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ABSTRACT	 The	BISQ	model	unified	the	Biot	theory	and	the	squirt-flow	mechanism.	The	squirt	
flow	is	induced	by	the	compression	of	the	pore	volume	due	to	the	wave	excitation	and	
pressure	gradients	between	stiff	pores	and	microcracks.	On	the	basis	of	 this	model,	
we	consider	the	fluid	in	microcracks	to	oscillate	perpendicular	to	the	wave	direction,	
which	is	independent	of	the	global	(Biot)	wave	oscillation.	The	BISQ	theory	is,	then,	
reformulated	in	terms	of	the	law	of	conservation	of	fluid	mass	and	the	crack	aspect	
ratio	and	density,	hereafter	called	Re-BISQ	model.	The	BISQ	model	 is	a	particular	
case	of	 the	Re-BISQ	model	 if	 the	microcrack	porosity	 to	 total	 porosity	 ratio	 is	 set	
to	one.	We	analyse	 the	 effects	of	 rock	properties,	 such	as	 the	permeability	 and	 the	
characteristic	 squirt	 length.	Comparisons	with	ultrasonic	experimental	data	 indicate	
that	the	Re-BISQ	model	provides	a	better	description	of	the	wave	properties	than	the	
original	BISQ	model.

Key words: anelastic	 wave	 propagation,	 BISQ	 model,	 Biot	 theory,	 squirt-flow,	 wave	 dissipation,	
poroelasticity.
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1. Introduction

Theoretical	studies	of	wave	propagation	 in	 reservoirs	are	developed	from	a	single-porosity	
medium	to	more	complex	pore	systems.	The	study	of	waves	in	a	single-porosity	medium	started	in	
the	1950s,	when	Gassmann	(1951)	investigated	the	effects	of	pore	fluids	on	the	elastic	properties	
without	considering	the	relative	motion	between	the	fluid	and	the	skeleton.	Biot	(1956a,	1956b,	
1962)	 established	 the	 basic	 theory	 of	 dynamic	 poroelasticity	 in	 a	 saturated	 porous	 solid.	The	
theory	laid	the	foundation	for	studying	waves	in	a	fluid/solid	two-phase	system	and	predicted	the	
existence	of	slow	P-wave,	which	was	confirmed	in	experiment	by	Plona	(1980).	However,	it	is	
widely	accepted	that	the	Biot	theory	cannot	sufficiently	explain	the	strong	attenuation	phenomena	
observed	in	real	rocks	(Mavko	and	Nur,	1975;	White,	1975;	Dvorkin	and	Nur,	1993;	Carcione,	
2014;	Ba	et al.,	2018;	Wang	et al.,	2018).	The	main	reason	is	that	the	model	assumes	that	the	pores	
are	unique	and	homogeneous	(a	single-porosity	medium)	and	fluids	only	flow	in	the	direction	of	
wave	propagation.	These	 basic	 assumptions	 are	 inconsistent	with	 the	 internal	 complexities	 of	
actual	rocks.

To	 improve	 the	 description	 of	wave	 propagation,	White	 (1975)	first	 presented	 the	 concept	
of	mesoscopic	non-uniformity	and	patchy-saturation	 (spherical	gas	patches)	 (White	model)	 to	
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explain	the	strong	wave	attenuation,	but	the	low	frequency	limit	is	inconsistent	with	Gassmann	
(1951)	theoretical	model.	Dutta	and	Ode	(1979a,	1979b),	Dutta	and	Seriff	(1979c),	and	Carcione	
(2014)	solved	this	inconsistency.	Based	on	White	model,	Berryman	and	Wang	(1995)	obtained	
the	 constitutive	 relations	 of	 a	 double-porosity	 medium.	 Subsequently,	 Berryman	 and	 Wang	
(2000)	developed	the	dynamic	equations	of	elastic	wave	propagation	in	a	double-porosity	dual-
permeability	 medium,	 and	 studied	 the	 wave	 dispersion	 and	 attenuation.	 Pride	 and	 Berryman	
(2003a,	2003b)	derived	the	equations	of	wave	propagation	in	a	double-porosity	medium	based	
on	volume	average.	Ba	et al.	(2011,	2014,	2016)	derived	the	Biot-Rayleigh	equations	for	wave	
propagation	in	double-porosity	rocks	based	on	the	Hamiltonian	principle.	Then,	Ba	et al.	(2015,	
2017)	 presented	 a	 double	 double-porosity	 model	 based	 on	 the	 Biot-Rayleigh	 equations	 and	
considered	 the	 heterogeneous	 characteristics	 of	 the	 pore-fluid	 patchy-saturation	 and	 double-
porosity	structure	of	actual	reservoirs.	The	model	can	be	used	to	describe	the	wave	propagation	
characteristics	in	partially-saturated	complex	reservoirs.	Guo	et al.	(2018)	applied	the	model	in	
analysing	wave	 velocity	 dispersion	 and	 attenuation	 in	fluid	 saturated	 tight	 sandstones.	 Sun	 et 
al.	(2016)	and	Zhang	et al.	(2017)	proposed	the	triple-porosity	model	for	wave	propagation	in	
reservoir	rocks.

