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ABSTRACT Permeability is one of the most important reservoir properties for its crucial contribution 
to the productivity of the reservoir. This study presents a new approach to characterise 
reservoir parameters, specifically the permeability. The presented method consists 
of three major steps. Firstly, several seismic attributes such as acoustic impedance, 
geometric attributes, and instantaneous attributes are computed. In the second step, 
seismic attributes, which have good correlation with permeability logs, are selected. 
Finally, a Meta attribute, which extracts the permeability classes, is created using the 
probabilistic neural network. The results of this study indicate that the combination of 
several seismic attributes, each exploring a different feature of the seismic data, can be 
effectively used for determination of reservoir parameters, especially permeability. The 
current method is applied on the Asmai reservoir of an Iranian oil field located SW of 
Iran. A comparison of the results from this study to well-test data recorded in the field 
indicate that the generated Meta attribute can qualitatively predict the permeability 
values obtained from the well-testing.

Key words: permeability classes, acoustic impedance inversion, geometric attributes, instantaneous 
attributes, probabilistic neural network.
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1. Introduction

Permeability is one of the most important reservoir properties. The productivity of a 
hydrocarbon reservoir extremely depends on its permeability. Usually, permeability measured 
from core analysis is evaluated as the reservoir permeability in the simulation models. The core 
permeability is precise, but it is only reliable in the vicinity of the wells that the cores are extracted 
from. Despite the good coverage of seismic surveys, a seismic attribute that can directly predict 
permeability has not yet been proposed. In other words, because of the reservoir heterogeneities 
and the large variations of the permeability values, there is no single seismic attribute that 
can estimate the permeability values or classify them. The researchers have mostly predicted 
the permeability values from the seismic data indirectly. In this context, they have generated 
porosity cubes and have transferred the porosity cube into permeability cubes (Hu et al., 2007; 
Najafzadeh et al., 2012; Brito Nogueira et al., 2013; Dezfoolian et al., 2013). Other researchers 
have considered the faults and fractures as conduits for fluid flow. They, therefore, have identified 
these structural parameters and have related them to the reservoir permeability (Kozlov et al., 
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2009; Dejam and Hasanzadeh, 2011, 2018; Dejam et al., 2013, 2014; Saboorian-Jooybari et al., 
2015, 2016; Rastegarnia et al., 2016; Chopra et al., 2017; Iravani et al., 2017; Mohebian and 
Riahi, 2017; Mohebian et al., 2018).

Trappe and Hellmich (1995) has applied the neural network to estimate permeability and 
porosity values in a carbonate reservoir in a German basin. Nikravesh and Aminzadeh (2001) 
have found a nonlinear relationships between production log data and seismic data, using neural 
network techniques. Meldahl et al. (2001) has discussed how a neural network algorithm could 
be used to transform seismic attributes to seismic 3D cube in order to discover the gas chimney 
area. Russell et al. (2004) have showed how the porosity cube can be estimated from multi-
attributes data. They have used stepwise regression, neural network, and multilayer perceptron 
(MLP) method to obtain the porosity cube. Aristimun and Aldana (2006) have used the attributes 
and artificial intelligence techniques to estimate permeability from the seismic data. Moreover, 
Yarmohammadi et al. (2014) have used the flow zone index (FZI) to delineate zones of high 
porosity and permeability in a case study on the Shah Deniz sandstone using seismic data. 
Recently, Soleymani and Riahi (2012), Cranganu (2013), and Kiaei et al. (2015) have used the 
geostatistic and clustering methods to calculate a better relation between seismic and well log data 
in order to build the reservoir properties 3D models.

Other researchers have used the Meta attribute to recognize geological features. For example, 
Meldahl et al. (2001) have applied neural networks trained on combination of attributes to 
recognise features that were first identified in a seed interpretation. Aminzadeh and de Groot 
(2004) and Arabameri et al. (2018) used the Meta attribute for detecting faults, fractures, gas 
chimneys and salt bodies.

In this study, a Meta attribute was constructed, which classifies reservoir permeability using the 
probabilistic neural network. A Meta attribute is an aggregation of a number of seismic attributes 
combined with the interpreter’s insight through a neural network to detect a particular feature or 
determine a reservoir property (Meldahl et al., 2001; de Rooij and Tingdahl, 2002; Aminzadeh et 
al., 2004; Arabameri et al., 2018).

