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ABSTRACT	 Machine	Learning	algorithms	can	support	the	work	of	lithofacies	classification	using	
well	 logs.	A	 wide	 range	 of	 automatic	 classifiers	 is	 available	 for	 that	 purpose.	 In	
order	 to	 investigate	about	 the	accuracy	and	 the	effectiveness	of	different	methods,	
I	compare	six	supervised	learning	algorithms.	Using	multiple	data	sets	of	composite	
logs,	I	discuss	the	entire	workflow	applied	to	two	wells.	The	workflow	includes	the	
following	 main	 steps:	 1)	 statistical	 data	 analysis;	 2)	 training	 of	 six	 classification	
algorithms;	 3)	 quantitative	 evaluation	 of	 the	 performance	 of	 each	 individual	
algorithm;	 4)	 simultaneous	 lithofacies	 classification	 using	 all	 the	 six	 algorithms;	
5)	 results	 comparison	 and	 reporting.	 Using	 cross-validation	 tests	 and	 confusion	
matrices,	I	perform	a	preliminary	ranking	of	the	six	classifiers.	Although	the	different	
algorithms	show	different	performances,	all	the	methods	produce	mutually	consistent	
classification	 results.	 Consequently,	 I	 set	 a	 comprehensive	workflow	 that	 includes	
all	 the	 classifiers	working	 in	 parallel	 in	 the	 same	Machine	Learning	 framework.	 I	
show	through	tests	on	real	data	that	this	“systemic	approach”	allows	efficient	training	
of	 many	 algorithms,	 easy	 comparison	 of	 the	 results,	 and	 robust	 classification	 of	
multiple	well	data.	This	methodology	 is	particularly	useful	when	quick	 lithofacies	
classification/prediction	is	required	for	making	real-time	decisions,	such	as	in	case	of	
well-site	geological	operations.
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1. Introduction

Machine	Learning	(ML)	is	the	subfield	of	Artificial	Intelligence	(AI)	that	gives	computers	the	
ability	to	learn	without	being	explicitly	programmed	(Samuel,	1959).	Statistical	(or	mathematical)	
techniques	are	applied	for	retrieving	a	model	from	observed	data,	rather	than	codifying	a	specific	
set	of	instructions	that	define	the	model	for	that	data	(Bishop,	2006).	Over	the	past	two	decades,	a	
multitude	of	AI	and	ML	methods	have	been	applied	in	many	sectors,	such	as	medical,	social	and	
financial	disciplines	[for	an	extended	discussion	about	theory	and	applications	of	AI	techniques,	
see	Russell	and	Norvig	(2009)].

The	number	of	applications	of	ML	has	been	growing	over	the	past	10-15	years	in	geosciences	
too,	including	geophysics	(Aminzadeh	and	de	Groot,	2006;	Lary	et al.,	2016).	Common	examples	
of applications are seismic facies recognition (Zhao et al.,	2015;	Hall,	2016;	Zhang	and	Zhan,	
2017)	and	automatic	interpretation	of	seismic	data	(Barnes	and	Laughlin,	2002).
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ML	has	been	recently	used	for	supporting	the	“manual”	interpretation	of	well	logs	for	lithofacies	
classification.	In	supervised	learning	methods,	one	or	more	automatic	classifiers	are	trained	on	a	
labelled	subset	of	data	logs;	then,	the	learnt	classification	rules	are	applied	to	the	entire	unlabelled	
data	set.	This	approach	allows	speeding	up	significantly	 the	entire	 interpretation	workflow.	Of	
course,	similar	to	other	fields	of	applications,	also	in	log	interpretation,	ML	should	be	intended	as	
a computation tool augmenting human skills rather than replacing them.

Considering	 the	wide	 range	of	ML	methods,	 it	 is	difficult	 to	 select	 in	advance	 the	optimal	
algorithm	for	solving	any	specific	classification	problem.	For	 instance,	Bestagini	et al.	 (2017)	
used	gradient	boosting	classifier	that	demonstrated	to	be	effective	for	working	also	with	relatively	
small training data sets and with few features.

Less	recently,	Bohling	and	Dubois	(2003)	applied	neural	network	and	Markov	chain	techniques	
to prediction of lithofacies from well logs.