On	 the	other	hand,	 the	 influence	of	 the	microscopic	 local	fluid	flow	on	wave	propagation	
has	 also	 been	 considered	 and	 investigated.	Mavko	 and	Nur	 (1975)	 considered	 a	 squirt-flow	
mechanism	based	on	pore	microscopic	geometry,	which	successfully	explained	the	high	wave	
dispersion	and	attenuation.	However,	the	theory	highly	relies	on	the	pore	geometry.	Therefore,	
this	model	is	difficult	to	apply	and	separates	the	Biot	and	squirt	flows,	which	is	inconsistent	with	
a	real	physical	process.	Dvorkin	and	Nur	(1993)	presented	a	BISQ	(Biot/squirt)	model	based	
on	the	assumption	that	the	pores	are	saturated	with	a	single	fluid.	The	BISQ	model	combines	
the	Biot	and	squirt	flows	into	same	mechanical	model,	so	that	the	high	velocity	dispersion	and	
attenuation	can	be	explained.	Subsequently,	Dvorkin	et al.	 (1994)	 further	extended	 the	BISQ	
model	to	partially	saturated	conditions	by	modifying	the	characteristic	squirt	length.	Diallo	and	
Appel	 (2000)	 and	Diallo	 et al.	 (2003)	 tried	 to	 reformulate	 the	 characteristic	 squirt	 length	 to	
improve	the	BISQ	model.	However,	the	predicted	P-wave	velocity	dispersion	and	attenuation	
move	to	the	high	frequencies	when	the	rock	permeability	decreases,	and	this	is	at	odds	with	the	
prediction	of	the	original	BISQ	model.	Cheng	et al.	(2002)	introduced	a	viscoelastic	mechanism	
into	the	BISQ	model,	and	Nie	et al.	(2008)	added	viscoelastic	into	BISQ	model	and	applied	it	to	
muddy	sandstones.	The	viscoelastic	BISQ	model	can	be	used	to	explain	the	high	dispersion	and	
attenuation	in	the	low	frequencies	band,	but	it	is	not	a	predictive	model,	only	a	phenomenological	
approach.	Gurevich	et al.	 (2010)	and	Carcione	and	Gurevich	 (2011)	presented	an	alternative	
squirt-flow	model,	in	which	the	parameters	can	be	entirely	estimated	from	the	microstructural	
properties	of	the	rock.

Tang	(2011)	stated	that	the	BISQ	model	does	not	involve	two	important	parameters:	the	crack	
density	 and	 the	 crack	 aspect	 ratio,	 and	 he	 derived	 the	wave	 equations	 by	 incorporating	 these	
parameters.	 In	 this	work,	we	generalise	 the	BISQ	model	 to	contain	explicitly	 the	 influence	of	
penny-shape	cracks	on	wave	propagation.	The	BISQ	model	is	reformulated	from	the	perspective	
of	 fluid	 mass	 conservation.	 The	 reformulated	 model	 presents	 the	 actual	 wave	 propagation	
characteristics	in	reservoir	rocks.
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2. Reformulated BISQ equations by incorporating microcrack porosity

As	shown	in	Fig.	1	 for	a	 typical	 tight	sandstone,	 the	 rock	can	be	assumed	as	made	of	 two	
components,	the	main	inter-granular	(stiff)	pores	and	the	grain	contacts	or	microcracks,	whose	
aspect	ratio	is	very	low	and	their	compressibility	is	much	higher	than	that	of	the	pores.

