
MIDI attributes and ML for seismic data classifi cation Boll. Geof. Teor. Appl., 59, 71-94

71

 Application of Machine Learning and Digital Music Technology 
 to distinguish high from low gas-saturated reservoirs

 P. DELL’AVERSANA, G. CARRASQUERO, G. GABBRIELLINI and A. AMENDOLA

Eni S.p.A. Upstream and Technical Services, San Donato Milanese (MI), Italy

 (Received: July 4, 2017; accepted: December 20, 2017)

ABSTRACT  In this paper, we discuss a novel approach of pattern recognition, clustering and 
classi  cation of seismic data based on commonly applied techniques in the domain 
of digital music and in musical genre classi  cation. Our work  ow starts with accurate 
conversion of seismic data from SEGY to Musical Instrument Digital Interface (MIDI) 
format. Then, we extract MIDI features from the converted data. These can be single-
valued attributes related to instantaneous frequency and/or to the signal amplitude. 
Furthermore, we use multi-valued (or “high-level”) MIDI attributes that have no 
equivalent in the seismic domain. For instance, we use MIDI features related to 
melodic, harmonic and rhythmic patterns in the data. We discuss an application to real 
data. We apply a Machine Learning approach to the MIDI-converted seismic data set 
with the purpose of accurate seismic facies classi  cation. The  nal objective of the test 
is to distinguish between geological formations prevalently formed by clay, from two 
different gas-bearing sandy layers: one is a low gas-saturated reservoir and the other 
one is a high gas-saturated reservoir. In this paper, we present encouraging results. 
Considering the novelty of our approach, additional investigations are in progress on 
larger data sets, for a complete understanding of the physical meaning of the new 
“high-level” MIDI attributes.
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1. Introduction

Spectral decomposition methods have been applied in the hydrocarbon industry over the past 
few decades to extract the characteristic frequency components from seismic data and identify 
low frequency anomalies. These can be used as possible indicators of hydrocarbon accumulations 
(Klimentos et al., 1995; Castagna and Sun, 2006; Wang, 2007). Some authors assume that the 
presence of low frequency anomalies in correspondence of thick gas reservoirs can be caused by 
variable attenuation of the seismic waves (Winkler and Nur, 1982; Kumar et al., 2003). In fact, 
higher frequencies are expected to be attenuated more than the lower frequencies by a signi  cant 
oil/gas  lled reservoir. Other authors assume that the decrease in seismic velocity is the main factor 
causing low frequency anomalies associated with gas reservoir zones (Tai et al., 2009). Castagna 
et al. (2003) apply a technique of Instantaneous Spectral Analysis (ISA) based on seismogram 
decomposition into constituent wavelets using wavelet transform methods for detecting low-
frequency shadows associated with hydrocarbons. In their work, these authors discuss the bene  ts 
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and limitations of their approach compared with other time-frequency analysis techniques.
Despite the good results obtained by advanced spectral decomposition approaches, an important 

question remains open. This is the intrinsic dif  culty to distinguish between scenarios of high or 
low gas saturation. In fact, it is well known that signi  cant seismic amplitude anomalies, including 
low frequency anomalies, are often ascribed to low gas saturation in the reservoir (O’Brien, 2004). 
This misleading condition is often named “the  zz-water” effect. Batzle and Wang (1992) provide 
an excellent discussion on how gas distribution affects seismic attributes. The crucial question 
is that high seismic amplitudes and frequency variations can be clear evidences of the presence 
of gas in a reservoir, but they are poor quantitative indicators of the degree of gas saturation. 
Gas saturation of a few percent has an effect on P-wave velocity comparable to that of full gas 
saturation, making any distinction between the two scenarios dif  cult or even impossible. This 
dilemma remains unsolved even when applying advanced spectral decomposition analysis.

To tackle the above open question, in this paper, we introduce an approach based on new 
attributes derived through a different type of seismic data analysis. We start from applying advanced 
techniques of spectral decomposition to our data set. As in other approaches, but with a novel 
work  ow, we try to identify amplitude/frequency anomalies and other “particular signatures” 
possibly associated with hydrocarbon accumulation. However, unlike previous researches in this 
 eld, we derived and applied the attributes in an unusual domain. This is the domain of digital 

music. We transform the seismic data into a musical format known as MIDI (Musical Instrument 
Digital Interface). This is a standard protocol used in digital music and represents a powerful 
symbolic format. As explained in this paper, this new “musical” representation of the seismic 
data offers a multitude of advantages. In the following sections, we discuss how the bene  ts 
of established geophysical techniques can be constructively combined with innovative methods 
recently developed in other domains. These  elds include digital music, machine learning, 
Musical Information Retrieval (MIR), and musical genre classi  cation.

2. From time series to S-spectrograms

In previous works, we introduced our approach based on soni  cation, for analysis and interpretation 
of geophysical data (Dell’Aversana, 2013, 2014; Dell’Aversana et al., 2016a). We apply the Stockwell 
Transform (or S-Transform) in order to perform accurate time–frequency analysis. This transform 
applied to a generic time dependent signal x(t), is given by (Stockwell et al., 1996):
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where is the time where the S-Transform is calculated and f is the instantaneous frequency. The 
exponential function in the integral is frequency dependent. This allows the windowing function 
scrolling the time series as a function of the frequency. This transform is appropriate for analysing 
seismic signals, where instantaneous frequency information changes over time (non-stationary 
signals).

The left panel of Fig. 1 shows a real seismic trace and the relative Stockwell spectrogram.
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3. From S-spectrograms to MIDI attributes

The next step in transforming geophysical data into musical  les is to convert the physical 
quantities of a spectrogram (frequency, time, and amplitude) into “basic” MIDI attributes (such 
as pitch, sound intensity, and note length). The right panel of Fig. 1 shows how seismic data 
are progressively translated into audible sounds, moving from time series to spectrograms and 
from these to MIDI  les. The MIDIs are then imported into digital music software (“sequencer”, 
synthesizer, virtual mixer, etc.) and, after proper frequency transposition, are transformed into 
audible sounds.

