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ABSTRACT	 The	 ability	 to	 recover	 subsurface	 information	 from	 surface-NMR	 measurements	
depends	upon	the	signal	quality	which	is	adversely	affected	by	ambient	electromagnetic	
interference,	i.e.,	power-line	harmonics	and	impulse	noises.	We	discuss	two	algorithms	
to isolate and then subtract these interferences. This study first tackles the use of the 
signal dependent rank-order mean filter for the detection and mitigation of noise 
spikes from highly corrupted surface-NMR signals. This algorithm estimates the 
likelihood the sample under inspection is corrupt relative to a threshold value derived 
from a statistical procedure and replaces a sample identified as impulse noise with an 
appropriate	value.	Then,	the	removal	of	power-line	harmonics	is	implemented	through	
a linear adaptive method, called a modified frequency-estimation approach stemming 
from	 the	 estimator	 proposed	 by	 Nyman-Gaiser.	 To	 verify	 the	 performance	 of	 the	
proposed algorithms to eliminate harmonics and spikes, the methods are tested on 
synthetic signals embedded in artificial noise and noise-only recordings derived from 
surface-NMR field measurements and a real data set. The results from the numerical 
simulations	 reveal	 an	 output	 signal-to-noise	 ratio	 increase	 with	 an	 accompanying	
enhancement	in	recovery	of	the	surface-NMR	signal	parameters.	Close	agreement	is	
also observed between the results of the field example and a borehole located at the 
sounding.
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1. Introduction

The	surface-NMR	method,	also	called	Magnetic	Resonance	Sounding	(MRS),	is	a	non-invasive	
and emerging geophysical technique providing key information regarding the distribution of water 
content	in	the	shallow	subsurface,	pore	geometry,	and	also	hydraulic	conductivity	(Vouillamoz	
et al.,	2012;	Behroozmand	et al.,	2015).	The	main	merit	of	the	surface-NMR	method	compared	
with	other	geophysical	tools	is	that	the	surface	measurement	of	the	surface-NMR	signal	responds	
directly	 to	 the	presence	of	 subsurface	water.	 In	other	words,	 the	 surface-NMR	procedure	 is	 a	
way	to	quantitatively	determine	water	presence	in	the	subsurface,	which	is	impossible	with	other	
geophysical	methods	available	today	(Hertrich,	2005;	Vouillamoz	et al.,	2007).	Surface-NMR	is	
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the field scale implementation of the nuclear magnetic resonance method in which the nuclei of the 
hydrogen	atoms	of	water	molecules	(i.e.,	protons)	in	the	subsurface	are	energized	by	transmitting	
a	resonance	EM	pulse,	and	then	the	energized	protons	generate	a	secondary	magnetic	resonance	
signal after the excitation pulse is switched off. The signal response of the hydrogen nuclei, which 
is an exponentially decaying function of time, resonates at the proton Larmor frequency (the 
resonance frequency of the water molecules in the geomagnetic field varying from 1 kHz up to 
2.7 kHz) with signal phase φ0. According to Legchenko and Valla (2003), this so-called detectable 
free	induction	decay	(FID)	signal	is	given	by:

S(t)	=	S0	cos	(2π f0t	+	φ0)	exp	(–t/T *2)	 (1)
	