The	 choice	 to	 apply	 one	ML	 approach	 or	 another	 depends	 on	 many	 factors,	 such	 as	 the	
quality	and	the	size	of	the	data,	the	number	of	labelled	samples	forming	the	training	data	set,	the	
uncertainties	on	the	data,	the	availability	of	prior	information,	and	so	forth.	More	simply,	the	ML	
workflow	often	depends	on	the	availability	of	specific	libraries	and/or	on	the	personal	experience/
preference	 in	using	 some	 type	of	algorithm.	 In	 this	paper,	 I	discuss	 the	problem	of	automatic	
classification	of	lithofacies	from	composite	well	logs	comparing	a	number	(necessarily	limited)	
of	 different	 supervised	ML	methods.	My	 objective	 is	 to	 provide	 a	 possible	 tutorial	workflow	
through	a	comparative	approach,	highlighting	benefits	and	limitations	of	the	different	methods	
here	 considered.	Furthermore,	 I	will	 describe,	 shortly,	 the	possible	 practical	 implications	of	 a	
comprehensive	ML	framework	in	the	field	of	operation	geology.

2. Test data

I	 used	 the	 data	 of	 two	wells	 labelled	 in	 the	 following	 as	Well	A	 and	Well	 B	 drilled	 in	 a	
complex	geological	setting.	This	 is	characterised	by	narrow	and	elongated	fault	compartments	
with	 thin	 stacked	 reservoir	 sandstones.	The	hydrocarbon	field	has	been	explored	by	extensive	
multidisciplinary	 geophysical	 surveys	 and	 by	 several	 wells	 penetrating	 hydrocarbon-bearing	
sands	of	Triassic	ages.

For	each	well,	 I	used	almost	21,000	 instances,	 including	 the	 following	 types	of	 log:	sonic,	
Rdep	 (resistivity),	 DEN	 (density),	 NEU	 (neutron	 logs),	 PEF	 (photoelectric	 absorption),	 GR	
(gamma	ray)	and	SP	(spontaneous	potentials).

As	an	example,	Fig.	1	shows	the	resistivity	log	of	Well	A,	where	the	oil	and	gas	bearing	layers	
clearly	appear	with	high	resistivity	values.	Fig.	2	shows	some	examples	of	normalized	cross	plots	
of	the	other	six	logs	of	Well	A.

The	lithofacies	taxonomy	includes	six	main	classes,	as	showed	in	Table	1,	with	the	respective	
colours	 used	 in	 the	 following	 images.	The	 first	 three	 facies	 correspond	 to	 “Prevalent	 Shale”,	
“Interbedded	 Sandstones/Shale”	 and	 “Interbedded	 Sandstones/Siltstone”.	The	 remaining	 three	
facies	correspond	to	Sandstones	partially	filled	by	hydrocarbon	with	variable	saturation.

The	 main	 challenge	 of	 this	 automatic	 classification	 test	 is	 that	 the	 above	 lithofacies	 are	
partially	overlapped	 in	 the	 feature	 space.	Consequently,	distinguishing	one	class	 from	another	
can	be	difficult	for	both	a	human	interpreter	and	an	automatic	classifier.	This	appears	clearly	in	
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Fig.	3	showing,	as	examples,	the	statistical	distribution	(probability	density	distribution	curves)	
of	sonic	and	spontaneous	potentials	(SP)	log	measurements	included	in	the	labelled	data	set.	Also	
the	distributions	of	the	other	logs	(here	not	displayed)	show	similar	overlap	between	the	classes.	
Consequently,	each	individual	type	of	measurement	alone	is	not	sufficient	 to	classify	the	data.	
Instead,	appropriate	classification	is	possible	combining	all	the	logs.

Table	1	-	Lithofacies	classes	and	colour	legend.

Fig.	1	-	Resistivity	log	of	Well	A.	The	depth	is	a	“relative	depth”	with	respect	to	the	first	sample.

Fig.	2	-	Normalised	cross-plots	of	composite	logs	of	Well	A.
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3. Learning algorithms

As	 anticipated	 in	 the	 previous	 section,	 all	 the	 composite	 log	 instances	 were	 collected	 in	
the	 same	multi-feature	matrix	 that	was	used	as	 input	 for	 the	automatic	classification.	For	 that	
purpose,	I	applied	six	supervised	learners	including	CN2	Rule	Induction,	Naïve	Bayes,	Support	
Vector	Machine,	Decision	Tree,	Random	Forest,	and	Adaptive	Boosting.	I	used	a	suite	of	open	
source	Python	libraries	that	I	modified	and	adapted	for	the	specific	purposes	of	my	workflow.	The	
following	is	just	a	brief	and	qualitative	description	of	the	algorithms	that	I	used.	For	additional	
details	about	all	these	algorithms	and	their	translation	into	Python	codes,	see	for	instance	Raschka	
and	Mirjalili	(2017).

