panels in Figs. 3 and 6 present graphically two directions of σ decrease, where the one directed 
towards the frame origin is clearly related with the subtraction of lower degrees and the other, 
directed upwards the frame of Fig. 6 and more towards CL increase is related with high degrees 
removal (nmax > 720). It is, therefore, obvious that the manipulation of the signal band, from any 
side, affects σ estimate.

The variation of MSDLOO when we detrend with nmax < 720 (Table 3) is very small. The 
parameter σ in case of the test illustrated in Fig. 3 varies from the value comparable to MSDLOO 
from the successful parametrisations (around 2.90 mGal) to the half of its value (Table 3). It must 
be noted that LOO differences are differences of the predictions with assumed σ and data having 
its own noise, and the error propagation rules for the difference can primarily explain a larger 
MSDLOO in relation to σ. The other suspected factor that decreases σ is inferred from Figs. 2d 
to 2f. The gravity trends for medium degrees of the harmonic expansion, let us say 360 < nmax 
< 720, are characterised by some small anomalies, which are very local in relation to data spatial 
distribution. In other words, it is easy to find a local peak in the gravity field, e.g. in Fig. 2e, which 
is extended over a few points of the data, which is too little to find the correlation in LSC process 
and in LOO validation. Therefore, these anomalies are suspected to contribute to σ.

LOO differences are strongly related with high-frequency signal parts, which can be observed 
in Figs. 5g to 5i, where the EGM2008 signal removed for various nmax > 720, removes large LOO 
differences. For nmax > 720 the signal is still removable and MSDLOO decreases rapidly (Figs. 
3g to 3i). The additional proof has been also presented in Figs. 6b and 6c, where the subtraction of 
selected high-degree signals (1440 < n = m < 2160 and 1080 < n = m < 2160) decreases MSDLOO 
as well. The decrease of σ, due to the removal of upper degrees higher than 720, was expected and 
is related with the signal at the frequencies higher than those corresponding to point data resolution 
(Figs. 6b and 6c). Fig. 6d illustrates the case where some more selected high frequency signal from 
the band between degrees 720 and 2160 is subtracted from the data, previously detrended with 
nmax = 180. The contours of LOO SD, as well as MSDLOO, move to the right, i.e. an increase of 
σ is observable contrary to the previous Figs. 6b and 6c. The maximum spherical harmonic degree 
of the reduced residual signal equals here 720 and corresponds to the resolution 0.25°, whereas 
average terrestrial data resolution is around 0.1°. This means that we have removed a substantial 
part of the high-order correlated signal from the residuals, namely that between the lower degree 
of the subtracted part equal to 720 and the degree corresponding to maximum data resolution. 
This way we limit upper degree of the correlated remaining residual signal to the degree 720. The 
data resolution and gravimeter precision provide originally more degrees of the signal than 720, 
and, therefore, we introduce the so-called “omission error”, detected as an additional contribution 
to noise and an increase of σ in the LSC.

The high-degree part of the signal, which does not contribute to the prediction is not really 
random, but it is perceived as random by the spatial techniques like LSC or kriging, due to the 
limited data resolution. The physical field can be homogeneously interpolated only up to the 
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frequencies equivalent to the data resolution, even if more signal is available at points from the 
measurement instrument precision. A special case occurs when the survey precision is low. Then, 
it can limit the upper frequency of the signal even at degrees lower than those corresponding to 
data resolution and we obtain the same effect as “omission error” simulated here in Fig. 6d. This 
is rare in case of terrestrial gravity data due to the high accuracy of static gravimeters, but may 
happen for other data.
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