We use the following mathematical relationship (Dell’Aversana et al., 2016a) between the 
frequency f and the MIDI note number n:

f (n) = 440 2(n-58)/12           (2)

In Eq. 2, the symbol n indicates the sequential number of MIDI notes. For instance, n = 108 
corresponds to B8 (f = 7902 Hz).

As mentioned, the geophysical data transformed into MIDI  les can easily be transposed 
into the audible frequency range (between 30 and 20000 Hz). These MIDI data can be played 
by using modern computer music tools, such as sequencers. Finally, audio analysis is performed 
simultaneously with interpretation of images, as a complementary tool (audio-video display).

Beside the basic MIDI attributes there are “high level MIDI attributes”. These are, for instance, 
patterns of MIDI notes forming special melodic, harmonic and rhythmic trends. Taken together, 
these attributes form a sort of “musical texture” that can be related to speci  c musical genres. 
Such patterns and textures are very useful in the process of Musical Information Retrieval and in 
Musical Genre Classi  cation because they allow distinguishing different musical categories and/
or identifying individual songs in large databases.

Fig. 1 - Left panel: example of a spectrogram of a seismic trace obtained by applying the Stockwell transform (after 
Dell’Aversana et al., 2016a). Right panel: work  ow through which seismic data are transformed into digital sounds.

Seismic
trace

Spectrogram

MIDI  le

Sequencer,
Virtual studio

Sound



Boll. Geof. Teor. Appl., 59, 71-94  Dell’Aversana et al.

74

4. Benefi ts of conversion from seismic to MIDI format

The conversion from seismic to MIDI formats offers a multitude of advantages. First, the MIDI 
standard represents a light symbolic representation of the seismic data. It allows creating discretized 
spectrograms of the original signal, where every single digital (musical) note represents a local 
spectral information. In fact, the tone of the note is derived from the instantaneous frequency of 
the signal, and the sound intensity is derived from the local amplitude of the original signal itself.

These MIDI  les take up little memory (a few Kbyte for each seismic trace), as they do 
not contain the original waveform, but just the instructions to reproduce it using a “sequencer”. 
Consequently, the conversion to MIDI brings meaningful information from a physical point of 
view and, at the same time, can be processed very quickly.

Many examples of these  les can be found on the web (see for instance the YouTube 
Channel at the link https://www.youtube.com/channel/UCp4VG897AsFiSoBrvEnyRJA. 
A full e-lecture including examples of audio-video display can also be found here: 
https://www.youtube.com/watch?v=tGhICX2stTs.

The possibility to reproduce geophysical data through audio-video display offers the additional 
bene  t of a dual perception of the same information. We have veri  ed the effectiveness of this 
“multi-sensory” interpretation approach through individual and group tests, involving different 
types of geoscientists in the analysis/interpretation of audio-video display (Dell’Aversana et al., 
2016a). The feedback of the specialists was positive in about 90% of those interviewed in the 
tests, con  rming that simultaneous audio-visual display of seismic data supports the interpretation 
process under many aspects (fault detection, anomaly detection, seismic facies analysis, and so 
forth).

This interactive audio-visual approach is intriguing and useful, but necessarily time consuming. 
Consequently, it can be applied to restricted areas of the geophysical data volume, for instance 
in selected portions of the data where imaging is affected by poor signal-to-noise ratio. A further 
bene  t of having the data in MIDI format is that several processes of automatic analysis can be 
applied ef  ciently to large databases, as happens in the domain of digital music. For instance, 
automatic pattern recognition, data mining, clustering and classi  cation, are all processes that 
can be made extremely ef  cient when applied to “light” volumes of MIDI  les derived from 
geophysical data sets (Amendola et al., 2017).

5. Machine Learning and Musical Information Retrieval for seismic data classifi cation

In our previous works (Dell’Aversana, 2014; Dell’Aversana et al., 2016b; Amendola et al., 
2017), we introduced the idea that standard seismic data converted into MIDI format can be 
analysed and classi  ed using the same methods that are commonly applied for musical pattern 
recognition. We imported and applied some algorithms of Musical Information Retrieval 
(MIR) into the geophysical domain. The main goal of MIR is to recognize occurrences of 
a musical query pattern within a musical database, such as a collection of musical pieces 
available in Internet databases. Our approach addressed to geophysical data classi  cation 
uses the same criteria, with the difference that the database consists of sounds obtained by 
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converting geophysical data into musical formats. In other words, we adapt fast and accurate 
MIR algorithms to geophysical purposes. In our previous applications, we demonstrated the 
validity of our approach at variable spatial scales. In fact, we showed that “high-level MIDI 
attributes” (such as those based on melodic, harmonic, and rhythmic patterns) can contribute 
to the correct classi  cation of seismic facies. In the following paragraphs, we show how the 
same approach can be applied to the problem of distinguishing high from low gas-saturated 
sand reservoirs.

MIR commonly uses a wide range of classi  cation approaches and algorithms (McKay, 2004). 
We applied a hybrid-supervised approach to our real data combining several types of learner 
algorithms, such as the k-Nearest Neighbours algorithm (or K-NN for short), Arti  cial Neural 
Networks (ANNs), Support Vector Machine (SVM), Random Forest and other methods.

In K-NN, an object is classi  ed taking into account the properties of its neighbours 
(commonly forming the training set). These classi  ers offer advantages in training speed; 
however, they are limited in modelling relationships between features. Thus, we used K-NN 
for a preliminary classi  cation step based on basic MIDI features only (pitch and sound 
intensity distribution). The classi  cation approach is based entirely on some type of distance 
that expresses the similitude of records estimated on one or more features. Instead, ANNs take 
into account the relationships between the features. ANNs consist of units (emulating human 
neurons) connected by links, each with an associated weight. Learning in ANNs takes place by 
modifying the values of the weights through an iterative optimization process. We used ANNs 
to re  ne the previous classi  cation step, adding also “high level” MIDI attributes, such as 
melodic, harmonic and rhythmic patterns.

SVM is a machine learning technique that separates the attribute space with a hyperplane. It 
allows maximizing the margin between the instances of different classes or class values.

