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ABSTRACT  Crosshole tomography problem usually uses linearized (local) techniques. Applying 
a linearized scheme, the cost function will converge to the global minimum only if a 
starting model close enough to the global minimum is available. In contrast, global 
optimization approaches have the ability to fi nd global minimum: even in functions 
with several local minima regardless of the starting model. However, they are expensive 
especially for most large dimensional seismic problems. We overcome the limitations 
of each individual approach by introducing a sequential hybrid algorithm combining 
particle swarm optimization (PSO) with linearized least squares (LLS). PSO simulates 
the social behaviour of birds fl ocking or fi shes schooling. It is implemented to obtain 
the appropriate initial guess for the LLS scheme. To compare the performance of the 
LLS, PSO, and hybrid algorithms, the methods are tested on the noise-free and noisy 
synthetic data sets. The resulting tomograms show that the proposed hybrid approach 
is a more effective inversion tool rather than using the LLS and the PSO. Moreover, a 
comparison between PSO and simulated annealing approach reveals that PSO provides 
superior results. Finally, real data from the Seinsfeld site was inverted by the hybrid 
method and a low-velocity anomaly was detected in the site.

Key words: traveltime tomography, nonlinear inversion, linearized least squares inversion, particle swarm 
optimization, hybrid optimization.

1. Introduction

    One of the restrictions of seismic refl ection and refraction methods is that the near-surface 
weathered layer attenuates the high-frequency components which are indispensable for having 
the high-resolution components of the Earth interior image. A common practice to overcome 
this problem is to use crosshole data in which the sources and receivers can be put into separate 
boreholes (Bregman et al., 1989).

Recent applications of the crosshole velocity model are reported in the literature; for instance, 
dam leakage detection (Dai et al., 2017), geotechnical and engineering (Butchibabu et al., 
2017), mining investigation (Wong, 2000; Greenhalgh et al., 2003), heterogeneity detection and 
anisotropy estimation (Meng et al., 2017), coal exploration (Rossi et al., 2009), and detection of 
anomalies with sharp boundaries (Cardarelli, 2008).
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Crosshole traveltime tomography is a nonlinear optimization problem as in many areas the 
velocity changes by 10-20% or more. Subsequently, this causes signifi cant ray path curvature 
(Bregman et al., 1989). The tomography problem can be written as:

d = G (m) + n         (1)

where m is the model parameter (representing seismic velocity, or slowness, as a function of 
position), d expresses the traveltime data, and G is a nonlinear operator that predicts traveltimes 
given a velocity model and survey geometry. The data error (noise) is labeled as n. We can also 
write Eq. 1 in a format that explicitly denotes the discrete nature of the data (Aster et al., 2013).

Typically, there are two main approaches to solve the nonlinear traveltime tomography: 
1) gradient-based techniques (local search) which depend on the gradient information of the 
objective function, e.g. least squares, Levenberg-Marquardt, Occam, conjugate gradient, etc.; 
2) global optimization schemes which simulates certain social behaviour, natural physical 
process or biological phenomenon, e.g. genetic algorithm (Mazzotti et al., 2016), Monte Carlo 
(Sen and Stoffa, 2013), simulated annealing (Sen and Stoffa, 2013), particle swarm optimization 
(PSO), etc.

The minimum of the objective function in the gradient-based (local) methods can be moved 
through local linearization scheme iteratively. The linearized iterative techniques start from a 
suitably initial (starting) velocity model which has to be determined by the user. The fi nal result 
of the local methods strongly depends on the starting model (Moret et al., 2006). This approach 
will converge to the global minimum with greater possibility if the starting model is adjacent to 
the global minimum of the objective function. In other words, if the starting model is far from 
the global minimum, the method will converge to a local optimum of the objective function 
depending on the position of the starting model. Another diffi culty in the convergence of the 
gradient-based techniques is inherent instabilities in calculating numerical partial derivatives of 
the ray paths. However, a fast computation is the advantage of local search methods (Sen and 
Stoffa, 2013).

On the contrary, global optimization methods use information about the objective function 
more globally to update the current model. Besides, these schemes are not much affected by the 
initial model and then even work with poor initial models. As a result, these algorithms have the 
ability to fi nd the global minimum of some functions which has several local minima regardless 
of the starting model and the linearization process. Furthermore, global search techniques do not 
require partial derivatives; therefore they are able to solve even highly complex nonlinear inverse 
problems. However, they are expensive especially with large dimensionality that is involved in 
most seismic inverse problems and the considerable number of forward calculations which is 
required (Soupios et al., 2011; Sajeva et al., 2017).