where	φ0	is	the	phase	offset	of	the	signal,	S0	is	the	initial	amplitude,	T *2	denotes	decay	time	of	the	
FID	signal	and	f0 indicates the Larmor frequency. Both T *2	and	S0 are key factors in discovering 
hydro-geological	features.	The	initial	amplitude	S0	is	correlated	with	the	amount	of	water	and	the	
relaxation time provides information on the pore structures that contain water. It is well-known 
that	when	recording	surface-NMR	signals,	the	two	most	important	environmental	electromagnetic	
noise sources are power-line harmonics and noise spikes. Power line harmonics are complicated 
by	the	time-varying	nature	of	the	fundamental	frequency	and	harmonic	content,	as	well	as	the	
varying	characteristics	across	different	power	grids	(Cohen	et al., 2010). Noise spikes originate 
from	natural	and	anthropogenic	noise	sources	with	the	varying	appearance	and	lessen	the	quality	
of data. It is well-known that when recording surface-NMR signals, the two most important 
environmental electromagnetic noise sources are power-line harmonics and noise spikes. Power-
line	 harmonics	 are	 complicated	by	 the	 time-varying	nature	 of	 the	 fundamental	 frequency	 and	
harmonic	content,	as	well	as	the	varying	characteristics	across	different	power	grids	(Cohen	et 
al., 2010). Noise spikes originate from natural and anthropogenic noise sources with the varying 
appearance	 and	 lessen	 the	quality	of	 data.	Based	on	 single-loop	 surface-NMR	measurements,	
many practical methods have been developed for noise reduction (see Trushkin et al., 1994; Plata 
and Rubio 2002; Legchenko and Valla, 2003; Ghanati et al.,	2014,	2016a,	and	references	therein).	
Recently,	multi-channel	systems	(the	second	generation	of	surface-NMR	instruments	consisting	
of	a	number	of	reference	loops	to	record	local	noise	conditions	in	addition	to	the	primary	loop	
for	transmitting	and	receiving	the	surface-NMR	signal)	offer	the	possibility	to	measure	the	time	
series as broad-band data records at 50 kHz sampling rate instead of providing merely envelopes 
of the records. It makes to use more sophisticated noise cancelling techniques and it is possible to 
overcome the drawbacks from the single-channel surface-NMR filtering techniques (see Dalgaard 
et al., 2012; Walsh, 2008; Larsen et al., 2014; Müller-Petke and Costabel, 2014). In addition, a 
number of different spike detection approaches have been reported in the signal processing and 
geophysics literature, often taking inspiration from the closely related problem of identifying 
peaks in a time series. For instance, Legchenko (2007) suggested a spike exclusion method 
based	on	the	simple	obliterating	of	corrupted	time	sequences.	A	statistical	approach	called	the	
Romanovsky criterion to identify and eliminate spiky noises was proposed by Jiang et al.	(2011).	
Dalgaard	et al. (2012) used a spike detection algorithm based on the non-linear energy operator so 
that the samples containing impulse noises are substituted with zeros. Costabel and Müller-Petke 
(2014) investigated three de-spiking methods where two of these schemes are applied in the time 
domain and the third de-spiking approach takes advantage of the wavelet-like nature of spike 
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events. Larsen (2016) addressed the removal of impulsive noise (spikes) from electric fences 
through a subtraction-based approach. It is noteworthy that the approach suffers from overfitting 
and subtraction of the NMR signal. In a recent paper, an efficient post-processing workflow for 
surface-NMR	 data	 using	 the	 singular	 spectrum	 analysis	 based	 de-noising	 algorithm	 for	 noise	
removal	was	proposed	by	Ghanati	et al.	(2016b).

1.1. Problem statement 
Since the data acquisition relies on the principle of induction that generates a rather weak 

voltage in the range of nV to few µV in the surface loop. In addition, the weakness of the recorded 
signal	 also	 causes	 the	 measurements	 to	 be	 intensely	 noise	 corrupted:	 as	 a	 results,	 robust	 and	
effective	noise	attenuation	approaches	are	required	to	preserve	the	signal	of	interest	which	leads	
eventually	to	an	increase	in	the	accuracy	of	the	parameter	estimation.	