Besides K-NN, ANNs and SVM, other techniques used in this paper (such as Decision Tree, 
Naïve Bayes, and Random Forest) have already been applied and discussed in geophysics for 
many different purposes (Aminzadeh and de Groot, 2006). Consequently, we skip the detailed 
description of these methods. However, our approach to classify geophysical data transformed 
into MIDI  les is new in geophysics. In the next section, we discuss a speci  c test to demonstrate 
the effectiveness of our method in distinguishing sandy/clay and shale formations, low gas-
saturated and high gas-saturated sandy reservoirs.

6. A small-scale classifi cation test

6.1. Problem description and methodological aspects
The methodological objective of this test is to verify if our classi  cation approach based on 

MIDI attributes can distinguish, in principle, seismic facies related to geological formations with 
different rock-physical properties and  uid content. We selected an area where an exploration 
well encountered a stacked reservoir. This consists of unconsolidated gas bearing sandstones of 
Upper Pliocene, deposited in a turbidite channel system. The lateral continuity of the channels is 
interrupted by erosional effects and by variable clay content. The logs in the upper layer revealed 
low gas saturation, whereas the lower formation showed high gas saturation. Both targets are 
sealed by prevalent clay formations.
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We start the discussion with a relatively small seismic data set. This enabled controlling the 
classi  cation results vs. the wide range of possible parameters and attributes to select. In the  nal 
part of this paper, we discuss an extension of this limited small-scale test to a larger 2D data set. 
Furthermore, an additional application of our method to an industrial data set, but with different 
purposes, is discussed in a previous paper (Amendola et al., 2017).

For our test, we selected an ambiguous case drilled by an exploration well where seismic data 
show two signi  cant re  ection events and amplitude-frequency anomalies in correspondence of 
two reservoir layers (Fig. 2).

Only the lower channel showed high gas saturation, whereas the upper channel showed just 
low gas saturation (see right panel of Fig. 2). Unfortunately, the distinction between low and 
high gas saturation effect is ambiguous from the seismic data. These two reservoirs correspond 
to the re  ection events at about 2500 and 2600 ms in the section of Fig. 2. These re  ections both 
show high amplitude. If we analyse seismic data trace by trace, we see that distinguishing high 
from low gas saturation is dif  cult in both time and frequency domains. Unfortunately, this is a 
common problem in the entire considered exploration area, where sand-channels with low gas 
saturation show relatively high seismic response.

In this initial classi  cation test, we used all the seismic traces sampling the reservoir channels 
and the clay seals, for a lateral extension of more than 500 m and a time interval of 300 ms. In 
this paragraph, we focus on just a few individual traces (see Fig. 2 for trace location). As shown 
in Figs. 3a and 3b, the spectrograms in correspondence of both high and low gas saturation show 

Fig. 2 - Left panel: seismic image of two gas-bearing layers with different degree of gas saturation. The exploration well is 
located roughly in the middle of the image. The letters “a”, “b” and “c” on the top of the seismic section, indicate the location 
of the individual seismic traces shown in the next Figs. 3a, 3b, and 3c, respectively. Right panel: CPI logs showing porosity, 
water saturation and clay volume in the well crossing the seismic section. The vertical scale of the two panels are different, 
because they show data with different resolution. The arrows help to correlate the well logs with the seismic section. 
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Fig. 3 - Examples of three 
(panels a, b, and c) seismic 
traces (upper part of the 
panel) and their corresponding 
spectrograms (lower part of 
the panel) in proximity of 
the same well showing the 
time-frequency responses for 
both low gas and high gas-
saturation scenarios. Red and 
brown colours indicate high 
seismic amplitude. Vertical 
bars indicate approximately 
the core of the amplitude 
anomaly in correspondence of 
the two low gas and high gas-
saturated layers (see Fig. 2 for 
the position of the three traces).
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a signi  cant low frequency anomaly. Fig. 3a shows that the main anomaly (centred around 30-
35 Hz) appears in correspondence of the low gas-saturated layer. Instead, Fig. 3b shows another 
seismic trace not too far from the previous one (about 100 m), where the main anomaly (centred 
around 20-25 Hz) appears in the layer with high gas saturation.

The traces of Figs. 3a and 3b show signi  cant differences in terms of relative amplitude in 
the two channels. In fact, as shown in the seismic section of Fig. 2, the seismic response can be 
discontinuous due to erosional effects affecting the channels. The clay volume can change at 
small spatial scale, affecting formational porosity and saturation.

Fig. 3c shows another seismic trace and its spectrogram located towards the left border of the 
reservoir (see Fig. 2). In this case, the main amplitude anomaly is centred at a prevalent frequency 
of about 30 Hz in correspondence of the high gas-saturated channel.

In summary, Figs. 3a, 3b and 3c show that the individual traces have variable “behaviours” in 
the two reservoir layers, even at relatively short lateral distance (in the range of hundreds metres 
or less). The key message is that, the amplitude of the anomalies and the frequency content might 
not be suf  ciently diagnostic to distinguish high from low gas saturation cases in this complex 
geological situation.

Thus, we attempted to distinguish these different scenarios using a Machine Learning approach 
based on “high-level MIDI” attributes. These are mainly derived from patterns of sounds (in 
terms of MIDI musical notes), and not only from instantaneous spectral features.

To achieve our goal, we used a subset of the seismic data selected near the well as “labelled 
data” for training the automatic classi  ers based on MIDI features. Of course, the reliability of the 
classi  ers and their range of applicability increase if the training phase is expanded to larger data 
sets. Indeed, we increased the size of the training data set signi  cantly when we expanded the test 
to the entire seismic section (as discussed in the  nal part of this paper).