Briefl y, the main drawbacks of the local and global optimization approaches are the requirement 
of a starting model and the computational cost, respectively. Consequently, to overcome the 
disadvantages of each method, a sequential hybrid optimization scheme can be used. In the 
sequential hybrid method, a model close to the global minimum of the objective function (a 
suitable initial model) is obtained by the global approach, while the local approach applies in order 
to achieve the accurate solution close enough to the global minimum of the objective function 
(Chunduru et al., 1997). Several successful sequential hybrid optimization approaches have been 
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proposed to solve the geophysical data inverse problems (Chunduru et al., 1997; Mendes, 2009; 
Tognarelli et al., 2016; Noack and Funke, 2017; Galuzzi et al., 2018).

Göktürkler (2011) and Soupios et al. (2011) use sequential hybrid approaches based on the 
GA/least squares and SA/least squares to invert seismic crosshole data, respectively. Their studies 
show that the hybrid strategy is a more effective tool to invert crosshole traveltime data rather 
than local or global technique alone.

In this study, a sequential hybrid tomographic inversion scheme based on PSO method and 
linearized least squares (LLS) inversion is proposed. PSO is a stochastic global optimization 
method introduced by Kennedy and Eberhat (1995). It is inspired by social behaviour of fi sh 
schooling or bird fl ocking. PSO, similar to other global approaches, explores the model space 
globally because it applies a random search to update the model. It has been used for the solution 
of geophysical problems (Song et al., 2012; Tronicke et al., 2012; Zhe and Hanming, 2013; 
Paasche and Tronicke, 2014; Guo et al., 2018; Liu et al., 2018).

In this paper, fi rst, a robust and effi cient algorithm for solving nonlinear crosshole traveltime 
tomography is presented which utilizes hybrid of the PSO and LLS algorithms. The proposed 
tomography algorithm is a combination of a global search method based on the PSO algorithm 
and a gradient-based (local) approach performed by the LLS algorithm. Since the global 
techniques are not sensitive to the initial model, the PSO is applied to construct a suitable 
starting model (background velocity distribution) for the LLS scheme which gives fast optimum 
searches. Consequently, this technique reduces computation cost and escapes from being stuck 
into the local minima of the cost functions. Moreover, it obtains a good model even with poor 
starting solution. To compare the performance of LLS, PSO and sequential hybrid application, 
the methods are tested, both in sequential hybrid and independently, on the noise-free and noisy 
synthetic crosshole seismic data sets. Then the PSO runtime and its convergence are compared 
to the SA approach. Finally, the sequential hybrid method is tested on a real crosshole data set.

2. Linearized least squares

The least squares solution of Eq. 1 is to fi nd an m that minimizes the sum of the squared 
differences between calculated and observed traveltimes. If the error in the data is Gaussian, then 
the least squares of this difference (objective function) will be:

|| ( ) -G m d || 2
2                               (2)

where ||.|| denotes the norm 2.
Generally, the result accuracy of Eq. 2 will depend on several factors including: 1) the 

assumptions made in the forward calculations; 2) the noise in the observed data; 3) the ray 
geometry dependency on the velocity model; 4) error measurements in the source or receiver 
positions; 5) the inaccurate fi rst break picking. 

Accordingly, the problem is extremely ill-conditioned. To provide extra constraints on 
the model space, a regularization term is frequently incorporated into the cost function. This 
term helps to reduce the non-uniqueness of the solution (Tikhonov, 1963). Consequently, the 
regularized objective function will be:
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2 2 m n m 1 n 1
2 i|| ( ) - || + || || R , R , R      (3)

where α is the regularization parameter (damping factor). It regulates the tradeoff between the 
data misfi t and the model roughness. We use the L-curve criterion approach to determine the 
optimum value of α (Hansen, 1992).

Matrix Li, i= 0, 1, 2 is the 2-D roughening operator. It is defi ned as:

   L
0
= I , L

1
=

1 1 0 0

0 1 1 0

0 1 1 0

0 0 1 1

, L
2
=

1 2 1 0 0 0

0 1 2 1 0 0

0 0 1 2 1 0

0 0 0 1 2 1

 

      

 (4)

Selection of the matrix L depends on the prior information about the model parameters. The 
higher order of L leads to a much smoother model (Aster et al., 2013).