Dvorkin	and	Nur	(1993)	combined	the	Biot	and	squirt	flows	in	the	same	model,	considering	a	
cylindrical	geometry,	as	shown	in	Fig.	2a.	The	fluid	pressure	due	to	local	flow	outside	the	sample	
is	constant,	and	we	set	it	zero	for	convenience.	The	constant-pressure	boundary	is	equivalent	to	the	
“no-flow	boundary”	when	the	microcrack	scale	is	much	less	than	wavelength.	Since	fluid	pressure	
is	constant	at	the	boundary	(not	affected	by	the	wave	oscillations),	it	will	not	drive	local	fluid	flow.	
Dvorkin	and	Nur	(1993)	assumed	the	situation	of	rocks	with	very	small	volumes	of	gas	trapped	
at	the	tips	of	the	cracks,	which	is	in	line	with	the	natural	reservoirs.	If	a	porous	rock	at	100%	full	
saturation	is	considered,	pore	fluid	is	pushed	from	thin	cracks	into	the	surrounding	large	pores	with	
pressure	in	these	pores	changing	in	time.	Pressure	variation	in	cracks	is	much	larger	than	that	in	
large	pores.	Therefore,	attenuation	and	dispersion	can	still	be	well	estimated	by	the	model.

The	radius	of	this	cylinder	(R)	is	the	characteristic	squirt-flow	length,	which	is	of	the	order	
of	 the	average	pore	size.	Dvorkin	and	Nur	(1993)	assumed	that	 this	microscale	parameter	is	a	
fundamental	rock	property	and	does	not	relate	to	frequency	and	fluid	properties.	It	indicates	the	
relaxed	distance	of	the	fluid	when	the	squirt	flow	occurs	inside	the	rock.	When	a	seismic	wave	
propagate	in	the	rock,	pore	fluid	flows	from	the	thin	cracks	into	the	surrounding	inter-granular	
pores	or	adjacent	cracks	with	different	orientations	(Mavko	and	Nur,	1975).	Dvorkin	and	Nur	
(1993)	did	not	distinguish	the	microcracks	from	the	main	pores	when	analysing	the	squirt	flow,	
which	occurs	to	the	fluid	in	the	microcracks,	as	shown	in	Fig.	2b,	where	φ	is	the	total	porosity	and	
φc	is	the	crack	porosity.

The	Biot	(1956a,	1956b)	dynamic	equations	for	wave	propagation	in	a	two-phase	solid/fluid	
composite	are:

(1a)

(1b)

Fig.	1	-	Microcracks	and	inter-granular	pores	in	a	thin	section	
analysis	of	a	tight	sandstone.
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where	t	is	time,	κ	and	η	are	permeability	and	viscosity,	respectively;	u	and	w	are	the	skeleton	and	
fluid	displacement	vectors,	respectively;	ρs,	ρf	,	and	ρa 

 
are	the	solid,	fluid	and	coupling	densities,	

respectively;	M	 is	 the	Biot	modulus;	P	 is	 fluid	 pressure;	α	 is	 the	 poroelasticity	 coefficient	 of	
effective	stress,	where	α	=	1-Kdry	/	K0.	Kdry	is	the	bulk	modulus	of	the	drained	skeleton,	and	K0	is	
the	bulk	modulus	of	the	solid.