We started de  ning an initial taxonomy consisting of three main classes: prevalent clay, low and 
high gas-saturation sands. We de  ned these three classes with the help of the CPI well logs shown in 
Fig. 2, based on the measured ranges of porosity, saturation and clay percentage. In our taxonomy, the 
class “prevalent clay” corresponds to 60-70% of clay percentage. “High saturation and low saturation” 
classes correspond to sandy channels characterized by the prevalence of sand and relatively small clay 
percentage (25-30%). In the channels, gas saturation ranges from about 70-75% to 5-10%, respectively. 
When gas saturation is near zero, the term “brine sands” should be more appropriate. However, 
we conventionally continue to use the class name “low gas saturation” so as not to complicate the 
classi  cation taxonomy too much. Only in some  gures (Figs. 20 and 21), we use the equivalent 
terminology “low gas-saturated or brine sands” for that class. We will see that the seismic response is, 
apparently, very similar in the various types of sands, independently of  uid saturation. This ambiguity 
makes interpreting the seismic facies and  uid distribution in this area extremely dif  cult.

Finally, as we can see from the CPI logs, porosity is rather variable, depending on clay 
percentage (see Fig. 2).

Then we performed the phase of feature extraction. We extracted MIDI features related to 
pitch, sound intensity, note duration, melodic, harmonic and rhythmic patterns. We started with 
classi  cation tests based on basic features commonly used in “standard” seismic attribute analysis 
related to frequency and signal intensity (instantaneous spectral features). We progressively 
increased the number of the features, including also multi-valued features that have no equivalent 
“conventional” seismic attributes, like melodic, harmonic and rhythmic patterns.
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6.2. MIDI features
Due to the novelty of our approach based on MIDI features, it is necessary to discuss some 

signi  cant examples of these unusual attributes with additional details. Further descriptions can 
be found in Dell’Aversana et al. (2016b).

We start discussing how MIDI  les can be displayed, in order to show their principal features.
Fig. 4 shows an example of MIDI display (bottom panel) of the same seismic trace (top panel) 
shown in Fig. 3b. This lower display is known as “MIDI piano roll”. Two among the most relevant 
MIDI features are shown. These are pitch and “MIDI velocity”, related to instantaneous frequency 
and sound intensity, respectively. In the lower panel, the vertical axis represents the pitch through 
a virtual keyboard shown on the left boundary of the  gure. It is commonly indicated in terms 
of musical notes. However, it is related to instantaneous frequency and is obtained from the 
S-spectrogram using Eq. 2. Note that the original frequency content of the seismic data has been 
transposed into the audible frequency range, so that we can listen to the derived MIDI  le using 
a “sequencer software” package.

The different colours indicate sound intensity associated to the musical notes: red corresponds 
to high values and blue represents low values. This type of display is a sort of discrete spectrogram 
where each pixel represents a musical note with a certain sound intensity. The horizontal axis 
represents the “MIDI execution time” (settable by the user, so that the MIDI  le can be listened 
at desirable execution rate). The direction from left to right corresponds to increasing travel time 
or, equivalently, increasing depth.

Fig. 5 is the same trace of the previous  gure (top panel), but is now represented as a pitch 
histogram (bottom panel).

In this case, colours represent the variable pitch. The scale on the left shows that a different 
color is assigned to each musical note (pitch) in every octave. For instance, red is assigned to the 
musical note C, yellow is assigned to the musical note F, and so forth. Pitch histogram is a useful 
MIDI “multi-valued, or high-level, or polyphonic feature” that provides a discrete representation 

Fig. 4 - Same seismic trace of Fig. 3b (upper panel) and its MIDI piano roll display (lower panel).
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Fig. 5 - Same seismic trace of Fig. 3b (upper panel) and its MIDI pitch histogram (lower panel).

Fig. 6 - Same seismic trace of Fig. 3a (upper panel) and its MIDI pitch histogram (lower panel).

of the frequency content of seismic trace segments. It can be diagnostic for distinguishing different 
seismic facies. For instance, looking at Fig. 5, we can see that each hydrocarbon-bearing channel 
(high and low gas-saturated sands, respectively) shows its peculiar pitch histogram. Consequently, 
it is reasonable to expect that the pitch histogram can contribute to distinguish/classify different 
targets with different saturations.

For comparison, we report the pitch histogram of the trace of Fig. 3a. In particular, we can note 
the different “rhythmic” and “harmonic” trends of some pitches in the two distinct reservoir channels, 
in both Figs. 5 and 6. These variable pitch trends suggest that MIDI features based on ensembles of 
MIDI notes (often called “high order MIDI attributes”) can be useful for automatic classi  cation of 
different seismic facies. This point will be further exploited and veri  ed in the next sections.
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MIDI spectrograms and pitch histograms can be analysed, processed,  ltered, combined, mixed, 
stacked and quickly integrated with other information, using the advanced technology commonly 
applied in the industry of digital music. Fig. 7 shows a low pass  lter of the pitch histogram of the same 
seismic trace of Fig. 3b, highlighting the low-frequency anomaly in the layer with high gas saturation.

6.3. Classifi cation workfl ow
After clarifying the basics of MIDI display tools (MIDI piano roll and pitch histogram), we 

can now describe some details of our Machine Learning classi  cation approach. This is based 
on the same criteria and work  ow commonly used in Musical Genre Classi  cation. We simply 
adapted the work  ow to MIDI  les extracted from our converted seismic data. For clarity, we 
summarize the entire procedure with a synoptic block diagram (Fig. 8).

Fig. 7 - Same seismic trace of Fig. 3b (upper panel) and its  ltered pitch histogram (lower panel).

Fig. 8 - Block diagram of the entire classi  cation work  ow.
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First, we tran sformed all the original SEGY seismic traces into MIDI  les, following the 
procedure explained above (using the S-Transform). Then we split each MIDI trace into MIDI 
segments corresponding to 100 ms of the original SEGY  le. This size of the time window is 
adequate for full sampling the seismic events of interest. These effectively happen in time ranges 
in the order of 50-100 ms (see the marked re  ection events in the seismic traces and in their 
correspondent MIDI displays shown in Figs. 3 to 7). Furthermore, this segment length allows 
detecting patterns of MIDI notes and extracting high-level MIDI features based on melodic, 
harmonic, and rhythmic properties from the data. Using smaller time-segments could prevent to 
extract these attributes with a signi  cant statistical meaning.