As it was said before, the function G (m) in this research is nonlinear, therefore, in order to use 
the nonlinear regularized least squares method, linearization should be performed fi rst. 

Given a trial model at the kth iteration (mk), mk+1 can be obtained using the Taylor’s series 
approximation about mk and ignoring second-order terms (Aster et al., 2013; Ghanati et al., 2017):

k k k( ) ( ) ( )+ +G m m G m J m m                                                                                        (5)

where J is the linear differential operator (Jacobian) matrix. Mathematically, J is defi ned as

k i
ij

j

( ) , j 1,2,3,...,N ,i 1,2,3,...,M= = =
G

J m
m                                                               

(6)
 

where M is the number of traveltime data and N implies the number of model parameters 
(slowness).

Using Eq. 5, the solution of nonlinear regularized least squares at the (k+1)th iteration is: 
k 1 k ,+

= +m m m k T k 2 T 1 k T k 2 T k( ( ) ( ) ) { ( ) [ ( ) ] }= +m J m J m L L J m G m d L Lm  
   

(7)

To stabilize the solution of the LLS algorithm, we have also applied the second-difference 
regularization scheme.

3. Particle swarm optimization

PSO belongs to the swarm intelligence algorithms and it is a population-based search method 
which imitates the social behaviour of birds or fi shes. PSO explores the model space of a cost 
function by adjusting the trajectories of individual agents. In the PSO these agents are called 
“particles”. The movement of a particle includes both stochastic and deterministic components. 
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On the other hand, each individual is attracted towards its own best location in history and the 
position of the current global best of the swarm. Furthermore, it simultaneously has a tendency to 
move randomly (Kennedy and Eberhart, 1995; Hedeshi and Saniee Abadeh, 2014).

A particle within the swarm can interact with other particles; however their capabilities are 
relatively restricted by some specifi c rules. Thus, the behaviour of a particle in a swarm is usually 
negligible, while their social and collective social behaviour is of profound signifi cance. Each 
particle is expressed by a vector in the search space which is called the velocity vector and controls 
the next movement of the agents. All particles update their velocity based on three components 
including: 1) current velocity; 2) the best position which they have explored up to now; 3) the 
global best position explored by the swarm (Hedeshi and Saniee Abadeh, 2014; Awange et al., 
2018).

In the PSO, the swarm of particles moves through a predefi ned search space. Each particle p 
in the swarm, has the following components at time t:
xp,i(t): ith component of the particle position,
vp,i(t): ith component of the particle velocity,
yp,i(t): ijth component of the personal best position of particle p (pbest),
yi(t): ith component of the global best position of the swarm (gbest).

Suppose that f indicates the objective function which we want to fi nd its global minimum in 
an N-dimensional space, an update of the pbest of particle p in iteration t+1 is (Kiranyaz et al., 
2014):

p,i

p ,i
p ,i

( t )
( t 1)

( t )
+ =

y
y

x
   

p aif f ( x ( t 1) f ( ( t ) )

else

+ > y

 
i ∈ [1,N]

    

(8)

Because gbest is the index of the global best particle, then:

^
1gbest( t ) ( t ) min ( t ), ..., ( t )s= =y y y y . 

 
For each iteration, positional updates for each particle, p∈ [1,S] along with each dimensional 

component, i∈ [1,N], are:

p,i p ,i 1 1,i p ,i p ,i 2 2,i p ,ii( t 1 ) w( t ) ( t ) c r ( t ) ( t ) c r ( t ) ( t )+ = + +
^v v y x y x

 
(9)

p,i p ,i p ,i( t 1 ) ( t ) ( t 1 )+ = + +x x v  (10)

where c1, c2 are the acceleration coeffi cients and w is the inertia weight. r1 and r2 are uniform 
distributed random variables in [0, 1] at each iteration.

Notice that, in the Eq. 9, the fi rst term is the memory term so that it expresses the history of 
the previous information, the second and the third terms are the cognitive and the social parts, 
respectively. The cognitive part describes the particle’s own experience. In the social part, the 
particle is guided by the best particle towards the global best solution so far achieved. The gbest 
is the common guide for all particles so that the social part exists in each velocity update equation 
(Sayed, 2014).

Depending on the problem to be minimized, the stopping criteria for the iteration in the PSO 
can be as below: 1) repeated until a maximum number of iterations is exceeded, 2) velocity 
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updates become zero, and 3) an acceptable cost function value is obtained (Kiranyaz et al., 
2014).