Let us assume that the surface-NMR data record, S(t), contains spiky events and power-line 
interference	of	a	quasi-periodic	nature,	 i.e.,	consisting	of	a	 fundamental	 frequency	(50/60	Hz)	
with harmonics at exactly integer multiples at any given time. The filtering is implemented by 
isolating	and	subtracting	a	reconstructed	version	of	these	interferences,	i.e.,	

Sfiltered	(t)	=	Sraw	(t)	–	P (t)	 (2)

where	the	second	term	of	the	above	equation	(P(t))	is	related	to	the	harmonic	interference	and	
spiky noise. Our task in mitigation the noise contaminators is to isolate P(t)	accurately	and	with	
computational efficiency. To that end, two techniques are presented. Initially, using a non-linear 
filter called the signal dependent rank-order mean (SD-ROM), noise spike is detected based 
on	 an	 appropriate	 thresholding	 criterion,	 and	 then	 replaced	 by	 the	 mean	 value	 of	 the	 signal	
amplitude of the measurement repetitions for the same sample on the time axis. Then, a modified 
Nyman-Gaiser	estimation	(MNGE)	proposed	by	Saucier	et al.	(2006)	is	implemented	to	remove	
the	harmonic	noise.	We	also	apply	a	non-linear	inversion	algorithm	as	the	method	of	reference	
to	 verify	 the	 estimation	 accuracy	 of	 fundamental	 frequency,	 amplitudes,	 and	 phases	 through	
the	MNGE	procedure.	Furthermore,	a	performance	comparison	between	the	proposed	harmonic	
suppression algorithm and the model-based noise reduction (Larsen et al.,	2014)	is	carried	out.	
After de-spiking and power-line harmonic noise removal the surface-NMR signal is still corrupted 
by the background noise (i.e., random and Gaussian distributed white noise). The Gaussian noise 
can be reduced by standard averaging of multiple measurements (i.e., the stacking). Finally, the 
parameters	of	the	surface-NMR	signal	can	be	retrieved	by	the	envelope	detection	process.	This	
includes signal extraction using the digital quadrature detection with additional phase correction 
(Neyer, 2010; Müller-Petke et al.,	2011)	and	the	estimate	of	the	underlying	surface-NMR	signal	
parameters,	 such	 as	 initial	 amplitude	 S0,	 decay	 time	 T *2,	 frequency,	 and	 phase	φ0	 through	 a	
Marquardt-type	damped	Gauss-Newton	method.

1.2. Summary of the paper 
Section 2 gives a review of the methods and algorithms. An automatic and efficient thresholding 

function, that is proportional to the noise level of surface-NMR signals to detect spiky events, in 
particular	those	in	which	the	period	of	their	occurrence	is	too	long,	is	presented.

Section 3 deals with the performance of the proposed strategies. It discusses simulations with 
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synthetic	surface-NMR	signals	added	to	simulated	noises	and	real	noise-only	measurements,	as	
well as a field example.

Finally,	a	short	conclusion	summarizes	the	main	ideas	in	section	4.

2. Methodology

2.1. Automatic detection of spikes 
Spiky events of various origins in surface-NMR measurements degrade the performance of 

the	power-line	harmonic	noise	cancelling	algorithm	(that	we	present	here).	Therefore,	the	noise	
spikes must be detected and removed before further noise cancelling. In practice, the spikes 
usually	corrupt	only	a	part	of	the	signal	section,	leaving	most	of	it	undisturbed,	hence	obliterating	
entire	time	series	is	not	necessary.	In	this	section,	we	introduce	a	fast,	robust	and	automatic	de-
spiking procedure in the time domain, leading to a considerable reduction of impulse noises. As 
mentioned earlier, in a variety of de-spiking schemes, corrupted samples (the samples that are 
dissimilar with respect to their neighbors) are exchanged with zeros. This technique often causes 
notable distortions in the original signal. The signal dependent ranked-order mean (SD-ROM) 
filter (Abreu et al., 1996; Moor and Mitra, 2000) is a non-linear filter belonging to the class 
of decision-based filters, or state-conditioned filters (Ferahtia et al., 2009). The SD-ROM filter 
utilizes a spike detector to decide whether the sample under inspection is corrupted or not. In 
other words, the overall implementation can be viewed as special case of the spike noise-cleaning 
procedure in which the original sample of a spiky signal is replaced with an appropriate estimate 
if it is detected as corrupted. Otherwise, the corresponding sample (uncorrupted sample) is left 
unchanged. The spike detection process is implemented through the following 6 steps: 