We imported all the MIDI  les into a software platform of digital music for visualizing, 
processing and listening to our data (a commercial sequencer). We, then, uploaded all the MIDI 
 les into another platform for MIR and Musical Genre Classi  cation. We extracted the MIDI 

attributes from our MIDI  les and started the phase of training, using a subset of labelled data. 
We performed the training phase on a  xed number of traces near the wells. A subset of the data 
was used as “test data set” for estimating the effectiveness of the training (cross-validation tests). 
At this initial stage, the training data was relatively small: it consisted of about 40 MIDI traces 
corresponding to seismic segments of 100 ms representative of the different classes (“high gas-
saturated sands”, “low gas-saturated sands”, “prevalent clay”). These samples were extracted 
from seismic traces around one exploration well in a distance range of about 150 m. However, 
as explained in the following, we included many additional samples (many hundreds of MIDI 
 les only for the training) when we expanded our approach to the entire seismic section. We 

discuss the different performance of our classi  ers on the training data in the next paragraph, 
using confusion matrices and various classi  cation indexes.

In our training, we started from the simplest attributes (related to pitch and sound intensity) 
moving progressively to multi-valued features (melodic, harmonic, and rhythmic patterns). 
At each trial, we evaluated the relative performance of the classi  er(s) for each ensemble of 
attributes. Our classi  cation process was aimed at classifying the data into three main classes: 
“low gas-saturation layer”, “high gas-saturation layer” and “prevalent clay layer” associated to 
different seismic segments for each seismic trace. We tested and used a combination of classi  ers 
including K-NN, ANN, SVM, Random Forest, Decision Tree and other methods.

6.4. Statistical analysis of the MIDI attributes
In order to show the different diagnostic power of the various MIDI features, we discuss brie  y 

the results of a statistical analysis of some of the most relevant MIDI attributes extracted from the 
seismic traces. The physical meaning of the main MIDI attributes will appear progressively clear 
during the discussion.

First, we veri  ed the statistical distributions of the MIDI features in the two reservoir channels 
characterized by different gas saturation and in the formation with prevalent clay sealing both reservoirs.

In the following graphs, we plot the normalized values of MIDI features vs. their probability 
density curves (Botev et al., 2010) observed in the training data set (labelled subset of our data). 
Plotting the normalized values centred on the zero allows better comparison between different 
attributes having different physical meaning.

Fig. 9 shows the distribution of the normalized “Most common pitch” of the MIDI notes 
sampled in the seismic segments related to the two reservoir intervals and in the prevalent clay 
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formation. We have already clari  ed that the MIDI pitch is (not linearly) related to the instantaneous 
frequency of the seismic data through Eq. 2. The “Most common pitch” is calculated as the MIDI 
pitch value of the most frequent pitch divided by the number of possible pitches in the selected 
time interval (100 ms in our case).

Despite its relative simplicity, the “Most common pitch” is an important MIDI feature that 
can contribute, partially, to classify the data. However, we see that there is some ambiguity in 
separating prevalent low-gas from high gas-saturated layers. Thus, using this feature without 
any other attribute could lead to an ambiguous data classi  cation. Fortunately, in the practice 
of Musical Genre Classi  cation, a great variety of independent MIDI features is available. As 
explained earlier, we can use ensembles of features combining (using simultaneously) many of 
these attributes for our classi  cation purposes.

Pitch variety is another MIDI feature that takes into account the degree of heterogeneity of 
pitches used in a  xed time interval. It is a “second-order” feature (derived from other basic 
features). It shows an interesting diagnostic power for discriminating the different classes, at least 
in this speci  c case (Fig. 10).

Fig. 9 - Probability density distribution of the normalized 
“Most common pitch”. In this and in the following 
 gures, blue indicates the “high gas-saturated layer” 

class, red indicates the “low gas-saturated layer” class, 
green indicates the “prevalent clay layer” class.

Fig. 10 - Probability density distribution of the normalized 
“Pitch variety”.
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The MIDI feature called “Variation of Dynamics” shows an additional interesting statistical 
distribution in our training data (Fig. 11). It is the standard deviation of loudness levels of all 
MIDI notes in a  xed time interval and is related to variability of seismic signal intensity. From 
Fig. 11, we can see that this feature allows a good class separation, enabling a clear distinction of 
low gas saturation class from the other two classes.

Another interesting MIDI feature is “Average note duration” (standard deviation of note 
durations in a  xed time interval). This MIDI attribute is linked to both the melodic and rhythmic 
properties of the data. Its statistical distribution (Fig. 12) shows, although there is some overlap 
between the clay and low saturation classes, that this MIDI attribute can be optimal for clear 
identi  cation of the high saturation class.

Fig. 13 shows that the MIDI feature called “Rhythmic variability” is complementary to 
“Average note duration”. It is reasonable to expect proper classi  cation of our data set in all of 
the three classes using these two features together. We will verify this assumption in the next 
paragraph where we discuss the classi  cation results.

We can extract many rhythmic attributes from MIDI data. Almost all of them can be useful 
for classi  cation purposes because they enable detecting important patterns in the MIDI data. 

Fig. 11 - Probability density distribution of the normalized 
“Variation of Dynamics”.

Fig. 12 - Probability density distribution of the normalized 
“Average Note Duration”.
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They are related to autocorrelation properties of the signal. It is well known that autocorrelation 
allows comparing a signal with versions of itself delayed by successive intervals (lags). In other 
words, it allows  nding repeating patterns characterized by different periodicities within a signal. 
In terms of MIDI musical data, the relative strength of different rhythmic pulses can be found by 
autocorrelation. In our speci  c case, we used the following autocorrelation function (McKay, 2004):

A(lag) = 1/N –1 x(n) x(n-lag).     (3)                                        n=0

In Eq. 3, n represents the input sample index (in MIDI Tick, that is the MIDI sampling time 
unit), N is the total number of MIDI Ticks, x is the sequence of MIDI notes and lag is the delay 
in MIDI ticks (0 lag < N).

We could continue with this type of histogram adding similar  gures for many other MIDI 
features, but the message should be clear. Some features associated to pitch, rhythmic, dynamics, 
harmonic, and melodic properties of the data can cooperate for data classi  cation.