Swarm size, ω, c1, and c2 control the performance of the PSO algorithm. Various authors have 
studied the impact of these parameters on the convergence of the PSO (e.g. Trelea, 2003; Jiang et 
al., 2007; Qian and Li, 2017).

Several PSO features make it so effi cient in solving optimization problems in comparison 
with other global search methods. They are as follows (Rezaee Jordehi and Jasni, 2013; Awange 
et al., 2018):
- PSO has fewer parameters to be tuned by a user;
- its concepts and coding are very simple;
- its convergence is fast;
- it needs less computational burden;
- PSO’s computational behaviour is less affected by the initial models.

The PSO algorithm to obtain background velocity for the LLS inversion is carried out by the 
following steps:

1: a swarm of particles with random positions were distributed into the model space. Their 
initial velocities are set to zero;

2: the forward calculation, for each particle, is performed. The cost function is evaluated, and 
the pbest for each particle and gbest for swarm are stored. The objective function Ф is (Göktürkler, 
2011; Soupios et al., 2011):

                                                                                     (11)
N

obs cal 2
j j

j 1

1
( )

N =

= t t
 

where N is the number of traveltimes, tcal and tobs are the calculated and observed traveltimes, 
respectively and i shows each observation;

3: if the updated model is better than the current pbest and gbest, then the velocity and position 
vectors will be updated. If the location of each particle exceeds the boundaries of the defi ned 
parameter space, the direction of the velocity vector of the particles will be reversed;

4: steps 2-3 are repeated until a certain stopping criterion is reached. Ultimately, the fi nal gbest 
position is saved as the fi nal solution of the inverse problem.

4. Synthetic data example

In this paper, all the forward modelling and optimization methods are coded and implemented 
in MATLAB.

We compute the fi rst-arrival times from source to receiver through the fi nite-difference 
solution of the eikonal equation (Zelt and Barton, 1998).

The synthetic velocity model between two boreholes along with the source-receiver geometry 
and the bent ray paths are shown in Fig. 1. The size of this study is 10×20 m. This model displays 
a number of layers with different velocities and thicknesses including horizontal and dipping 
interfaces, one low-velocity anomaly in the interval of 12.5 and 14.5 m and two high-velocity 
anomalies. The high-velocity anomalies are located at the depths of 5.5 to 7.5 m and 8.5 to 
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10.5 m. The velocity contrast between the background and the anomalies presented in this example 
is more than 20% which is large enough to claim the nonlinear inversion, rather than the linear 
one. The velocities range from 900 to 2600 m/s.

The test incorporates 20 equally spaced sources (the black fi lled circles) and 20 equally spaced 
receivers (red fi lled triangle), producing 440 ray paths. Both shots and receivers are located 
between 0.1 and 19.9 m. The straight ray path coverage and source-receiver geometry for this 
experiment is presented in Fig. 1b. The medium is discretized into 20×10 constant slowness 
(velocity) grids.

To study the noise effect on the inverted models, the noisy data was generated by adding 
random noise to the noise-free data set. The added noise has a Gaussian distribution with zero 
mean and ±0.1 ms standard deviation.

4.1. Parameter selection in the PSO
4.1.1. The inertia weight

The inertia weight (w) brings about a right balance between exploitation and exploration 
process. It controls the contribution rate of a particle’s previous velocity to its current velocity. 
There was no concept of inertia weight in the fi rst version of the PSO. It was introduced by 
Shi and Eberhart (1998) who considered w to be a constant value. They expressed that a small 
value of w leads to a local search while a large value of w helps a global search. Then, many 
researchers introduced many strategies for dynamic adjustment of the inertia weight to enhance 
the capabilities of the PSO convergence (e.g. Shi and Eberhart, 1998, 1999; Singh et al., 2007; 
Yue-lin and Yu-hong, 2007). In our paper, we set inertia weight linearly decreasing from 0.99 
to 0.5 as Eberhart and Shi (2000) have proposed which results in a gradually change from an 
exploratory mode to an exploitative one.
4.1.2. The maximum velocity

Fig. 1 - Synthetic 
model (a) and source-
receiver geometry 
(b); Red triangles and 
black circles indicate 
receivers and sources, 
respectively. The bent 
raypaths are displayed 
by the black lines.
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The maximum limit of the particle velocity also affects the performance of the PSO 
algorithm. If it is too high, then the particles’ movement becomes erratically. As a result, 
without adequate search space exploration, they are rapidly attracted to the global best (gbest). 
Thus, the chance of getting stuck in the false optima decreases, as well as the particles may 
exceed search space. On the contrary, a too small maximum velocity slows down the algorithm, 
the particles move is excessively bounded and the algorithm convergence is not guaranteed. 
Accordingly, a suitable maximum velocity value should be selected. Abido (2001) has 
recommended the following maximum velocity value in order to guarantee uniform velocity 
throughout all dimensions:

max min
max

IN
=
X X

V  
 

 (12)

where Xmin and Xmax are the minimum and maximum values which particles have reached so far, 
respectively. NI is the number of intervals in the dth dimension selected by the user.