Step	1:	choose	a	1-D	odd	sliding	window	of	size	moving	on	the	entire	time	series	(for	instance	k	
=	9):

T	=	{S1(t),	S2(t),	S3(t),	S4(t),	S5(t),	S6(t),	S7(t),	S8(t),	S9(t)} (3)

Step	2:	designate	the	central	element	of	vector	T C(t) and then exclude it within the window:

T̃	=	{S1(t),	S2(t),	S3(t),	S4(t),	S6(t),	S7(t),	S8(t),	S9(t)}	 (4)

Step 3: sort the samples of vector T̃	in	ascending	order:

T̃rearrenged	=	{S̃1(t),	S̃2(t),	S̃3(t),	S̃4(t),	S̃5(t),	S̃6(t),	S̃7(t),	S̃8(t)}	 (5)

such	that	S̃1(t) ≤ S̃2(t) ≤ ... ≤ S̃8(t);

Step 4: compute the rank-ordered differences W(t)	between	the	elements	of	T̃rearrenged	and	C(t):

Wi(t)	=	{	 S̃1(t)	–	C(t)	 if	C(t) ≤ µ 
(6)	 C(t)	–	S̃9–i(t)	 if	C(t)	>	µ



Statistical de-spiking and harmonic interference cancellation Boll. Geof. Teor. Appl., 58, 181-204

185

where	µ	=	[S̃4(t)	+	S̃5(t)]/2 and is called the rank-order mean. For a window of size 9, i	=	1,2,...4;

Step	5:	the	algorithm	decides	C(t) is a spike if any of the following conditions hold

Wi(t) ≥ �, i	=	1,2,...4	

where � is the thresholding criteria calculated statistically using T-distribution checking, which 
is	 principally	 processed	 based	 on	 the	 distribution	 range	 of	 actual	 error	 in	 T-distribution.	 The	
characteristic of T-distribution is to first exclude a doubtful sample, and then to check based on 
T-distribution if the excluded sample has gross error. Suppose that one of the measured samples 
Sq	is	a	doubtful	datum,	delete	this	sample	and	then	recalculate	the	standard	deviation	of	the	other	
measurements	as

(7)

Then, based on the chosen conspicuousness (significant level) β	and	number	of	measurements	N,	
the test coefficient K	(N,	β)	of	T-distribution	function	can	be	acquired	by	using	the	T-distribution	
coefficient table (Ross 2009).

Hence, the threshold criterion is defined as:

� = σK	(N,	β).	 (8)

Note	that	generally	the	choice	of	threshold	is	a	very	delicate	and	important	statistical	problem,	
so	that	a	small	threshold	leads	to	attenuating	the	surface-NMR	signal	of	interest	inside	the	noise	
spikes, while a large threshold provides inappropriate de-spiking. Hence, choice of the threshold 
based	on	the	noise	level	and	statistical	characteristics	of	the	recordings	(i.e.,	data-driven	threshold)	
might bring about a more efficient elimination of the spiky noises. 

Steps	1	to	5	are	implemented	on	all	measurement	repetitions	of	one	pulse	moment	(i.e.,	the	
ensemble consisting of all single records to be stacked), and the time sequences identified as noise 
spikes are marked in all considered records;
Step 6: substitute the spiky sample (marked sample) detected in the previous steps with the mean 

values of the measurement repetitions at the corresponding position on the time axis excluding 
the marked samples, i.e., excluding the spiky features.
Our numerical experimentations show that a sliding window of size 9 gives better results. 