In this study, the Meta attributes, constructed from multiple input seismic volumes and the 
derived seismic attributes, are used to predict 
different classes of facies in the vicinity of the 
reservoir. A novelty of this work is that the Meta 
attributes are used as a tool for facies classification 
in the reservoir formation. Also, as an innovation 
for this study, the stepwise regression analysis has 
been used to choose the best group of attributes. 
The effectiveness of this methodology is verified 
by applying on an Iranian hydrocarbon reservoir.

The procedure for this study includes the 
following four major steps: 1) data are gathered, 
categorised, corrected, and interpreted; 2) several 
seismic attributes such as acoustic impedance, 
geometric attributes, and instantaneous attributes 
are computed; 3) the seismic attributes with 
good correlation to the permeability logs at Fig. 1 - The workflow of the Meta attribute approach.
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the well locations are selected using the stepwise regression analysis; and 4) a Meta attribute, 
which extractes the permeability classes, are created using the probabilistic neural network. The 
flowchart of the study is shown in Fig. 1.

2. The study area

The oil field where the study has accomplished is located on the edge of the Dezful embayment 
and it was discovered in 2016.

The Asmari reservoir formation is considered as the main target in this oil field. The geological 
studies performed in this area suggest three facies for the Asmari formation which corresponds to the 
tidal flat, lagoonal, and barrier/shoal. According to the geological studies, the lower part of the reservoir 
area is composed of clastic detritals and the upper part consists of carbonate rocks. Various facies are 
considered for the carbonaceous part of the Asmari reservoir and the permeability and porosity for 
this interval are supposed to have been affected by dolomitization processes. The lower part of the 
Asmari formation, which is clastic detritals, is divided into two main lithofacies, the quartzwack and 
coarse grain sandstone. The 3D seismic data in this oil field covers a total area of approximately 343 
km2. The vertical resolution of the seismic data in the studied reservoir is nearly 18 m.

3. Methodology

The workflow of this study was consists of three major steps.

3.1. Creation of a set of seismic attribute volumes
At this step, information related to structure, stratigraphic and fluid content of the reservoir is 

extracted from the seismic data. We briefly discuss the physical basis, geological significance, and 
methods of calculation for these seismic attributes.

3.1.1. Acoustic impedance attribute
Acoustic impedance is the main results of inverting for the post-stack seismic amplitudes; this 

attribute could determine physical properties of the reservoir. We invert the seismic data to obtain 
the acoustic impedance using a model-based inversion algorithm. This method requires an initial 
model and a wavelet which is estimated from the seismic data in the interval of interest. To reach 
a data misfit that falls below a user-defined value, the model is recursively updated. When the 
desired misfit is reached, the current update of the model is accepted as the objective P-impedance 
volume. Acoustic impedance is defined as the product of compressional velocity, υp, and bulk 
density, ρp. Both υp and ρp are sensitive to lithology and porosity variations. By including the 
acoustic impedance in the Meta attribute, the permeability variations related to either lithology or 
porosity variations are captured.

3.1.2. Azimuth attributes
Azimuth, φ, also called dip azimuth, is estimated either with regard to the north or the inline 

of seismic overview pivot. Azimuth is orthogonal to the geologic strike and is estimated towards 
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most extreme descending dip (Hartmann et al., 2012).
According to Taner et al. (1979), to calculate dip and azimuth, the instantaneous phase for 

adjacent traces (e.g. three traces) are computed. The dip of the central trace is estimated by laterally 
fitting a parabolic curve to the phase values, and adjusting it by the trace interval value. In 3D 
data sets, phase dips in inline and crossline directions are computed, from which the maximum 
dip direction and its azimuth are obtained. We perform this procedure with different spatial and 
temporal analysis windows such as 3×3×3, 3×3×8, 5×5×16, etc., where the first number is inline 
step out, the second number is crossline step out, and the last number is time sample step out. The 
result of this algorithm is very noisy if no filtering is applied. Therefore, the different median filter 
is utilised to reduce the noise of the dip and azimuth cubes.