In our PSO application, we set  Vmax = 0.1* (Xmax - Xmin) which was an appropriate maximum 
velocity value.

4.1.3. The acceleration coeffi cients
In the PSO, two stochastic acceleration parameters (c1, c2) guide the search towards the best 

solution. C1 pulls the particles towards their own best solutions (pbest) which keeps the diversity 
of the population and improves the grouping capability. While c2 is a convergence part and attracts 
all particles towards the gbest.

When c1 increases, compared with the c2, it pulls the individuals towards their pbest and results 
in excessive wandering of particles within the model space and decreases their convergence to 
the gbest solution. On the other hand, a larger value of c2 leads individuals to converge to a local 
optimum (Kennedy and Eberhart, 1995). Consequently, these two parameters play a key role in 
reaching the optimum solution effi ciently and accurately.

In literature, a frequently acceptable setting for most of the optimization problems is c1=c2=2 
(Ozcan and Mohan, 1999; Suganthan, 1999). In our PSO implementation, we vary c1 and c2 within 
reasonable ranges and we arrive at similar conclusions (c1=c2=2) which is a suitable choice for 
our tomographic problem.

4.1.4. The swarm size
Too many particles slow down the algorithm, whereas too few particles cause the algorithm 

to get stuck into the local optima. There is no specifi c rule for determining the particle size. But 
generally, the particle size should be increased if the dimension of the problem at hand increases.

 We found that 350 particles are the optimal number of particles in this experiment and it is 
suffi cient to explain our data.

4.1.5. The stopping criteria
The PSO algorithm is repeated until a predefi ned stopping criterion (acceptable limit of the 

objective function and/or maximum number of iterations) is satisfi ed and, then, the fi nal global 
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best position of the swarms is saved as the optimum model. The PSO algorithm in our synthetic 
example, as the initial model for the LLS inversion, will terminate if the relative error becomes 
less than 1% on the two successive iterations. Then, we select this velocity model as the initial 
model for the LLS approach. This means that we start the LLS approach when the starting velocity 
model is already close enough to the global optimum.

For the pure PSO inversion strategy, the PSO algorithm will stop if the relative error becomes 
less than 0.1% on the two successive iterations.

4.2. Results
Fig. 2 shows the resulting tomograms from the PSO algorithm after 136 iterations for the 

noise-free and 149 iterations for the noisy data sets as the initial model for the LLS inversion. To 
take into account the stocasticity of the processes; we perform 50 runs for each data set and then 
plot their average convergence. The obtained models somehow display the subsurface anomalies 
specially the low-velocity zone located at the top and the high-velocity layer located at the bottom 
of the model. However, these solutions are not precise. Table 1 summarizes the PSO parameters 
used in the inversion of the synthetic data sets.

Fig. 2 - The velocity 
model inverted from the 
PSO algorithm using 
the synthetic data: a) the 
noise-free data after 136 
iterations; b) the noisy data 
set after149 iterations.

Furthermore, Fig. 3 displays their corresponding convergence curves (the iteration number 
with respect to the cost function value). The convergence curves gradually decrease for both data 
sets (noisy and noise-free), as it is shown in the fi gure. In addition, the errors related to the noise-
free data are lower than the noisy data.

Fig. 4 presents the results of the PSO, sequential hybrid and LLS optimization methods for 
the synthetic model. Figs. 4a and 4d show the results of the LLS optimization. A homogeneous 
velocity of 1500 ms-1 considered as the starting models for both cases. They were obtained after 
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Fig. 3 - Convergence curves of the synthetic 
data for the PSO inversion. Blue and red curves 
indicate noise-free and noisy data, respectively.

Number of model 
parameters Particle size w c1 c2 Initial model

200 350 Linearly decreased from 0.99 to 0.5 2 2 homogeneous velocity (1500 m/s)

Table 1 - The PSO parameters used in optimization of the synthetic model.

Table 2 - The LLS parameters used in optimization of the synthetic model.