The	 CN2	Rule	 Induction	 algorithm	 is	 a	 classification	 technique	 designed	 for	 the	 efficient	
induction	of	 simple,	 comprehensible	 rules	of	 form	“if	 condition,	 then	predict	 class”.	 It	works	
properly	even	in	presence	of	significant	noise.

The	 Naïve	 Bayes	 classifier	 is	 based	 on	 a	 Bayesian	 approach.	 A	 probabilistic	 classifier	
estimates	conditional	probabilities	of	 the	dependent	variable	from	training	data	and	uses	 them	
for	classification	of	new	data	instances.	An	important	benefit	of	this	algorithm	is	that	it	is	fast	for	
discrete	features;	however,	it	is	less	efficient	for	continuous	features.

Support	vector	machine	(SVM)	is	a	learning	technique	that	splits	the	attribute	space	with	a	
hyper-plane,	 trying	to	maximize	 the	margin	between	the	 instances	of	different	classes	or	class	
values.

The	Decision	Tree	algorithm	splits	 the	data	 into	nodes	by	class	purity.	 In	other	words,	 this	
technique	separates	the	data	into	two	or	more	homogeneous	sets	(or	sub-populations)	based	on	the	
most	significant	features	in	input	variables.	It	is	a	precursor	to	Random	Forest.

Random	Forest	is	an	“ensemble	learning”	method	that	uses	a	set	of	Decision	Trees.	Each	Tree	
is	developed	from	a	sample	extracted	from	the	training	data.	When	developing	individual	Trees,	
an	arbitrary	subset	of	attributes	is	drawn	(hence	the	term	“Random”).	The	best	attribute	for	the	
split	is	selected	from	that	arbitrary	subset.	The	final	model	is	based	on	the	“majority	vote”	from	
individually	developed	Trees	in	the	Forest.

Like	Random	Forest,	Adaptive	Boosting	is	made	up	of	multiple	classifiers	and	whose	output	
is	the	combined	result	of	output	of	those	algorithms.	Its	objective	is	to	create	a	strong	classifier	as	
linear	combination	of	“weak”	classifiers.

Fig.	3	-	Probability	density	distribution	of	Well	A:	a)	normalized	values	of	sonic	logs;	b)	normalized	values	of	SP	logs.

a b
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4. Workflow

The	following	are	the	main	steps	of	the	classification	workflow.
1)	Feature	engineering	represented	the	first	step	through	which	I	evaluated	the	relevance	and	

the	 sensitivity	 of	 each	 individual	 attribute	 (type	 of	well	 log).	Table	 2	 shows	 a	 ranking	of	 the	
different	data	logs	used	for	the	lithofacies	classification	of	Well	A.

Table	2	-	Features’	ranking	using	different	types	of	index	(for	Well	A).

The	following	is	a	synthetic	explanation	of	the	indexes	used	in	Table	2.
Information	Gain	tells	us	how	important	a	given	attribute	of	the	feature-vectors	is.	For	instance,	

it	is	fundamental	for	deciding	the	ranking	of	attributes	in	the	nodes	of	a	Decision	Tree.	It	is	based	
on	the	decrease	in	“information	entropy”	after	a	data	set	is	split	on	an	attribute.

Gain	Ratio	is	a	ratio	of	the	Information	Gain	and	the	attribute’s	intrinsic	information.	It	reduces	
a	bias	 towards	multi-valued	attributes	by	taking	the	number	and	size	of	branches	into	account	
when	choosing	an	attribute.

Gini	index	is	a	measure	of	statistical	dispersion.	It	is	the	inequality	among	values	of	a	frequency	
distribution.