When	a	rock	is	squeezed,	the	pore	fluid	squirts	from	the	thin	cracks	into	the	surrounding	stiff	
pores	or	 the	adjacent	cracks	with	different	orientations.	According	to	the	conservation	of	fluid	
mass,	the	following	equation	holds:

(2)

where	D	 is	 the	volume	ratio	of	crack	porosity	to	total	porosity	as	D = φc/φ,	and	ν	 is	 the	fluid	
displacement	in	the	r-direction.	If	the	wavelength	is	much	larger	than	the	crack	length,	in	a	local	
area	around	every	single	crack	it	can	be	considered	as	the	iso-stress	state.	Only	the	principle	stress	
in	 the	perpendicular	direction	 is	considered.	For	each	crack,	 it	can	be	simplified	as	 the	model	
displayed	in	Fig.	2b.	The	crack	porosity	is	φc	=	4πζε/3	where	ζ	is	the	crack	aspect	ratio	and	ε	is	
the	crack	density	(David	and	Zimmerman,	2012).

The	porosity	differential	is	related	to	the	differentials	of	the	skeleton	deformation	and	fluid	
pressure	as	follows	(Biot,	1941;	Rice	and	Cleary,	1976):

(3)

(4)

Substituting	Eqs.	3	and	4	into	Eq.	2,	we	can	relate	pressure	to	displacements	as:

(5)

where:

Fig.	2	-	Scheme	of	BISQ	model	(a)	and	Re-BISQ	(b)	where	different	partition	of	pore	fluid	is	considered	in	the	squirt-
flow	process.
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and	c0	is	the	fluid	acoustic	velocity.

2.1. Dynamical equations
We	have	to	obtain	a	dynamical	equation	in	the	r-direction	which	complements	Eqs.	1a	and	1b	

in	the	x-direction.	The	equation	can	be	derived	from	the	Lagrange	equations	with	a	dissipation	
function	as	(Biot,	1956a,	1956b):

(6)

The	expressions	of	the	r-direction	fluid	displacement	and	the	microcrack	fluid	pressure	are:

(7a)

(7b)

where	1	 is	the	wavenumber,	ω	is	the	angular	frequency,	and	i is	the	imaginary	number.
Substituting	Eqs.	7a	and	7b	into	Eq.	6,	the	fluid	pressure	gradient	equation	in	the	r-direction	is:

(8)

where	ωc = ηφ/κρf. 

2.2. Pore-fluid pressure
We	consider	that	both	the	displacements	of	the	solid	and	the	fluid	in	the	x-direction	are	affected	

by	the	values	of	pressure	and	fluid	displacement	averaged	at	the	r-direction.	The	solid	and	fluid	
displacements	in	the x-direction	are:

(9a)

(9b)

where	C1	 and	C2	 are	 constants	 (see	 the	Appendix).	 By	 substituting	 Eqs.	 7	 to	 9	 into	 Eq.	 5,	 a	
differential	equation	describing	the	fluid	pressure	dependence	on	the	r-coordinate	is:

(10)
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We	use	a	constant	pressure	boundary	condition	at	r = R	to	solve	this	equation,	where	R	is	the	
radius	of	the	representative	cylindrical	volume	and	is	equal	to	the	characteristic	squirt-flow	length	
(Fig.	2b).	The	result	is:

where	J0  is	the	Bessel	function	of	order	zero	and:

The	average	fluid	pressure	can	be	obtained	from	the	previous	Eqs.	7	and	9	as:

	 (11)

The	partial	derivative	of	Eq.	11	gives:

(12)

where	J1	is	the	Bessel	function	of	order	one.	By	assuming	the	following	relationship:

(13)

2.3. P-wave velocity and attenuation
It	is	assumed	that	the	average	local	flow	pressure	can	be	used	as	the	actual	fluid	pressure	in	the	

dynamical	Eqs.	1b	(Dvorkin	and	Nur,	1993).	According	to	the	relationship	between	wavenumber	
and	P-wave	velocity	and	attenuation	 (Toksöz	and	Johnston,	1981),	 the	expressions	of	P-wave	
velocity	(Vp)	and	attenuation	factor	(a)	are	obtained.	The	derivation	is	given	in	the	Appendix.

(14)

where:
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The	values	of	X1,2,	Y1,2,	A,	B,	and	C	are	calculated	for	FRe=F.	The	P-wave	velocity	and	attenuation	
factor	of	the	Re-BISQ	model	are	obtained.