According to Chopra and Marfurt (2007), determination of reflector end and unpretentious 
changes in plunge and azimuth enable geophysicists to induce reasonable progradational and 
transgressive bundles, and additionally more clamorous droops, fans, infill of Karsted landscapes 
and obviously, blame and precise unconformities.

3.2. Thin bed indicator attribute
Large variations of instantaneous frequency that can indicate the thin beds, are contained in 

time derivative of the phase function. Therefore, the thin bed indicator can be calculated as the 
difference between the instantaneous and the averaged frequencies in time. The thin bed indicator 
shows the interference zones. It is considered as a physical attribute because it is related to closely 
spaced events. It can be used in detailed studies of overlapped thin beds, when they are laterally 
continuous, and overlapped nonreflecting zone when it appears laterally discontinuous.

3.2.1. Absorption quality factor attribute
Seismic waves travelling through the Earth will encounter retention which means weakening 

and scattering in view of the versatility and heterogeneity of the medium (Li et al., 2015). Absorption 
quality factor (AQF), which is a function of both instantaneous frequency and instantaneous 
bandwidth, can be considered as an indicator of seismic wave absorption. Mathematically, AQF is 
defined as the area beyond the dominant frequency weighted by frequency. From the petrophysical 
point of view, when the rock is filled with fluid, with regard to fluid type, AQF can be different. 
Consequently, AQF is sensitive to the type of fluids in the reservoir due to their different quality 
factor.

3.2.2. Other instantaneous, frequency, etc. attributes
Instantaneous phase, Amplitude envelope, apparent polarity, and instantaneous frequency 

are numbers of attributes that are extracted from seismic data. Each of these attributes has a 
geological significance and can be considered as a reservoir parameter indicator. More details 
on seismic attributes can be found in Hartmann et al. (2012), Flannery (2018) and Smith (2017).

The seismic attributes used in current study are listed in Table 1.

3.2.3. Selection of appropriate seismic attributes
According to Chinwuko et al. (2017), seismic attributes are extracted from the seismic data 

by different methods, like direct calculation or by experience or logical reasons. Some are more 
delicate than others to particular repositories conditions; some are better at uncovering subsurface 
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abnormalities that are not effectively perceivable. Some others have been utilised as immediate 
hydrocarbon markers (Iturrarán-Viveros, 2012). When more seismic attributes are accessible, 
there is more perplexity choosing the proper ones.

Table 1 - List of all seismic attribute which used in the study.

 Att No. Target Used attribute

 1 Permeability Inverse of Acoustic Impedance

 2 Permeability Instantaneous Frequency

 3 Permeability Instantaneous Amplitude

 4 Permeability Amplitude Envelope

 5 Permeability Inverse of Thin Bed Indicator

 6 Permeability Average Frequency

 7 Permeability Log (AQF)

 8 Permeability Amplitude Envelope

 9 Permeability Azimuth a

 10 Permeability Dip a

 11 Permeability Instantaneous Phase

 12 Permeability Integrated Absolute Amplitude

 13 Permeability Apparent Polarity

 14 Permeability Filter 45/50-55/60

 15 Permeability Dominant Frequency

 16 Permeability Amplitude Weighted Frequency

 17 Permeability Amplitude Weighted Phase

 18 Permeability Second Derivative Instantaneous Amplitude

Fig. 2 - The correlation between the first attribute (inversion result) and the target log (permeability).
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Stepwise regression analysis is a simple and practical method to find the list of best seismic 
attributes, which are related to reservoir properties. This algorithm searches on attribute space and 
finds the attribute which has more correlation with the reservoir property than other attributes. 
This correlation for first attribute (acoustic impedance) is shown in Fig. 2. The cross plot has used 

Fig. 3 - The correlation between Amplitude Envelope and target log (permeability).

Fig. 4 - The correlation between Integrated Absolute Amplitude and the target log (permeability).
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all points within the analysis windows from all wells. The vertical axis is the target permeability 
log value, and the horizontal axis is the selected attribute, i.e. the acoustic impedance. A regression 
curve is fit on the points, and the normalised correlation value of 0.39 has been printed at the top 
of the display. The normalised correlation is a measure of how useful this attribute is in predicting 
the target log. The correlation for two other attributes is shown in Figs. 3 and 4.