Number of model 
parameters Number of traveltimes Type of regularization Initial model

200 441 Second difference homogeneous velocity (1500 m/s)

10 iterations. Table 2 provides the LLS inversion parameters in the both sequential hybrid and 
local approaches.

The fi nal tomograms obtained by the pure PSO scheme with noise-free data after 385 iterations 
and noisy data after 402 iterations are illustrated in Figs. 4b and 4e, respectively.

Figs. 4c and 4f show the fi nal models obtained by the sequential hybrid scheme with the 
noise-free and noisy data, respectively. Their corresponding initial velocity models are shown in 
Fig. 2. They were obtained by the LLS optimization approach after 6 iterations. It should also be 
noted that we get Fig. 4 by using the same tomographic grid of Fig. 2 and then oversampled to 
smoother illustration.

There are two criteria to compare the results of the obtained tomograms for the synthetic 
model, including RMS errors between the observed and calculated traveltimes and Euclidean 
distances between the true and the inverted models. A smaller value of RMS errors indicates 
better fi tting between the observed and calculated data. Also, a smaller value of the Euclidean 
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distance expresses that the inverted model is in the vicinity of the true model. Table 3 summarizes 
the RMS error and Euclidean distance for the obtained tomograms.

As expected, the results for the sequential hybrid approach are better than the results for the 
LLS scheme in terms of having smaller RMS errors and Euclidean distances in both noise-free 
and noisy data sets. Furthermore, the PSO and the sequential hybrid results in the noise-free data 
are almost the same. However, their comparison in the noisy data demonstrates the superiority 
of the sequential hybrid algorithm. It is reasonable to conclude that the regularization term in 
the hybrid approach makes the solution more stable. Also, the RMS errors and the Euclidean 
distances of the hybrid scheme in the noise-free data are lower than the noisy data. The solution 
by the hybrid optimization is less affected by the added noise than the LLS and the PSO methods. 

It is interesting to notice that PSO, LLS, and sequential hybrid approaches take about 4600, 
120, 1500 s of the CPU time, respectively (on a personal computer, CPU: Intel Core2 2.66 
GHz, Memory: 4GB). It should also be noted that each iteration involves 20×10=200 forward 
calculations.

Fig. 4 - Velocity tomograms 
obtained from noise-free data 
using a) the LLS algorithm; 
b) PSO and c) the sequential 
hybrid optimization. Velocity 
tomograms obtained from 
noisy data using d) the 
LLS algorithm; e) the PSO 
approach; f) the sequential 
hybrid optimization scheme.

                        Noise-free data                            Noisy data

sequential hybrid PSO LLS sequential hybrid PSO LLS

RMS errors (ms) 0.02 0.02 0.036 0.11 0.142 0.13

Euclidean distances 
(s/km) 0.018 0.019 0.045 0.033 0.097 0.081

Table 3 – The RMS errors and the Euclidean distances for pure PSO, sequential hybrid and LLS approaches with both 
noisy and noise-free data sets.
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4.3. Comparison between PSO and simulated annealing as the initial guess
We compare the results of the PSO algorithm and the simulated annealing in order to evaluate 

the effectiveness of the algorithm. We only test noise-free data. For a better comparison between 
the performances of SA and PSO, we use the same search space and number of iterations for 
SA scheme. Also, 350 iterations per temperature were performed (analogous to 350 particles in 
the PSO). The SA parameters are summarized in Table 4. To take into account the stocasticity 
of the processes; we perform 50 runs for each method and then plot their average convergence 
curves.  According to Fig. 5, the PSO model in each iteration performs better than the SA model, 
because the PSO has lower convergence curve. It means that the PSO solution is more precise. 
Furthermore, although the SA convergence rate is faster than that of the PSO, the SA solution at 
the end of 136 iterations is not better than the PSO solution.

Iteration Initial temperature Temperature reduction rate (C)

136 0.001 0.99

Table 4 - The parameters for the SA optimization

Fig. 5 - Convergence curves of the synthetic 
noise-free data for the PSO (the blue curve) 
and the SA (the red curve) schemes after 136 
iterations.

Further, the PSO takes about 1500 s to fi nish whereas the SA takes about 2200 s (~1.5 times 
slower than the PSO). 