The	 BISQ	 model	 does	 not	 consider	 the	 two	 porosities	 (microcracks	 and	 inter-granular)	
separately	(the	microcracks	are	treated	as	 inter-granular	pores).	In	the	above	Eqs.	2	and	6,	we	
obtain	the	BISQ	model	by	setting	D	=	1.	Then	the	two	models	are	equivalent.

3. Numerical examples

The	results	of	the	Re-BISQ,	BISQ	and	Biot	models	are	compared	on	the	basis	of	the	same	rock	
properties	(Berryman,	1980).	The	porosity	is	φ=15%,	the	bulk	modulus	of	the	drained	skeleton	
is	Kdry=16×10

9	Pa,	the	Poisson’s	ratio	is	υ =0.15,	the	density	and	bulk	modulus	of	solid	phase	are 
ρs	=	2650	kg/m

3	and	K0	=	38×10
9	Pa,	respectively,	the	permeability	is	κ =1×10-15 m2,	the	pore-fluid	

density	is	ρf	=	1000	kg/m
3,	its	viscosity	is	η	=	0.001	Pad·s,	the	fluid	bulk	modulus	is	Kf=2.25×10

9	

Pa,	the	coupling	density	is	ρa	=	420	kg/m
3,	the	characteristic	length	of	the	squirt	flow	is	R=1	mm	

and	the	microcrack	aspect	ratio	and	density	are	ζ=0.02	and	ε=0.15,	respectively.

3.1. First model results
The	results	are	presented	in	Fig.	3.	At	ultrasonic	frequencies,	the	P-wave	velocity	(Fig.	3a)	

and	attenuation	(Fig.	3b)	calculated	with	the	Re-BISQ	model	are	greater	than	those	calculated	by	
the	BISQ	model.	The	peak	frequency	of	the	squirt-flow	mechanism	is	less	than	the	characteristic 
frequency	of	the	Biot	flow,	which	is	shown	in	Fig.	3b.	When	the	frequency	ω→∞,	the	fast	P-wave	
velocity	and	attenuation	values	of	the	Re-BISQ	model	are	the	same	as	those	calculated	by	the	
Biot	model.	The	values	of	the	fast	P-wave	velocity	of	the	Re-BISQ	model	are	slightly	different	
from	those	of	the	BISQ	model,	as	shown	in	Fig.	3a.	In	Fig.	3b,	the	attenuation	obtained	with	the	
Re-BISQ	model	in	the	frequency	range	of	103-105	Hz	is	higher	than	that	calculated	with	the	BISQ	
model,	whereas	 the	attenuation	of	 the	Re-BISQ	model	 is	smaller	 than	that	calculated	with	 the	
BISQ	model	at	frequencies	>105	Hz.	The	value	of	fast	P-wave	attenuation	of	the	Re-BISQ	model	
approaches	that	calculated	by	the	Biot	model	as	frequency	increases.	The	dominant	role	is	the	
macroscopic	Biot	flow	mechanism	at	high	frequencies,	and	the	microscopic	local	fluid	flow	in	the	
frequency	range	of	103-105	Hz.

Figs.	3c	and	3d	show	that	the	values	of	the	slow	P-wave	velocity	and	attenuation	calculated	
with	the	Re-BISQ	model	are	higher	than	those	of	the	BISQ	and	Biot	models	in	the	low	frequency	
range.	The	difference	 is	 small.	The	values	of	 the	Re-BISQ	and	BISQ	models	are	similar.	The	
results	of	the	three	models	are	the	same	at	the	high-frequency	limit.
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3.2. Effect of crack aspect ratio
In	order	to	investigate	the	effect	of	crack	aspect	ratio	on	wave	propagation,	the	same	set	of	

rock	properties	are	used	except	for	a	varying	crack	aspect	ratio	of	0.02,	0.04,	and	0.06.	The	results	
are	shown	in	Fig.	4.