Then, the algorithm finds the best pair of attributes from all combinations of the first attribute 
and any other attribute in the list. At each step, training and validation errors are calculated. This 
procedure continues until the validation error starts to increase.

Data in Table 2 shows both the selected attributes and the training and validation errors. Only 
the first seven attributes were chosen because the validation error starts to increase if further 
attributes are added to the list. More details on step-wise regression can be found in Hampson et 
al. (2001) and Russell (2004).

Fig. 5 - The trend of Training and 
Validation error, after the stopping point 
the validation error start to increase.

Table 2 - Multi attribute list for classifying permeability.

 Att. No. Target Final Attribute Training Error Validation Error

 1 Permeability Inverse of Acoustic 0.310056 0.360335 
   Impedance  

 2 Permeability Amplitude Envelope 0.256983 0.321229

 3 Permeability Inverse of Thin Bed 0.240223 0.321109 
   Indicator 

 4 Permeability Log (AQF) 0.198324 0.290503

 5 Permeability Azimutha 0.159218 0.287709

 6 Permeability Dipa 0.148045 0.268156

 7 Permeability Apparent Polarity 0.131285 0.268156

 8 Permeability Amplitude Weighted 0.134078 0.374302 
   Frequency   (increase=stopping point)

a created with 3×3×3 analysis windows and then filtered by 0×0×3 median filter.
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3.3. Creation of Meta attribute using probabilistic neural network
3.3.1. Neural networks

The neural network can be described as scientific tools that can be prepared to solve an issue 
that typically require human intercession. Despite the fact that there is a wide range of neural 
systems, there are two manners by which they are sorted: by the kind of issue that they can tackle, 
and by their learning method. Neural system applications in geosciences information examination, 
for the most part, can be categorised as one of the two classifications: the segregation class, 
or the expectation value. In the segregation class issue, an information test is appointed to one 
of few field classes (for example, shale, sand, limestone) while in the esteem forecast issue, a 
particular esteem is relegated to the field test (for example, a porosity esteem). Evidently, these 
two methodologies meet as the number of classes approaches the number of yield tests (Russell 
et al., 2003).

Neural systems can likely be characterised by the manner in which they are prepared, 
utilising unsupervised learning. The neural system begins with a preparation data set for which 
both the information and yield esteems are known. The neural system calculation, then, takes 
in the connection between the input and output from this preparation data set, lastly applies the 
“educated” relationship to a bigger data set for which we do not have the unclear idea about 
the data output. Cases of the supervised learning approach are the Probabilistic Neural Network 
(PNN), Multi-Layer Perceptron (MLP), the Radial Basis Function (RBF), and the Generalized 
Regression Neural Network (GRNN).

In the unsupervised approach, the neural system is given a progression of the sources 
of information to search for designs itself. That is, the particular yields are not required. The 
benefit of this approach is that we do not have to know the appropriate response beforehand. The 
drawback is that it is usually hard to translate the yield (Russell et al., 2003). A case of this type 
of unsupervised systems is the Kohonen Supervised Organizing Map (KSOM) (Kohonen, 2000).

In this study, the main types of the neural networks with reference to the works of Nadaraya 
(1964), Watson (1964), Powell (1987), Poggio and Girosi (1990), Specht (1990), Zeidenberg 
(1990), Bishop (1995), and Russell et al. (2003) are presented. Preparing data set will comprise of 
an arrangement of N known preparing values ti. Each preparation test, which is a scalar amount, is 
thus subject to a vector of L yield esteems, associated in time with the preparation esteems. These 
vectors of yields (e.g. seismic qualities) can be composed as = (si1, si2, …, siL) T, i = 1, 2, …, N. 
The target of neural system is to discover some capacity y to such an extent that: y(si) = ti, i = 1, 2, 
…, N. When this capacity has been discovered, it can be connected to a self-assertive arrangement 
of M input information, (for example, seismic characteristic vectors xk, k = 1, 2, …, M, where the 
properties in the xk vectors are indistinguishable to those in the si vectors; Fig. 6).