The results demonstrate the superiority of the sequential hybrid PSO-LLS approach in 
comparison with the sequential hybrid SA-LLS scheme (Göktürkler, 2011) in terms of runtime 
and precise solution. Briefl y, after 136 iterations: 1) PSO is faster than SA, it is equivalent to 
having faster hybrid PSO-LLS than hybrid SA-LLS, too, and 2) PSO gives a model close to the 
true model as the initial guess for the LLS, but SA does not.
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5. Real crosshole data experiment

5.1. Data description
A real crosshole data acquisition was carried out in a site near the Seinsfeld (Rhineland-

Palatinate, Germany). The test site is an aquifer and is covered mostly by the Triassic sandstones. 
The crosshole survey was carried out to identify the subsurface structures between two wells 
separated by 48 m and extending to the depth of 60 m. To generate reputable pulses with high-
frequency content, a down hole sparker manufactured by the Geotomografi e GMBH was used 
in the fi rst well. A 24-channel hydrophone string with a constant spacing of 1 m was used in the 
second well. P-wave fi rst arrival times are picked for the optimization process from the acquired 
seismic traces (Kroger et al., 2011). An exemplary shot gather is shown in Fig. 6. As shown in this 
fi gure, the fi eld data has high quality and almost all fi rst breaks are easily distinguishable.

We select a region including 33 sources and 24 receivers, resulting in 792 fi rst breaks of P-waves. 
The string of 24 hydrophones recorded all the shots. The fi rst shot location was at the bottom of the 
well and other shots are located upwards. The fi rst receiver is also located at the bottom of the well.

The straight raypaths coverage and the source-receiver geometry of the experiment are shown 
in Fig. 7. The tomographic model was discretized into 384 velocity (slowness) cells (24 cells in 
horizontal and 16 cells in the vertical direction).

5.2. Applying the hybrid approach to the real data
Fig. 8 shows the velocity model and the corresponding convergence curve of applying the 

PSO algorithm to the real data after 156 iterations, respectively. A homogeneous velocity of 3000 
ms-1 is considered as the starting model for the PSO optimization in the real data. The stopping 
criterion is the same as the synthetic example (Section 4.1.5). As expected, the convergence curve 
of the PSO gradually decreases. For our real crosshole data, we found that 350 particles are 
suffi cient to explain our data.

The RMS curve for the sequential hybrid inversion of the real data after 7 iterations is shown 
in Fig. 9a. Referring to Fig. 9a, it is observed that the RMS curve decreases with the iteration at 

Fig. 6 - An example 
of the time signal 
traces recorded 
on the 24-channel 
hydrophone array in 
the Seinsfeld site. 
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Fig. 9 - RMS curve for 7 iterations of the sequential hybrid inversion (a) and illustration of resulting tomogram from 
the sequential hybrid optimization at the Seinsfeld (Germany) site test (b). Velocity ranges from 2650 ms-1 to 3450 ms-1.

Fig. 7 - The source-
receiver geometry for 
the real tomography 
experiment. The 
red triangles and 
the black circles 
illustrate the receiver 
and source positions, 
respectively. The 
straight raypaths are 
displayed by the blue 
lines.

Fig. 8 - Velocity model inverted from the PSO algorithm using the real data after 156 iterations (a) and the corresponding 
convergence curve (b).
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the fi rst fi ve iterations, then, its rate decreases. Hence, this number of iteration is enough to study 
the subsurface inhomogeneities and anomalies.

Fig. 9b shows the obtained velocity distribution using the sequential hybrid algorithm. Its 
initial velocity model is shown in Fig. 8a. It was obtained by the LLS inversion approach with 5 
iterations. It should also be noted that we get Fig. 9b by using the same tomographic grid of Fig. 
8a and then oversampled to smoother illustration.

The obtained model shows that the velocity between two wells changes from 2650 ms-1 to 
3450 ms-1. Furthermore, a low-velocity lens (~2500 ms-1) between 40 and 48 m is detected. This 
anomaly is in accordance with the acquired EM tomogram carried out in this test site (Gheymasi 
et al., 2016).

Fig. 10 illustrates a comparison of the four observed and calculated traveltimes from the 
sequential hybrid approach. This fi gure shows that there is a good agreement between the observed 
and calculated traveltimes in all shots.

5.3. Post-inversion model assessment analyses
 Any inverted tomogram needs post-inversion model assessment analyses including a 

combination of appraisal and estimation problems. Estimating covariance of the model parameters 
is one of the possible procedures for the appraisal approach (Tarantola, 1987; Menke, 2012).