Furthermore, it should be noted that in the original SD-ROM algorithm, the detected spiky samples 
are replaced by the rank-order mean µ, leading to major distortions during the de-spiking process 
of surface-NMR data. On the other hand, the use of the proposed thresholding criteria enables 
more accurately identifying spiky events in surface-NMR recordings rather than the median 
absolute	deviation	and	the	standard	deviation	of	the	data.	In	Fig.	1,	we	present	the	design	of	the	
SD-ROM based de-spiking algorithm. In the following, we deal with the performance of our de-
spiking strategy using the modelling of an exponentially decaying synthetic signal with initial 
amplitude	S0	=	250	nV	,	decay	time	T *2 = 100 ms, the Larmor frequency f0 = 2237 Hz, phase φ0	=	
1.03 rad, and the time length of 500 ms and the sampling frequency of 20 kHz corrupted by spiky 
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events	and	Gaussian-distributed	noise	with	standard	deviation	σ	=	150	nV	and	mean	value	m	=	
0. To simulate a spiky event as realistic as possible, we isolate a spiky signal from a real surface-
NMR	signal	recording	(see	Fig.	2a).	Then	we	simulate	realistic	measurements	by	repeating	the	
numerical procedure to generate the synthetic signal 30 times with additional spiky events and 
Gaussian noise. Each time, the spiky signal occurs randomly at another position on the time axis. 
It should be noted that the presence of single spikes in the surface-NMR measurements is not a 
challenging	issue,	even	if	many	such	events	occur	in	the	data.	In	this	case,	the	application	of	a	
simple de-spiking procedure provides satisfactory results. But the removal of such noise events 
from very long periods be might problematic (Costabel and Müller-Petke, 2014). Hence, for the 
following analysis, we consider a series of spikes like the feature at t	=	241	ms	to	262	ms	shown	in	
Fig. 2a. Fig. 2b illustrates the result of applying the proposed de-spiking method to the single stack 
shown in Figs. 2a. In addition, the resulting signal after de-spiking and staking 30 single records 

Fig.	 1	 -	 Flowchart	 of	 the	 signal	
dependent rank-order mean filter.
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and the unprocessed and stacked signal are shown in Figs. 2c and 2d, respectively. Referring 
to Fig 2c, it can be seen that the spiky noises have been substantially removed through the SD-
ROM algorithm and the signal-to-noise ratio increases from -8.21 dB (related to the stacked noisy 
signal) to 4.67 dB. For comparison, the de-spiking process can also be implemented through the 
strategies proposed by Costabel and Müller-Petke (2014) on surface-NMR data based on two 
time-domain	thresholding	criteria	called	TDzero	and	TDmean.	The	main	reason	to	use	TD-based	
techniques is that in a variety of de-spiking schemes, corrupted samples are exchanged with 
zeros	that	may	lead	to	notable	distortions	in	the	original	signal,	while	in	the	TDzero	and	TDmean	
methods a more reasonable strategy is applied to substitute spiky samples. Both TDmean and 
TDzero	contain	three	steps	as	follows:	1)	the	threshold	value	can	be	determined	by	relating	it	to	
the standard deviation of the data. Then, a user-specified factor is multiplied with the standard 
deviation of the time series and determines up to which maximum amplitudes the data are accepted 
and what amplitudes are regarded as spikes. Note that the above process is applied to all single 
records and the detected spiky samples are marked in all considered records. 2) For every single 
time sample, the mean value of the whole ensemble is calculated excluding the spiky features. 
3) Subsequently, the spiky samples are substituted with the mean values at the corresponding 
position on the time axis. It should be noted that the only difference between TDmean and TDzero 
is	 in	 the	calculation	of	 the	 transfer	 function.	This	means	 that	 in	TDzero,	 a	 time	window	with	
the	length	equal	to	2	ms,	depending	on	the	data	we	have,	around	the	corresponding	sample	on	
time axis is replaced with zeros, while in TDmean the spiky sample is exchanged with the mean 
values of uncorrupted samples. Whereas in our proposed processing workflow it is not required 

Fig. 2 - Results of applying different de-spiking strategies to a synthetic surface-NMR signal with initial amplitude	
S0	=	250	nV	and	a	decay	time	T2