6.5. Training
The analysis of MIDI attributes on labelled traces (training data set) allowed us to optimize 

the work  ow for the classi  cation of unlabelled traces. In fact, using the most sensitive MIDI 
features, we tested different classi  cation methods and evaluated their effectiveness on a test 
data set. This process is commonly (but not exclusively) performed using a technique called 
“Cross-validation test”. This is a model validation technique aimed at assessing how the results 
of a statistical analysis will generalize to an independent data set. It works by partitioning a 
labelled sample of data into complementary subsets; we perform the classi  cation on one labelled 
subset (called the training set), and then validate the analysis on the other labelled subset (called 
the validation set or testing set). In our speci  c test, we applied several learning algorithms and 
classi  cation methods including ANNs, Decision Tree, Random Forest, Naïve Bayes, KNN, and 
SVM. We used all the MIDI features described above (plus other MIDI features not explicitly 
discussed here), considering their mutual complementarity. However, we veri  ed that some 
features work more effectively than others.

Fig. 13 - Probability density distribution of the normalized 
“Rhythmic Variability”.
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The effectiveness of the different classi  cation methods can be estimated through the 
“Confusion matrix” that gives the number/proportion of instances between the predicted and actual 
class. Fig. 14 shows, for example, the Confusion matrices for four different learner algorithms: 
Decision Tree, ANN, Random Forest, and SVM. All these matrices provide a quantitative measure 
of the recognition rate. The principal diagonal of each matrix shows the match (in %) between 
predicted and actual class.

We can see that the predictions obtained by Decision Tree and ANN produced some mismatch 
between predicted and actual values. We veri  ed through many tests (not discussed here) that 
classi  cation results improve if we set (by trial and error) the parameters properly in the ANN 
algorithm applied for the training (such as the momentum and the learning rate).

However, at least for this speci  c test, Random Forest and SVM seem to work more 
ef  ciently than the other learners do. Their performance depends on the MIDI features used.

In order to provide a complete assessment of the quality of the classi  cation results, Table 
1 shows two quantitative indexes of the classi  cation performance and reconstruction rate for 
each individual method (including other methods used in our test and not mentioned in Fig. 14). 
“Classi  cation accuracy” (CA) is the proportion of correctly classi  ed examples. “Precision” is 
the proportion of true positives among instances classi  ed as positive.

Fig. 14 and Table 1 show very good performance, especially for Random Forest and SVM 
methods. These results might appear rather suspicious, due to over  tting/overtraining problems. 
The k-fold validation method we used helped limit this type of problem. As con  rmed by various 
authors (McKay, 2004), generally a value of k = 10 (where k is the number of folds in which we 
split the data) is what is suggested to minimize the over-  t and minimize the bias in training the 
population selection. However, in our cross-validation tests, we tested several values for k (from 
2 to 10), using different percentages of data for training (from 20 to 66%).

Fig. 14 - Confusion matrix showing the recognition rate for four different learner algorithms: Decision Tree, ANN, 
Random Forest, and SVM.
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6.6. Classifi cation 
After identifying the most promising learners and the most sensitive MIDI features on the 

training data set, we moved to the  nal part of the work  ow, the classi  cation of unlabelled data.
Naturally, we focused our efforts on the learners showing the best performance on the 

labelled data (such as SVM and Random Forest). However, we did not neglect analysing the 
results of the remaining learners too (such as Decision Tree and Naïve Bayes). As an example 
of our classi  cation results, we show (in Fig. 15) the map of the different classes plotted in a 
two-dimensional feature space applying the SVM learner and the MIDI features of normalized 
“Average note duration”, “Rhythmic variability” and “Average melodic interval”.

The classi  cation maps in different two-dimensional feature spaces shown in Fig. 15 are 
encouraging. They tell us that the selected MIDI features are able to drive the SVM learner 
towards a proper classi  cation of our unlabelled data. However, there are a few points that seem 
to fall in the wrong domains. For instance, in both panels we can see red samples classi  ed as 
“low saturation” falling in the green domain of the “clay” class.

The classi  cation result improves if we project the data into a new 2D feature space 
obtained through Principal Component Analysis (Fig. 16). In this new transformed algebraic 
space, the three classes are better separated, although a few samples appear isolated in the top 
of the image. It is possible that they belong to a fourth category that is different from the three 
classes assumed in our initial taxonomy. That observation will motivate us to extend the test 
and include an additional class in our taxonomy. We discuss this test extension in the  nal part 
of the paper.

Finally, Figs. 17, 18, and 19 show some examples of normalized MIDI attributes for the 
classi  ed MIDI  les. They are plotted along the reservoir distance in each one of the three layers 
(low gas-saturated reservoir at the top, prevalent clay in the centre, and high gas-saturated 
reservoir at the bottom). These  gures help understand the relative values of the MIDI features 
and how they are complementary for distinguishing the three classes. We notice some apparent 
outliers, like for instance the large yellow circle at the right end of the clay layer in Fig. 
17. These points could be explained as noisy or misclassi  ed data. In fact, we assumed only 
three classes in our taxonomy. However, each layer could show internal geological variations. 
Consequently, the number of classes explaining the data could be higher than three (see next 
paragraph).

Table 1 - Indexes of the classi  cation performance for the various methods.

Method CA Precision

Decision Tree 0.793 0.808

ANN 0.828 0.842

AdaBoost 0.862 0.901

Naive Bayes 0.931 0.931

Random Forest 0.966 0.969

SVM 0.966 0.969
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7. Extending the test to the entire section

After testing our approach within a limited portion of the seismic section (showed in Fig. 2), 
we extended our classi  cation approach to the entire section. We increased signi  cantly both the 
training and the unlabelled data sets (in the order of several thousands of MIDI  les for the last 
one). Consequently, although this data set is not as big as a typical “industrial data set”, it has a 
signi  cant statistical value for validating our approach.