It	is	shown	in	Fig.	4a	that	the	fast	P-wave	velocity	decreases	slightly	as	the	aspect	ratio	increases	
in	 the	 frequency	 range	 around	 the	 inflection	point.	At	 the	 low-frequency	 limit,	 the	 values	 for	
different	aspect	ratios	are	the	same.	In	Fig.	4b,	the	attenuation	decreases	with	increasing	aspect	

Fig.	3	-	Velocity	and	dissipation	factor	of	the	Biot,	BISQ,	and	Re-BISQ	models:	a)	fast	P-wave	velocity;	b)	fast	P-wave	
inverse	quality	factor;	c)	slow	P-wave	velocity;	d)	slow	P-wave	inverse	quality	factor.

Fig.	4	-	Effect	of	crack	aspect	ratio	on:	a)	fast	P-wave	velocity	and	b)	fast	P-wave	inverse	quality	factor.
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ratio,	which	gradually	approaches	the	attenuation	results	of	 the	BISQ	model.	When	the	aspect	
ratio	increases,	the	attenuation	of	the	squirt	flow	due	to	microcracks	decreases.

3.3. Effect of viscosity
The	same	rock	parameters	except	for	a	varying	viscosity	of	0.1	Pa·s,	0.01	Pa·s,	 and	0.001	Pa·s		

are	used	to	analyse	the	effect	of	viscosity	on	wave	propagation.	The	results	are	given	in	Fig.	5.

The	 fast	 P-wave	 velocity	 dispersion	 and	 attenuation	 shift	 to	 low	 frequencies	 as	 viscosity	
increases.	The	 effect	 is	 consistent	with	 the	 trend	predicted	by	 the	BISQ	model.	 It	 is	 generally	
believed	that	the	squirt-flow	mechanism	mainly	affects	wave	propagation	at	the	sonic	or	higher	
frequencies	with	a	low	fluid	viscosity	(Pride	and	Berryman,	2003a;	Pride	et al.,	2004;	Deng	et al.,	
2012).	The	physical	explanation	is	that	rocks	are	easier	to	relax	with	when	the	fluid	viscosity	is	low.

3.4. Effect of the characteristic squirt-flow length
Here	we	consider	the	characteristic	squirt-flow	lengths	of	1,	2,	and	3	mm.	The	results	are	shown	

in	Fig.	6.	The	attenuation	peaks	and	velocity	inflection	point	of	the	Re-BISQ	model	shift	towards	
the	low	frequencies	as	the	characteristic	squirt-flow	length	increases.	This	effect	is	consistent	with	
the	BISQ	model.

Fig.	5	-	Effect	of	fluid	viscosity	on:	a)	fast	P-wave	velocity	and	b)	fast	P-wave	inverse	quality	factor.

Fig.	6	-	Effect	of	characteristic	squirt-flow	length	on:	a)	fast	P-wave	velocity	and	b)	fast	P-wave	inverse	quality	factor.
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3.5. Effect of permeability on wave propagation
The	permeability	values	are	0.1,	0.5,	and	1.0	mD.	The	attenuation	peaks	and	velocity	inflection	

of	the	Re-BISQ	model	shift	towards	the	high	frequencies	as	the	permeability	increases,	which	is	
consistent	with	the	trend	predicted	by	the	BISQ	model	(Fig.	7).

Fig.	7	-	Effect	of	permeability	on:	a)	fast	P-wave	velocity	and	b)	fast	P-wave	inverse	quality	factor.

The	wave	attenuation	inverse	quality	factor	as	a	function	of	permeability	is	given	in	Fig.	8,	
where	the	rock	permeability	is	in	the	range	<300	mD	and	the	wave	frequency	is	10	kHz.

Fig.	8	-	Wave	dissipation	(1/Q)	as	a	function	of	permeability.

As	 the	 permeability	 increases,	 the	 attenuation	 sharply	 rises	 to	 a	maximum	value	 and	 then	
decreases	(Fig.	8).	The	attenuation	reaches	the	peak	at	the	permeability	of	approximately	10	mD.	
The	characteristics	are	consistent	with	the	squirt-flow	attenuation/frequency	function	(Akbar	et al.,	
1993).	At	low	permeabilities,	the	pore	fluid	is	unrelaxed	and	attenuation	is	small	(corresponding	
to	the	high-frequency	limit),	while	at	high	permeabilities,	the	pore	fluid	is	relaxed,	which	again	
results	 in	a	small	attenuation	(corresponding	to	the	low-frequency	limit).	The	Re-BISQ	model	
generally	 produces	 high	 attenuation	 than	 the	BISQ	model.	As	 the	 permeability	 increases,	 the	
attenuation	predicted	by	the	two	models	tends	to	be	the	close.	As	the	permeability	increases,	the	
fluid	in	microcracks	tends	to	be	relaxed	under	wave	excitations.	Therefore,	the	attenuation	values	
predicted	by	the	two	models	decrease	and	approach	the	Biot	dissipation.
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4. Comparisons between model results and experimental data