* = 100 ms contaminated with spiky events and Gaussian-distributed noise with standard 
deviation	σ = 150 nV. Left column, single record; unprocessed (a), processed via SD-ROM (b), processed via TDmean 
(c). Right column, stacked signal; unprocessed (d), processed via SD-ROM (e), processed via TDmean (f).
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to	calculate	a	 transfer	 function,	 for	comparison	we	only	consider	 the	 results	derived	 from	 the	
TDmean	algorithm.	The	processing	result	of	the	synthetic	signal	for	TD-based	strategy	is	shown	
in Figs 2e and 2f. Representative results from the proposed de-spiking strategies (i.e., TDmean 
and SD-ROM) to retrieve the surface-NMR signal parameters (the signal parameters are estimated 
by envelope detection and fitting the envelope to the mono-exponential decay that are discussed 
in a later section) are shown in Table 1. One can see that the values of mean absolute percentage 
error (MAPE) obtained by using the proposed algorithm are lower than those of TDmean, and that 
the	signal	parameters	(i.e.,	T *2	and	S0) are better estimated through SD-ROM. This validates the 
use of the SD-ROM based de-spiking method over TDmean. 

Table 1 - Estimated parameters and MAPE performance of different de-spiking strategies implemented on a synthetic 
surface-NMR	signal	(T2

*=100	ms	and	S0=250	nV) corrupted by Gaussian noise and spiky events.

 Parameters  Methods TDmean SD-ROM

 T2
* (ms) 106.2 ±7.71 104.1 ±6.51

 S0 (nV) 262.16±18.94 259.13±14.61

 MAPEa [%] 11.41±6.99   7.9 ±12.32

a MAPE: Mean Absolute Percentage Error

2.2. Harmonic interfering noise cancelling
One of the biggest challenges to estimate surface-NMR signal parameters accurately is the 

presence	of	harmonic	interference	that	intensively	affects	the	signal	of	interest.	Based	on	the	idea	
of	using	multi-channel	systems,	the	data	from	reference	loops	are	used	to	reduce	the	noise	level	
from	the	surface-NMR	measurements	by	harmonic	noise	cancellation.	Although	the	reference-
loop	based	noise	cancellation	methods	have	proved	promising	in	enhancing	the	signal	to	noise	
ratio in surface-NMR measurements, the presence of spikes in any of the channels results in 
unreliable adaptive noise cancelling. In other words, for adaptive noise cancelling (ANC) to work 
efficiently, the primary signal and the reference signal must be highly linearly correlated, whereas 
the spikes from different sources considerably lessen the correlation between the primary channel 
and	reference	channel	in	the	surface-NMR	recordings.	Furthermore,	the	adaptive	noise	canceller	
may become ineffective when the reference signal contains higher order harmonics (Keshtkaran 
and Yang, 2014). In this section, we present a relatively robust and computationally efficient 
processing technique based on the modified Nyman-Gaiser estimation (MNGE) method for 
suppressing	power-line	noise	in	the	surface-NMR	recordings.	This	technique	involves	subtracting	
an	estimation	of	the	harmonic	component	without	distorting	or	enervating	the	signal	of	interest.	
Nyman and Gaiser (1983) demonstrated that it is possible to eliminate power-line noise in seismic 
reflection records by modelling the noise as a sum of stationary sinusoids and then subtracting 
them from each trace. Their technique includes finding a refined fundamental frequency and then 
sequentially finding phase and amplitude for each harmonic component through Fourier time 
series	analysis.	

A	recorded	surface-NMR	signal	X(t)	can	be	represented	by	the	following	model:

X(t)	=	S(t)	+	h(t)	+	ε(t)	 (9)
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where	S(t)	 is	 the	ideal	surface-NMR	signal	from	the	subsurface	protons,	h(t)	 is	 the	power-line	
interference,	and	ε(t) is the non-harmonic noise (i.e., spiky events and Gaussian noise), all sampled 
at	 fS	Hz.	h(t) consists of a set of harmonic sinusoidal components with unknown frequencies, 
phases	and	amplitudes	as:

(10)