ANOVA	index	is	the	difference	between	average	values	of	the	feature	in	different	classes.
Chi2	represents	the	dependence	between	the	feature	and	the	class	as	measure	by	the	chi-square	

statistic.
RelieF	is	the	ability	of	an	attribute	to	distinguish	between	classes	on	similar	data	instances.
FCBF	(Fast	Correlation	Based	Filter)	is	the	“entropy-based	measure”,	which	also	identifies	

redundancy	due	to	pairwise	correlations	between	features.
2)	 The	second	step	of	the	workflow	consisted	in	setting	the	labelled	data	set	for	the	training	

phase.	I	used	the	available	CPI	information	and	all	the	available	geological	information	in	
the	studied	area	for	training	the	learner	algorithms	for	classifying	the	data	of	Well	A.	The	
training	data	set	consists	of	about	8%	of	the	total	well	logs,	for	1440	instances	in	total.	It	is	
properly	balanced	in	terms	of	class	distribution.

3)	 The	 training	 data set	 was	 useful	 also	 for	 comparing	 the	 “theoretical”	 classification	
performances	 of	 the	 various	 learners	 through	 cross-validation	 tests,	 as	 explained	 in	 the	
next	section.

4)	 After	having	trained	all	the	six	classification	algorithms,	I	applied	them	to	the	unlabelled	
data	of	Well	A,	in	order	to	perform	full	automatic	classification.
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5)	 Finally,	I	performed	a	further	test	aimed	at	classifying	the	logs	of	another	well	(here	indicated	
as	Well	B).	 It	 is	 located	 in	 the	 same	exploration	 region,	 relatively	 far	 from	 the	previous	
well.	Well	B	crossed	similar	geological	formations	but	with	different	depth	distribution	with	
respect	to	Well	A.	In	the	next	sections,	I	am	going	to	discuss	the	entire	workflow	in	detail.

5. Training and selecting the learning algorithms

In	the	practice	of	ML,	we	can	use	many	different	algorithms	such	as	predictors,	classifiers,	and	
clustering	methods.	They	will	work	more	or	less	effectively	depending	on	many	variables,	such	
as	the	type	and	the	quality	of	the	data,	the	size	of	the	training	data	set,	the	type	of	classification/
prediction/clustering	problems	and	so	forth.	A	good	approach	for	selecting	the	learning	algorithm(s)	
is	to	test	the	generalisation	power	of	different	methods	and,	finally,	to	select	the	ones	showing	the	
best	performance.	One	criterion	for	selecting	the	algorithm(s)	is	going	through	“cross-validation	
tests”.	 For	 applying	 that	method,	we	 need	 a	 labelled	 data	 set.	Cross-validation	 tests	work	 on	
these	subsets	of	data,	by	further	partitioning	the	labelled	data	into	complementary	subsets.	First,	I	
perform	the	analysis	of	the	various	learners	on	one	subset	(called	the	“training	subset”),	and	then	
I	validate	their	generalization	power	on	the	other	subset	(called	the	“validation	subset	or	testing	
subset”).

I	 used	 several	 approaches	 including	 the	 “K-fold”,	 “Random	 sampling”	 and	 “Leave	 one	
out”	methods.	 In	 the	first	case,	 the	original	sample	 is	 randomly	partitioned	 into	K	equal	sized	
subsamples.	Of	the	K	subsamples,	a	single	subsample	is	retained	as	the	validation	data	for	testing	
the	model.	The	remaining	K-1	subsamples	are	used	as	training	data.	I	tested	various	numbers	of	
folds,	ranging	from	2	to	10,	and	comparing	the	results.	Table	3	is	an	example	of	evaluation	results	
for K=5.	The	Random	sampling	method	randomly	splits	the	dataset	into	training	and	validation	
data.	For	each	such	split,	 the	model	 is	fit	 to	 the	 training	data.	Finally,	 the	predictive	accuracy	
is	estimated	using	the	validation	sub	data	set.	Leave-p-out	cross-validation	uses	p	observations	
as	 the	 validation	 set	 and	 the	 remaining	 observations	 as	 the	 training	 set.	Leave-one-out	 cross-
validation	(LOOCV)	is	a	particular	case	of	leave-p-out	cross-validation	with	p=1.