In	order	to	verify	the	Re-BISQ	model,	we	select	experimental	data	for	sandstones	and	tight	
sandstones.	The	predictions	of	the	Re-BISQ	and	BISQ	models	are	then	compared.

4.1. Sandstones with a nearly-constant porosity
Ten	 saturated	 sandstones	 with	 a	 nearly-constant	 porosity	 are	 selected	 from	 Klimentos	

and	McCann	 (1990),	 where	 ultrasonic	 (1	MHz)	 velocity	 and	 attenuation	were	measured	 at	 a	
confining	pressure	of	40	MPa.	The	porosity	of	each	rock	is	φ=15±2%,	the	fluid	bulk	modulus	is 
Kf=2.25×10

9	Pa,	and	the	pore	fluid	density	is	ρf=1000	kg/m
3.	It	is	shown	in	Dvorkin	et al.	(1994)	that	

when	the	permeability	is	larger	than	100	mD,	the	measured	and	the	BISQ-predicted	attenuation/
permeability	relationships	are	very	close.	It	can	be	observed	from	the	results	in	Fig.	8	that	when	
the	permeability	is	high,	the	attenuations	predicted	by	the	two	models	are	close	to	each	other.

Here,	the	permeability	of	each	selected	rock	sample	is	less	than	100	mD.	The	rock	properties	
are	shown	in	Table	1.

Table	1	-	Properties	of	the	10	sandstone	samples	from	Klimentos	and	McCann	(1990).

 Sample no. Porosity (%) Clay (%) Vp (m/s) Permeability Measured 
     (mD)  attenuation 
      coefficient 
      (dB/cm)

  1 15.46 15.00 4152 0.05 3.15

 2 13.47 14.00 4498 0.06 4.92

 3 16.65 12.00 4010 0.37 2.36

 4 16.71 8.00 4381 0.44 1.57

 5 17.13 12.00 3933 2.21 2.68

 6 13.11 7.00 4666 3.67 2.10

 7 15.13 4.00 4794 11.06 1.65

 8 16.50 15.00 4149 41.54 3.63

 9 16.11 15.00 4152 50.71 3.30

 10 15.41 5.00 4246 52.42 3.38

The	comparison	between	the	attenuation	predicted	by	the	two	models	(Re-BISQ	and	BISQ)	and	
the	experimental	data	are	shown	in	Fig.	9.	The	attenuation	predicted	by	the	Re-BISQ	model	agrees	
better	with	the	experimental	data	(Fig.	9),	particularly	for	permeabilities	higher	than	10	mD.

4.2. Tight sandstones in a given porosity range
The	tight	sandstones	samples	were	collected	from	the	Sulige	Gas	Field	in	the	Ordos	Basin,	

NW	China.	The	 data	 of	 the	 tight	 sandstones	were	 reported	 by	Wang	 (2016).	We	 selected	 ten	
water-saturated	tight	sandstone	samples	at	a	confining	pressure	of	29	MPa.	Experimental	set-up,	
conditions,	and	procedures	are	given	in	Wu	et al.	(2000)	and	Wang	et al.	(2006).	The	experimental	
temperature	is	105	°C,	and	the	frequency	is	1	MHz.	The	fluid	bulk	modulus	is	Kf=2.25×10

9	Pa	and	
the	pore	fluid	density	is	ρf=1000	kg/m

3.	The	data	are	given	in	Table	2.
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Fig.	9	-	Comparison	between	the	two	models	and	the	experimental	data	for	sandstones.