3.3.2. Probabilistic neural network (PNN)
The PNN calculation depends on the idea of “interval” in property space. To more readily 

comprehend this idea, look at Fig. 7, in which the three discretionary two-dimensional seismic 
property vectors that appeared in Fig. 6 are drawn. Note that “interval” on these diagrams is 
quality plentifulness as opposed to Cartesian separation. Note that two of these vectors are from 
the preparation data set (si and sj) and one is from the application data set (xk). As showed in Fig. 
7, three conceivable separations between these vectors can be characterised as:
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Fig. 6 - A schematic illustration of the differences between the training vectors si and sj, in which the output values ti 
and tj are known and are used in the training process, and the application vector xk, in which the output sample yk is not 
known (Russell et al., 2003).

Fig. 7 - A schematic graph of the vectors si, sj, 
and xk from Fig. 5, where the coordinate axes 
represent the attribute amplitude rather than the 
Cartesian distance (Russell et al., 2003).

(1)

(2)

(3)

Here, the facilitate tomahawks explain trait sufficiency rather than Cartesian separation 
(Russell et al., 2003). In the above conditions, there are two on very basic level diverse sorts of 
quality separation. The dij interval is the between preparing separation, from which the preparation 
coefficients will be obtained, and the dik and djk separations are the application separations, to 
which the forecast will be connected.
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The separations themselves will not be utilised as a part of neural system applications, yet 
some capacity of the separations, φ(d), called a premise work will be existed. In spite of the fact 
that there have been various structures proposed for the premise work (Bishop, 1995), the most 
widely recognised shape, and the one we will use in this investigation, is the Gaussian capacity, 
which can be composed as:

(4)

where σ is a smoothness parameter. Notice that σ can likewise be deciphered as the difference 
of a Gaussian conveyance fixated on d. Similarly, as we reduce σ, the width of the appropriation 
progresses toward becoming smaller.

The PNN is then characterised for each of the xk focuses as the entirety of the conceivable 
φ(dkj) capacities, or

.              (5)

In the event that each of the focuses are utilised as a part of the preparation data set, PNN will 
bring about a solitary number, which will later be utilised as a normalising factor in the summed 
up relapse neural system (GRNN) strategy yet does not give us an extremely valuable separation 
method. Be that as it may, on the off chance that we break the preparation focuses into various 
classes, PNN turns into a grouping strategy which can be appeared to be an execution of Bayes’ 
Theorem (Masters, 1995).

Consider the least difficult instance of two classes. On the off chance that we have class C1 
with N1 points, and class C2 with N2 points, where N1 + N2 = N, at that point we can characterise:

(6)

(7)

The pj esteems can be translated as the likelihood of participation in a class. That is if 
p1(xk)>p2(xk), at that point xk is an individual from class C1, or, if p1(xk)<p2(xk), at that point xk is an 
individual from class C2. This can be summed up to any number of classes.

In classification problems, for effective classification, the range of each class must be 
thoroughly representative of the actual population. The reservoir parameters will resolve 
more precision if a larger number of classes is given. However, there is one consideration: as 
the numbers of classes increase, the numbers of values which belong to each class decrease. 
Consequently, a classifier such as PNN cannot be trained as good as when there are enough 
data in each class. With above consideration in mind, we determined the numbers and range of 
classes as shown in Table 3.

In training step, three wells were used. To optimise the smoothing parameters, the conjugate 
gradient method was implemented. Data in Table 4 shows the application and cross-validation 
errors of the training step. After training the PNN, the network was propagated to the studied area, 
and Meta attribute was created. This Meta attribute exhibits the classes of permeability.
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4. Results and discussion

Permeability is a dynamic reservoir property. Therefore, a geophysicist should validate his/
her model for prediction or classification of permeability with a dynamic criterion such as well 
production or well testing. In this study, well testing results were available for one well. The results 
of well testing are shown for 68 m interval and 204,338.6 m3 and the corresponding permeability 
was obtained to be equal to 85.2 md.

To demonstrate the Meta attribute performance, the result of this method is compared to real 
data at the well location. For this purpose, the proper data set was selected, which includes well 
data matrix (permeability values) and related seismic attributes. The result of the comparison 

Table 3 - Permeability classes and their range.

 Class No. Permeability Range (md)

 1 0.1 - 100

 2 100 - 200

 3 200 - 300

 4 300 - 8000

Table 4 - Application and validation errors in the training step.