We applied the same work  ow described in the previous sections, but this time we extended 

Fig. 15 - Map of classi  cation results using the SVM learner and two different couples of MIDI features: “Average Note 
Duration” and “Rhythmic Variability” (left), “Average Note Duration” and “Average Melodic Interval” (right). Each 
unlabelled MIDI time-segment (coloured circles) is plotted in the two-dimensional space at a location de  ned by the 
values of its MIDI features. We assigned a different colour to each class.

Fig. 16 - Principal Component Analysis map. The  rst 
two principal components (PC1 and PC2) allow a clear 
separation of the traces in three distinct classes. Each MIDI 
time-segment is plotted in the new two-dimensional space 
(coloured circles) at a location de  ned by the two principal 
components PC1 and PC2.
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Fig. 17 - Normalized Most Common Pitch for the 
classi  ed MIDI  les along the reservoir distance. 
The size of the symbols is proportional to the 
normalized value of the attribute. The colour scale is 
set in such a way that the normalized values increase 
from blue to yellow.

Fig. 19 - Normalized Variation of Dynamics for the 
classi  ed MIDI  les along the reservoir distance. 
The size of the symbols is proportional to the 
normalized value of the attribute. The colour scale is 
set in such a way that the normalized values increase 
from blue to yellow.

Fig. 18 - Normalized Average Note Duration for the 
classi  ed MIDI  les along the reservoir distance. 
The size of the symbols is proportional to the 
normalized value of the attribute. The colour scale is 
set in such a way that the normalized values increase 
from blue to yellow.

our analysis far away from the well location, in a distance range of about 5 km. Fig. 20 shows 
the results of our analysis in a time interval of 600 ms centred at target depth (see the rectangular 
shadowed area in Fig. 20). Fig. 21 shows a zoom of the same results qualitatively co-rendered 
with the same portion of the seismic section of Fig. 2.

In this test, we extended our analysis to include an additional class called “Shale rock” in our 
classi  cation taxonomy. The choice was driven by the analysis of the CPI in other wells in an 
adjacent area. Furthermore, as mentioned, the results of the small-scale test discussed in previous 
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Fig. 20 - Classi  cation results using Random Forest method co-rendered with the entire original seismic section (this 
is displayed in black and white, in the background, to better highlight the classi  cation results). In the shadowed 
area, colours mark different classes identi  ed through our MIDI based approach. We recall that we segmented the 
seismic traces into time windows of 100 ms. For each trace, the coloured symbols are positioned in the middle of the 
correspondent time segment, in order to allow a qualitative co-rendering of the classi  cation results with the seismic 
section.

Fig. 21 - Zoom of the same classi  cation results of Fig. 20, qualitatively co-rendered with the same portion of the 
seismic section of Fig. 2 (zoom area). Similar to Fig. 20, the continuous blue and red sequences of symbols inside 
the ellipses mark the two high and low gas-saturated sand channels, respectively, drilled by the exploration well. The 
uppermost ellipse highlights a further seismic event classi  ed as “low gas-saturated or brine sand”, through our MIDI-
based approach and without the support of CPI.
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sections, suggested the possibility of a fourth class for clustering properly the data. This new 
class is referred to a lithological type characterized almost exclusively by clay (percentage of clay 
greater than 80-85%). Together with the other class called “Prevalent clay”, it takes into account 
the variable content of clayey rocks forming the geological background.

Both Figs. 20 and 21 show just one example of classi  cation using the Random Forest method, 
co-rendered with the seismic section. However, it is worth noting that in this application (expanded 
to the entire section) we also used the other classi  cation methods, like ANN, SVM, Decision Tree, 
and so forth. Every segment of 100 ms of each seismic trace is classi  ed into one of the four classes; 
then it is marked with a speci  c colour and superimposed on the seismic section.

Looking at Figs. 20 and 21, the  rst ellipse from the bottom includes the zone that corresponds 
to the high gas-saturated sandy channel drilled at about 2600 ms. The ellipse immediately above, 
marks a “continuous red area” corresponding to the low gas-saturated sandy channel drilled by 
the same well. Both channels gradually change (laterally) into prevalent clay/shale formation 
(where symbols change from red to green/orange). These two channels are the same as those 
shown in the section of Fig. 2 (see Fig. 21 for comparison).

Our classi  cation results are geologically reasonable and are in good agreement with the well 
logs. In fact, looking at the colours explained in the legend of Figs. 20 and 21, we can recognize 
the sedimentary series encountered by the well in the time interval 2200-2800 ms (consisting of 
the two sandy reservoirs with different gas saturation and their respective clayey seals, as shown 
in the CPI of Fig. 2). Observing the complete section, we see that there are many areas marked 
as “prevalent clay” (green), “shale” (orange) and “low gas-saturated sands or brine sands” (red). 
Other wells drilled in the adjacent area effectively demonstrate that there is a large diffusion of 
shale and sandy formations characterized by variable percentage of clay, and showing variable gas 
saturation. In many cases, gas saturation is near zero, and it would be more appropriate to speak of 
“brine sands”. However, we did not introduce that further classi  cation term as a separate class, 
so as not to overly complicate the taxonomy.

The irregular spatial distribution of these formations properly re  ects the true geological/
sedimentary complexity of the area and the consequent irregular seismic response. We remark that 
in such a complex scenario, our approach has a predictive value. For instance, there is a clear seismic 
event included in the uppermost ellipse and highlighted by the question marks in both Figs. 20 and 
21 (it is much clearer in the last  gure). It has the same seismic appearance as the other re  ection 
event included in the  rst ellipse from the bottom. Consequently, its interpretation could be “high 
gas-saturated sands”. Unfortunately, we do not have any CPI information to calibrate this further 
seismic re  ection. Thus, the interpretation would remain ambiguous, unless we do not use our 
MIDI-based approach. In fact, as shown in Figs. 20 and 21, our method allows classifying that event 
as a probable “low gas-saturated or brine sand”, using the Random Forest method (and/or other 
classi  cation methods). This is an example of how the MIDI attributes can point the interpretation 
of seismic facies and of  uid distribution towards probabilistic solutions even in very dif  cult cases.