5.3.1. Model covariance matrix
 The main diagonal elements of the covariance matrix give an estimate of how the data errors and 

uncertainties in the assumptions about the model within the inversion process are mapped into the model 
parameter error. The model covariance matrix (MCM) is given by (Cardarelli, 2003; Menke, 2012):

g g TCov( ) ( )Cov( )[ ( )]=m J m d J m   
(13)

where J g = [J(m)T Wd
TWd J(m)+α2 LTL]-1 J(m)T is the generalized inverse of the Jacobian 

matrix. The superscript ‘T’ indicates matrix transpose, Cov(d) is the covariance of a data vector 
and Wd is the data weighting matrix. We assumed that data errors are uncorrelated, so Wd is a 

Fig. 10 - Comparison 
between the calculated 
and observed 
traveltimes using the 
Seinsfeld site data sets 
for 4 shots.
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diagonal matrix with entries that are the reciprocals of the standard deviations of the uncertainties 
associated with each traveltime. In general, Wd is rough estimate. Hence, the obtained uncertainty 
by Eq. 13 is an approximation of the true uncertainties.

Moreover, the square root of the main diagonal elements of the covariance matrix gives the 
error of the model parameter (Menke, 2012; Ghanati et al., 2017):

                                                    error (mi)= sqrt[Cov(mii)] .                                               (14)

Fig. 11a shows the model covariance matrix for the real data. The diagonal trend in the matrix 
is clearly visible. In the covariance matrix, the off-diagonal values for any row, display the 
correlation between the error in the cell corresponding to the diagonal element, and the error in 
all the other cells.

Fig. 11b shows the slowness errors (Eq. 14) for the tomogram in Fig. 9b. If we ignore the low 
ray density cells (the blue color zones at the top and the bottom of the fi gure), all of the slowness 

Fig. 11 - Model covariance matrix (a) and estimated 
errors in cell slownesses (b).

errors will be less than 0.23 s/m and greater than 0.05 s/m. It means that the velocity errors will be 
between 4 and 20 m/s. These results suggest that the obtained tomogram is relatively insensitive 
to errors in the traveltimes.

5.3.2. Model resolution matrix
The second tool to evaluate a derived inverse model is determining the model resolution 

matrix. Model resolution matrix inquires how closely an estimated model is matched to the true 
model (Yao et al., 1999; Aster et al., 2013). The model resolution matrix becomes:
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 error (mi)= sqrt[Cov(mii)]  . (14)

If R(m) becomes an identity matrix, it means that each model parameter is uniquely estimated. 
Otherwise, the estimates of the model parameters are the weighted averages of the true model 
parameters. On the other hand, if the diagonal entry of MRM corresponding to a particular grid 
cell is less than 1, then the model slowness of the cell is also affected by the slownesses of 
surrounding cells. If the diagonal element is 1, then the model slowness of the cell is affected only 
by the true slowness of the cell (Moret et al., 2006).

Fig. 12a displays the model resolution matrix for the real data. The diagonal trends in the 
matrix are visible. Fig 12b displays the diagonal entries of the model resolution matrix. The 
larger value entries indicate better-resolved grid cells and the lower values correspond to poorly-
resolved cells.

Fig 12 - a) Model resolution matrix and b) 
Diagonal entries of the model resolution matrix.

6. Conclusions

In this paper, we have suggested a sequential hybrid approach based on a local and a global 
optimization algorithm for solving nonlinear crosshole traveltime tomography. PSO was selected 
for the global optimization scheme and the LLS were used for local optimization. The PSO was 
applied to obtain a good starting velocity model for the LLS scheme.

With the proposed (sequential hybrid) method, the solution can be approached at a faster speed 
rather than using the PSO alone. Furthermore, this strategy improves the LLS inversion results 
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by avoiding its shortcomings in the Jacobian partial derivative matrix computation, selecting the 
starting model, and premature convergence towards local minima.

Applied on both noisy and noise-free data sets, inverting for the synthetic crosshole data 
indicated that the sequential hybrid optimization approach is more effi cient for estimating the 
velocity model between two wells rather than using the LLS alone. Also, in order to evaluate the 
results obtained by the PSO algorithm, it is compared with the result from the simulated annealing 
approach applied on the noise-free data. The results obtained by the PSO are shown to be superior.

Finally, a real data from the Seinsfeld test site was inverted by the sequential hybrid optimization 
and a low-velocity lens (~2500 ms-1) between 40 and 48 m was detected. The model covariance 
matrix of the obtained tomogram show that all of the velocity errors (except low ray density cells) 
are less than 20 m/s and greater than 4 m/s.
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