 Reservoir property Fractional classification error Fractional classification error 
  (Application step) (Validation step)

 Permeability 0.17 0.25

Fig. 8 - Graphical comparison between measured and predicted permeability for tested samples using the Meta attribute 
approach.
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between predicted and real values of permeability is shown in Fig. 8. According to the outcomes, 
which are shown in Figs. 7 and 8, the error in test data for the mentioned workflow is 0.18973, 
and the related correlation coefficient value is 0.94466.

In the studied area, the Asmari formation is consisted of five zones with approximately constant 
thickness (Sahraeyan et al., 2013; Zabihi et al., 2013; Yazdani, 2014). The interval where well test 
is accompolished comprises the zones 1 and 2. Therefore, the Asmari horizon was shifted to top 
and bottom of the well tested interval. The average of Meta attribute then was calculated between 
these two new horizons.

Data in Fig. 10 shows the average of Meta attribute of the well tested interval. In Fig. 11, 
the drainage area of the well is shown by a blue rectangle. As Fig. 11 shows, except for the area 
between NW and SE of well drainage area, which has a permeability greater than 100 md, other 
parts of the drainage area belongs to class 1. In other words, areas having a permeability less 
than, or equal to, 100 md are dominant. Consequently, if the well testing results indicate that 
the average permeability is equal to 85.2 in the well drainage area, then the Meta attribute also 
indicates that the dominant part of the drainage area belongs to class 1.

There are some advantages and limitations with regards to using the Meta attribute approach 
for reservoir permeability classification. The main advantage of using the Meta attribute for 
creating outputs (permeability classes) is the ability to combine different seismic attributes to 
benefit from their respective prediction power. This allows the interaction of the interpreter with 

Fig. 9 - Correlation coefficient between measured and predicted permeability for tested samples using the Meta attribute 
approach.
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the neural network during its training process. Consequently, the interpreter’s experience will 
supplement the power of various attributes and facilitate higher training of the neural network. As 
far as the drawbacks are concerned, the results are affected by the selected method which is used 
to combine different attributes, these methods include: regression analysis, principle component 
analysis, clustering or neural network algorithms. According to the field conditions and the target 
of the study a suitable method is chosen. Another issue that affects the outcomes is the list of 
attributes that are chosen by the stepwise regression technique. These attributes could be changed 
from one circumstances to another.

Fig. 10 - Meta attribute averaged on 
the well tested interval corresponding 
to Zone1 and Zone2 of the Asmari 
formation. The permeability values 
estimated by the Meta attribute are 
averaged between these two horizons. 
The blue circle indicates the well 
position for which the well test data 
were available.

Fig. 11 - Meta attribute averaged on 
the well tested interval corresponding 
to Zone1 and Zone2 of the Asmari 
formation. The permeability values 
estimated by the Meta attribute are 
averaged between these two horizons. 
The blue rectangle indicates the well 
drainage area.
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5. Conclusions

Due to high expenditures for drilling operations, any endeavour, which decreases the risk of 
drilling in non-producible zones, is valuable. To achieve this goal, we have integrated the 3D 
seismic attributes and the permeability logs. With regards to the geology of the studied reservoir 
and the range of permeability variation, the probabilistic neural network was applied to generate 
Meta attribute which estimate and classify the reservoir permeability. The results of this study 
indicates that the combination of several seismic attributes each exploiting a different feature of 
the seismic data, can be effectively used for determination of the reservoir parameters, such as the 
permeability. Comparing the permeability classification results from the Meta attribute with the 
well testing results, it could be inferred that the generated Meta attribute can qualitatively predict 
the well testing permeability. For a case of an Iranian petroleum reservoir, the well test data suggest 
the average permeability of the drainage area to be less than 100; this is in accordance with the 
results from the Meta attribute classification which indicates that the dominant part of the drainage 
area belongs to class 1. Whereas the reliability of the well test data is limited to the vicinity of the 
tested well, the permeability estimation by Meta attribute analysis has the advantage of predicting 
the permeability trend across the reservoir extent. According to the estimated permeability cube 
by the Meta attribute, the permeability and reservoir quality is increasing towards SW of the 
tested well.
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