Table	2	-	Properties	of	ten	tight	sandstones	(from	Wang,	2016).

 Sample no. Porosity (%) Permeability (mD) Matrix bulk Inverse quality 
    modulus (GPa) factor 1/Q 

 1 3.81 0.0300 39 0.044366

 2 4.08 0.0424 39 0.071839

 3 4.20 0.0443 39 0.045372

 4 4.98 0.0591 39 0.075529

 5 5.20 0.0641 39 0.054113

 6 5.53 0.0724 39 0.052056

 7 5.62 0.0748 39 0.059453

 8 6.44 0.1013 39 0.058893

 9 6.81 0.1161 39 0.061350

 10 7.19 0.1336 39 0.081699

Fig.	10	-	Comparison	between	the	two	models	and	the	experimental	data	for	tight	sandstones.
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The	comparison	between	the	attenuation	predicted	by	the	two	models	and	the	experimental	
data	 are	 given	 in	 Fig.	10.	 The	 attenuation	 predicted	 by	 the	 Re-BISQ	 model	 is	 closer	 to	 the	
experimental	data,	although	both	sets	of	prediction	results	seem	to	underestimate	the	observed	
P-wave	attenuation.

5. Conclusions

Previous	studies	have	shown	that	microcracks	have	an	important	influence	on	wave	propagation.	
In	this	work,	we	consider	the	distinction	between	(penny-shaped)	microcracks	and	inter-granular	
pores	in	deriving	the	governing	equations	of	squirt	flow	affecting	wave	propagation.	The	approach	
is	based	on	the	conservation	of	fluid	mass.	The	basic	assumptions	of	the	BISQ	model	are	adopted,	
and	we	reformulate	the	wave	equations	by	incorporating	the	effect	of	crack	porosity	and	aspect	
ratio.	The	new	model	(Re-BISQ)	can	better	explain	 the	effects	of	rock	heterogeneity	on	wave	
dissipation	 and	 velocity	 dispersion.	 Comparisons	 between	 models	 and	 experimental	 data	 for	
P-wave	attenuation	show	that	 the	Re-BISQ	model	 is	capable	of	providing	a	better	description	
of	 the	 observed	 phenomena	 for	 sandstones.	 This	 reformulated	 theory	 provides	 a	 mathematic	
approach	to	compute	and	predict	wave	responses	in	heterogeneous	reservoirs,	and	therefore	it	can	
be	useful	for	reservoir	fluid	seismic	characterisation.
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Appendix: Derivation of P-wave velocity and attenuation

The	 amplitude	 of	 a	 plane	 wave	 can	 be	 expressed	 as	A(x,t)=A0e
i(1x-ωt).	Attenuation	 may	 be	

introduced	by	allowing	the	wavenumber	to	be	complex	(Toksöz	and	Johnston,	1981;	Carcione,	
2014):	1=Re(1)+i	Im(1).	The	attenuation	coefficient	(a)	and	P-wave	velocity	(Vp)	are:

(A1)

The	inverse	quality	factor	Q-1	is	related	to	the	coefficient	and	P-wave	velocity	as	Q-1	=	2aVp/ω.
The	expressions	of	solid	displacement,	fluid	displacement	and	pressure	are:

(A2a)

(A2b)

(A2c)

by	 substituting	Eqs.	A2a,	A2b,	 and	A2c	 into	Eqs.	 1a	 and	1b,	 and	 using	Pt	 =-F	 (wxt+γuxt	 /	φ)	
(Dvorkin	and	Nur,	1993),	the	following	relation	is	obtained:

(A3a)

(A3b)

where:	Y	=	(l	/	ω)2,	ρ1	=	(1-φ)	ρs,	and	ρ2	= φρf ρ.
Eqs.	A3a	and	A3b	have	nonzero	solutions	for	the	constants	C1	and	C2,	only	if	the	determinant	

is	equal	to	zero,	which	leads	to	the	following	equation	for	Y:

(A4)
This	equation	has	two	solutions:
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Therefore,	we	obtain	two	values	for	the	ratio	1/ω:

as	well	as:

The	P-wave	velocity	and	attenuation	expressions	are	then:

(A5)
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