In	Table	3,	AUC	represents	the	degree	or	the	measure	of	“separability”.	It	tells	how	much	a	
certain	model	is	capable	of	distinguishing	between	classes.	Higher	the	AUC,	better	the	model	is	
at	predicting	classes.	For	instance,	in	medical	applications,	higher	the	AUC,	better	the	model	is	
at	distinguishing	between	patients	with	disease	and	no	disease.	Classification	accuracy	(CA)	is	
the	proportion	of	correctly	classified	examples.	F1	is	a	weighted	harmonic	mean	of	precision	and	
recall.	Precision	is	the	proportion	of	true	positives	among	instances	classified	as	positive.	Recall	
is	the	proportion	of	true	positives	among	all	positive	instances	in	the	data.

Confusion	matrix	is	an	additional	technique	to	verify	the	performance	of	each	classification	
algorithm	 used	 in	 the	 cross-validation	 tests.	 Each	 row	 of	 the	 confusion	matrix	 represents	 the	
instances	in	a	predicted	class	while	each	column	represents	the	instances	in	an	actual	class.	Thus,	
we	 can	 estimate	 the	 effectiveness	 of	 each	 algorithm	 in	 generalizing	 the	 classification	 results	
(obtained	on	 the	 training	 subset)	by	verifying	 the	percentage	cases	properly	classified	 (on	 the	
validation	subset).

Fig.	 4	 shows	 two	 examples	 of	 confusion	matrix	 obtained	 through	 the	Random	Forest	 and	
Adaptive	Boosting	classifiers	applied	to	Well	A	data.	We	can	evaluate	the	“theoretical	prediction	
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Table	3	-	Evaluation	results	and	comparison	of	the	performance	of	the	various	learners.

capability”	of	the	various	learners	just	comparing	their	respective	confusion	matrix.	The	above	
quoted	expression	“theoretical	prediction	capability”	means	the	effectiveness	of	the	algorithm	to	
generalise	the	classification	rules	that	it	learnt	from	the	training	phase.

This	prediction	effectiveness	is	quantified	on	the	principal	diagonal	of	each	matrix,	where	the	
percentage	of	predicted	vs.	actual	values	is	indicated	for	each	class.	Instead,	looking	at	the	other	
values	above	and	below	the	principal	diagonal,	we	have	the	percentage	of	wrong	classifications.

Fig.	4	-	Confusion	matrix	for	Random	Forest	(left)	and	Adaptive	Boosting	(right)	classifier.

6. Classification of data of Well A

Although	 different	 performances	 emerged	 from	 the	 cross-validation	 tests	 (see	 for	 instance	
Table	3),	I	used	all	 the	six	algorithms	for	automatic	classification	of	the	lithofacies	of	Well	A.	
The	reason	is	that,	in	the	tutorial	examples	discussed	in	this	paper,	the	data	set	is	relatively	small.	
Consequently,	several	ML	algorithms	can	run	simultaneously	on	a	standard	PC	without	requiring	
excessive	 computation	 time.	 Of	 course,	 in	 case	 of	 “Big	 Data”,	 the	 cross-validation	 tests	 are	
useful	for	selecting	the	optimal	algorithm(s),	and	for	using	only	one	or	two	methods	for	the	final	
classification	or	prediction	task.	This	can	be	the	case,	for	instance,	if	we	desire	to	classify	seismic	
facies	using	an	industrial	3D	data	set.

As	examples,	Fig.	5	shows	the	lithofacies	classifications	obtained	with	all	the	methods,	using	
a	different	colour	for	each	class,	projected	on	the	resistivity	logs	of	Well	A.	Similar	classification	
results	have	been	plotted	on	the	other	logs,	but	they	are	not	shown.

The	classification	results	obtained	with	the	various	methods	and	shown	in	Fig.	5	are	generally	
comparable,	especially	in	the	left	half	of	the	log	(corresponding	with	the	upper	part	of	the	well).	
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Fig.	5	-	Lithofacies	classification	with	all	methods	projected	on	resistivity	logs	(Well	A).

This	is	encouraging	because	it	means	that	the	different	classification	algorithms	tend	to	produce	
consistent	results,	although	with	some	differences.

Going	from	top	to	bottom	(from	left	to	right	in	each	individual	panel	of	the	figure)	we	can	
observe	 that	 there	 is	a	prevalent-shale	 formation	 (Class	1)	 sealing	stacked	sandy	hydrocarbon	
reservoir	with	different	saturation	(Classes	4,	5,	and	6).	Then,	the	sedimentary	sequence	continues	
with	a	sequence	of	interbedded	sandstones,	shale	and	siltstones	(Classes	2	and	3).