8. Open questions and work-hypotheses

The statistical analysis and the classi  cation work  ow discussed in this paper is based on a 
completely new category of seismic attributes derived from SEGY data transformed into MIDI 
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 les. This is an unusual approach for clustering, classifying and interpreting geophysical data. 
Consequently, several open questions and doubts can emerge.

These questions may be divided in two main categories, depending if they are focused on 
methodological or physical aspects.

The  rst methodological perplexity can derive from the fact that information of a data set does 
not change under domain transformation. Hence, quantitative interpretation of the post-stack data 
in time-domain should not be different from an interpretation in the “Stockwell domain” or in the 
“MIDI domain”.

A second question is why high-level MIDI features, such as rhythm and melody, should 
improve the performance of the classi  cation with respect to a learner trained only with attributes 
based on instantaneous properties of the spectrogram.

A third doubt about our methodology is related to the effectiveness of MIDI pitch-histogram. 
This is nothing other than a coded representation of the S-spectrogram. Why should the  rst type 
of representation work better than the second one?

The above questions are correlated in some way. First, it is worth noting that transforming 
seismic data into MIDI notes does not create any new information. Indeed, this is not our 
intention. On the other hand, MIDI  les have the advantage of a different representation of the 
same data. Such a new representation can be useful for many reasons. First because MIDI  les 
transform the spectrograms into discrete entities (generally called MIDI events). These can be 
easily codi  ed into new types of “second order attributes”. Consequently, data can be represented 
in the form of patterns (ensembles of MIDI notes and chords). In such a way, signal patterns, 
and not only local signals, can be highlighted and used for automatic classi  cation. Rhythmic, 
melodic, and harmonic properties implicitly contained in the seismic data can appear explicitly 
and can be used as discriminant features, as shown in our examples and in many  gures of this 
paper. All the statistical distributions of Figs. 9 to 13 show the complementarity of the many 
available MIDI features. These  gures explain why high-level MIDI features, such as rhythm and 
melody, should improve the performance of the classi  cation with respect to a learner trained, for 
instance, exclusively on the instantaneous frequency. Our ranking analysis performed on many 
MIDI features con  rms that these “ensemble” properties of the data (associated to patterns of 
notes), can classify data better than features based exclusively on “local” spectral properties.  This 
is one reason why many experts of Musical Genre Classi  cation and MIR prefer using ensembles 
of “high-level” MIDI features together with “low-level” attributes extracted directly from the 
spectrograms (McKay, 2004).

Of course, MIDI is not the only type of discrete representation of time series. We use MIDI 
because it is a consolidated standard protocol in the domain of digital music. Consequently, 
after transforming the geophysical data into MIDI  les, we can use an extremely large library of 
algorithms, tools, software platforms, codes, and methods successfully applied in music (such as 
in Musical Genre Classi  cation and in MIR).

Finally, MIDI  les can be listened to, adding a new perception in the domain of geophysical 
data analysis. This is not a secondary aspect of our approach, as is widely discussed in previous 
papers (Dell’Aversana et al., 2016a).

An additional open question, focused on physical/geological aspects, is why high and low 
saturated intervals should have different rhythmic variability, sound intensity or pitch. The 
question can be reformulated more explicitly: “there are many rock-physical models explaining 
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why gas-saturated intervals produce low frequency anomaly. On the other hand, it is unclear why 
high and low saturated intervals should have different rhythmic variability, sound intensity or 
pitch”.

We suggest the hypothesis that different rhythmic (and even melodic/harmonic) properties 
in the seismic response can re  ect the variability of different sedimentary sequences (such as 
a sequence of sand and clay). These, in turn, in  uence porosity and  uid distribution in the 
formation. Consequently, it is reasonable to expect some type of correlation between sedimentary 
features, percentage of clay and sand, gas saturation and high-level MIDI attributes. For sure, this 
hypothesis requires further investigation through modelling, lab and  eld experiments. However, 
the fact is that the above-discussed MIDI attributes are very well correlated with the degree of gas 
saturation in the speci  c data set here analyzed.

9. Conclusions and future steps

In this paper, we introduced a novel methodology addressed to automatic classi  cation of 
seismic facies and to distinguish between low and high gas-saturated sand channels. It is based 
on combination of several classi  ers such as ANNs, Decision Tree, Random Forest, SVM, 
and other methods. The particularity of our approach is that the classi  ers are applied to MIDI 
features extracted from seismic data converted into musical formats. This methodology allowed 
us to use, for our classi  cation, a set of new features that have no equivalent in the seismic 
attribute domain. We tested our approach on a real data set consisting of seismic traces related 
to clay and shale formations, to low gas-saturated and high gas-saturated sandy reservoirs. 
We veri  ed that the MIDI attributes (pitch, melodic, harmonic, and rhythmic features) help 
distinguishing the data in separate seismic facies, consistently with the well data.

In conclusion, the classi  cation of seismic data based on Machine Learning applied to a “light” 
symbolic format like MIDI, seems to work effectively for discriminating seismic facies, even 
in terms of  uid distribution. However, we should point out that the  nal classi  cation results 
depend on a multitude of parameters. Particularly important is the training phase on the labelled 
data set. Wrong training commonly leads to wrong classi  cation performance, independently of 
the effectiveness of the MIDI features in clustering the data. Of course, we have the possibility 
to use unsupervised classi  cation approaches; however, in this  rst experimental phase of our 
method, we preferred to classify our data with the help of labelled training data sets. Indeed, we 
had labelled data to use in our test, due to the availability of well data in this area for calibrating 
the seismic response.

Finally, almost 100% of the traces have been correctly divided into their respective classes 
(as expected from well data). Although our test is con  ned to a relatively small seismic data set, 
it is focused on a relevant seismic interval including key vertical and lateral changes. For that 
reason, we think that our test produced statistically signi  cant and encouraging results about the 
effectiveness of our approach. Considering the novelty here introduced, additional investigations 
are of course necessary for a complete understanding of the physical meaning of the new “high-
level” MIDI attributes. We are working on industrial data sets and applying our MIDI-based 
classi  cation method to 2D and 3D data with encouraging results.
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