Significant	differences	appear	 for	 the	various	classification	methods	 in	 the	classification	of	
Classes	2	and	3.	This	 is	understandable	from	a	geological	point	of	view,	because	both	classes	
show	similar	sedimentary	properties.	In	fact,	they	are	largely	overlapped	in	the	feature	space	(see	
for	instance	Fig.	3a).

7. Tuning the hyper-parameters

An	important	part	of	the	classification	step	consisted	in	tuning	the	hyper-parameters	to	predict	
the	“unseen	data”.	Indeed,	in	the	practice	of	ML,	there	are	two	types	of	parameters:	those	that	
are	learned	from	the	training	data	and	the	specific	parameters	of	a	learning	algorithm.	These	are	
commonly	optimized	separately.	The	latter	are	the	tuning	parameters,	also	called	hyper-parameters,	
of	a	model.	For	instance,	these	can	be	the	regularization	parameter	for	an	algorithm	of	Logistic	
Regression	or	the	depth	parameter	of	a	Decision	Tree.	There	are	several	approaches	for	tuning	
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the	hyper-parameters.	One	of	these	is	via	“Grid	search”.	This	is	a	brute-force	exhaustive	search	
method	where	we	specify	a	list	of	values	for	different	hyper-parameters;	finally,	we	evaluate	the	
model	performance	for	each	combination	of	those	with	the	final	aim	to	obtain	the	optimal	set.	An	
alternative	approach	to	sample	different	parameter	combinations	is	Randomized	Search.	Using	
that	 approach,	we	 can	 draw	 random	parameter	 combinations	 from	 sampling	 distributions	 and	
then	we	compare	the	different	performances.	For	instance,	I	performed	many	tests	for	setting	the	
number	of	trees	in	the	Random	Forest	method,	ranging	from	5	to	50.	I	compared	for	each	test	
the	evaluation	results	using	the	same	index	list	showed	in	Table	3.	Finally,	I	set	20	as	the	optimal	
value	for	that	hyper-parameter.

I	applied	the	same	approach	for	tuning	the	hyper-parameters	for	the	other	classifiers.	First,	I	
applied	a	trial-and-error	approach,	just	looking	at	the	various	precision	indexes	in	correspondence	
of	each	trial.	However,	that	procedure	can	be	optimized	and	automatised.	For	that	purpose,	I	used	
an	algorithm	from	a	Python	library	(GridSearchCV,	from	Scikit-learn).	Describing	the	details	of	
this	algorithm	is	out	of	the	scope	of	this	paper.	However,	 this	approach	and	the	correspondent	
code	are	discussed	in	detail	by	Raschka	and	Mirjalili	(2017,	p.	186).	Just	to	provide	an	example,	
using	 this	 library,	 I	 tuned	 the	key	hyper-parameters	 for	 the	SVM	method,	 such	as	 the	 type	of	
Kernel,	the	regression	cost,	the	numerical	tolerance,	the	iteration	limit	and	so	forth.

8. A challenging classification test

I	tried	to	classify	the	lithofacies	drilled	by	another	well	(Well	B)	located	in	the	same	region,	
using	the	same	learners	trained	on	the	Well	A.	The	Well	B	drilled	analogous	geological	formations	
as	the	well	A,	but	with	differences	in	the	sedimentary	sequence.	In	fact,	it	is	located	beyond	a	big	
fault	system	that	separates	the	reservoir	zone	in	various	compartmented	blocks.	Furthermore,	this	
well	shows	complex	hydrocarbon	distribution	in	a	stacked	reservoir	formed	by	several	thin	layers	
with	variable	saturation.	Consequently,	this	further	application	can	represent	a	sort	of	“blind	test”	
for	verifying	how	efficiently	the	learners	trained	on	one	log	data	set	can	be	generalised	to	multiple	
wells	in	the	same	geological	context,	even	in	presence	of	complex	structural	elements.

In	case	of	wells	drilled	within	a	short	distance	range	and	in	comparable	sedimentary	sequences,	
it	would	be	reasonable	to	use	the	learners	trained	on	the	data	of	one	well	for	classifying	the	data	
of	a	near	well.	In	other	words,	in	case	of	near	wells,	we	can	initially	assume	that	the	learners	that	
worked	properly	on	one	well-data	set	will	work	properly	on	a	similar	data	set.	Instead,	if	there	
are	significant	lateral	variations	from	one	well	to	another,	especially	if	there	are	faults	between	
the	 two	 drilling	 locations,	 this	 type	 of	 generalization	 can	 generate	 classification	 artifacts	 and	
mistakes.	This	is	the	case	of	this	new	test	on	Well	B.

In	 order	 to	 use	 the	 previous	 classification	 results	 without	 introducing	 artifacts	 in	 the	 new	
classification,	a	possible	approach	is	to	combine	the	training	data	set	of	both	wells.	Of	course,	the	
benefits	of	this	approach	increase	with	the	number	of	wells	and	with	the	size	of	the	labelled	data	
set.	The	intuitive	idea	is	that	combining	labelled	data	of	a	large	number	of	wells	allows	obtaining	
a	robust	training	data	set	for	classifying	unseen	data	of	other	wells	in	the	same	geological	context.

I	applied	that	strategy	for	classify	the	data	of	Well	B.	I	mixed	the	training	data	set	of	Well	A	with	
a	small	percentage	(5%)	of	labelled	data	of	Well	B.	The	classification	results	are	encouraging.	In	
fact,	they	are	consistent	with	the	expected	sedimentary	sequence	crossed	by	Well	B	(based	on	CPI	
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and	on	other	geological/geophysical	information).	As	an	example,	Fig.	6	shows	the	classification	
results	obtained	with	the	Adaptive	Boosting	learner	and	plotted	on	the	resistivity	log.	Instead,	Fig.	
7	shows	the	distribution	of	the	sonic	log	feature	(normalized).	This	last	figure	can	be	compared	with	
Fig.	3a.	It	shows	that	the	Well	A	and	the	Well	B	have	qualitatively	comparable	class	distribution	
concerning	the	sonic	logs,	but	they	also	have	significant	differences.	The	same	happens	for	the	
other	logs	(here	not	shown).	Both	analogies	and	differences	justify	the	use	of	a	“mixed	training	
data	set”	for	classifying	the	data	of	Well	B.

Furthermore,	we	can	take	additional	benefits	from	the	previous	classification	work	done	on	
Well	A.	In	fact,	we	can	use	the	same	hyper-parameters	calibrated	in	the	first	test	for	optimizing	the	
learners	in	the	second	test.	The	idea	is	that	using	the	work	already	done	on	Well	A	for	tuning	the	
classifiers	hyper-parameters	can	make	the	classification	workflow	more	efficient	on	other	wells.

Table	4	includes	the	main	evaluation	indexes	as	quantitative	measures	of	the	performance	of	
the	different	learners	using	the	“mixed	training	data	set”	(including	data	of	both	Wells	A	and	B).	
That	table	has	been	obtained	after	performing	a	K-fold	cross-validation	test,	for	K=5.	It	can	be	
compared	with	the	equivalent	Table	3	obtained	for	Well	A.	All	the	values	of	the	various	indexes	
for	Well	B	indicate	general	good	performance	of	the	classifiers,	excluding	the	SVM	and	CN2	Rule	
Inducer	methods	that	show	slightly	lower	values	for	CA,	F1,	Precision	and	Recall	(AUC	Index	
is still high).

Fig.	6	-	Adaptive	Boosting	classification	results	for	Well	B.

Fig.	 7	 -	 Probability	 density	 distribution	 of	 the	 normalized	 sonic	
logs	of	Well	B.
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Table	4	-	Evaluation	results	of	the	performance	of	the	various	learners	for	Well	B.

9. Practical implications and further possible applications

The	approach	described	in	this	paper	can	be	extremely	useful	when	we	need	to	classify	the	
lithofacies	of	many	wells	located	in	the	same	geological	context.	In	fact,	in	this	way,	the	work	of	
log	analysis	and	formation	evaluation	can	be	accelerated	significantly.

This	efficient	 classification	workflow	can	 support	well-site	geological	operations.	Well-site	
geologists	perform	key	operations,	like	identification	of	critical	strata	combining	core	samples,	
rock-cutting	data,	well	logs,	VSP,	surface	geophysical	data	and	any	other	data	useful	for	making	
operative	 decisions.	Often,	 these	 decisions	must	 be	 taken	 quickly	 and	 even	 in	 real	 time.	 For	
instance,	operation	geologists	must	decide	when	specific	tests	should	be	carried	out	and,	ultimately,	
when	 to	 stop	drilling.	 In	 order	 to	 support	 decisions	 through	 a	multidisciplinary	 approach,	 the	
feature	matrix	(Fig.	8)	used	as	input	for	the	ML	workflow	can	be	populated	with	many	different	
types	of	instances	complementary	to	well	logs.

Fig.	8	-	Conceptual	scheme	
of	 the	 input	 matrix	 for	
the	 multidisciplinary	 ML	
workflow.

For	instance,	we	can	combine,	in	the	same	matrix,	information	from	composite	logs	and	well	
cuttings,	chemical	and	mineralogical	analyses.	Furthermore,	after	upscaling	the	same	matrix,	we	
can	include	in	it	also	geophysical	information	coming	from	VSP,	electromagnetic	cross-hole,	and	
so	forth.	This	type	of	“hybrid”	matrix	will	feed	up	the	ML	workflow	for	many	possible	purposes.	
For	instance,	 if	we	have	the	possibility	to	calibrate	the	matrix	instances	with	the	data	of	other	
wells	in	the	same	area,	we	can	use	the	ML	workflow	for	predictive	purposes	during	the	ongoing	
drilling	operations.	 Prediction	of	 overpressures	 or	 of	 other	 hazards	 is	 just	 an	 example	 among	
many	possible	applications.

10. Conclusions

ML	can	support	the	interpretation	work	of	log	analysis	in	the	phase	of	lithofacies	classification/
interpretation.	 I	 compared	 the	 performance	 of	 six	 different	 supervised	 classifiers.	 In	 the	 tests	
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here	 discussed,	 all	 the	 algorithms	 produced	 consistent	 results.	However,	 ensemble	 algorithms	
like	Random	Forest	and	Adaptive	Boosting	seem	to	provide	slightly	more	reliable	classifications/
predictions	than	Naïve	Bayes,	Decision	Tree,	CN2	Rule	Induction.	SVM	method	demonstrated	
good	performance	 too.	Cross-validation	 tests	 and	 the	 geological	meaning	of	 the	 classification	
results seem to support this conclusion.

I	 remark	 that	 using	 the	 entire	 set	 of	 six	 algorithms	 simultaneously	 for	 classifying	 two	 or	
more	wells	does	not	 require	any	special	 computation	 resource.	 In	 fact,	 automatic	classification	
using	different	types	of	algorithms	is	extremely	fast	for	data	sets	of	the	order	of	50,000-100,000	
instances.	In	the	test	described	in	this	paper,	I	measured	a	computation	time	of	about	5	seconds	
for	running	the	entire	process	of	ML.	It	includes	training,	cross-validation	tests,	confusion	matrix	
calculation,	lithofacies	classification,	results’	plotting,	reporting,	and	saving	in	the	database,	using	
simultaneously	six	different	algorithms.	For	these	tests,	I	used	a	standard	PC	(System	characteristics:	
Dual	core	Intel	processor,	2.5	GHz,	RAM	12.0	GB,	Windows	10,	64	bit).	The	most	demanding	part	
of	the	workflow,	and	the	most	delicate,	is	training	the	algorithms	and	setting	properly	all	the	hyper-
parameters	of	each	algorithm.	This	part	of	the	job	requires	time,	accuracy,	knowledge	of	the	data,	
knowledge	of	the	algorithms,	experience,	and	geological	background.

In	summary,	the	approach	described	in	this	paper	makes	the	process	of	log	interpretation	and	
lithofacies	classification	much	more	efficient	than	performing	the	standard	manual	interpretation	
for	each	individual	well.	Many	applications	are	possible	in	the	field	of	operation/well-site	geology,	
including	drilling	optimization	 and	overpressure	prediction.	However,	 human	 supervision	 and	
interaction	are	 fundamental,	not	only	 in	 the	 training	phase	and	 for	 setting	 the	parameters,	but	
also	for	checking	the	reliability	of	the	results.	In	other	words,	the	ML	approach	should	be	used	as	
an	automatic	tool	for	supporting	and	enhancing	human	skills,	rather	than	replacing	them.	In	this	
sense,	we	can	consider	this	approach	as	a	cooperative	Human-ML	methodology.
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