Here,	ωf	is	the	fundamental	frequency	in	rad/s,	the	amplitude	and	phase	of	the	kth	harmonic	
are	 denoted	 by	 Ck	 and	Θk,	 respectively,	 and	 M	 indicates	 the	 number	 of	 harmonics	 present	 in	
the	interference.	An	appropriate	harmonic	interference	elimination	algorithm	should	remove	the	
interference	h(t),	while	preserving	the	free	induction	decay	signal	S(t).	Note	that	the	amplitude,	
phase,	 and	 frequency	of	 all	 harmonics	 are	 assumed	 to	 remain	 constant	 over	 the	 length	of	 the	
record.	This	assumption	is	reasonable	for	recorded	lengths	of	a	few	seconds	or	less	(Butler	and	
Russell, 1993; Larsen et al., 2014). Whereas the maximum signal length recorded by the surface-
NMR	instruments	is	less	than	1	s,	the	above	assumption	is	accepted	as	being	valid	for	the	surface-
NMR	measurements.	

The	harmonic	noise	h(t)	given	by	Eq.	10	may	also	be	written	in	the	form	

(11)

where	ak	=	Ck	cos	(Θk)	and	bk	=	–Ck	sin	(Θk). Putting Eq. 11 into Eq. 9, we arrive at the following 
equation.	Note	that	the	term	ε(t)	is	neglected	for	simplicity.

	 .	 (12)

The	recent	equation	can	be	written	as	a	system	of	 linear	equation:	X	=	Hd	+	S,	where	S	=	
(s1(t),	s2(t),...,	sN(t))T,	d	=	(a1,	b1,...,	aM,	bM)T,	X	=	(x1(t),	x2(t),...,	xN(t))T	and	H	is	an	N×2M matrix 
with	Hn,2i–1	=	cos	(iω0tn),	Hn,2i	=	sin	(iω0tn),	for	n	=	1,	2,...	N,	i = 1, 2, 3,..., 2M.	If	S(t)	is	assumed	
to have Gaussian distribution, the maximum likely estimator of X	is	Hd̃ 	where	d̃ 	is	the	standard	
least-squares	solution	and	hence

 . (13)

For	a	certain	value	of	the	fundamental	frequency	f0	an	estimator	d̃ 	of	the	amplitude	d	can	be	
computed	by	minimizing	the	above	cost	function.

Based	 on	 the	 Nyman-Gaiser	 estimation	 (NGE)	 methodology,	 frequency	 f0 is known to be 
approximately equal to fn	=	50/60	Hz	to	estimate	the	amplitude	and	phase.	Considering	an	initial	
guess	of	fn	of	f0,	NGE	generates	an	estimate	δ̃	of	the	fundamental	frequency	shift	δ as:

f0	=	fn	+	δ.  (14)
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Once δ̃	is	achieved,	the	frequency	estimate	is	revised	with	fn
r+1	=	fn

r	+	δ̃,	where	r	is	the	number	of	
iterations, and this value is used as a starting value for the next iteration. The optimization process 
is	continued	until	convergence	of	 f̃ 	 is	achieved.	The	NGE	algorithm	estimates	each	harmonic	
separately,	leading	to	a	collection	(f̃ 1,	f̃ 2,...,	f̃ M)	of	harmonic	frequency	estimates.	Whereas	these	
frequencies	fn	are	related	to	each	other	by	fn	=	nf0	(n	=	1,	2,...,	M),	it	is	possible	to	use	a	linear	
combination	of	the	estimates	 f̃ 1,	 f̃ 2,...,	 f̃ M	to	construct	a	single	lower	variance	estimator	of	the	
fundamental	frequency	f0.	

The proposed method is based on the Nyman and Gaiser’s estimation variables defined as:

(15a)

(15b)

(15c)

(15d)

where	T	is	signal	duration	and	k	=	1,	2,...,	M.	The	above	estimation	variables	are	used	to	construct	
an	estimator	of	the	kth	harmonic.	Note	that	the	amplitude	Ck	and	phase	Θk	of	the	kth	harmonic	are	
estimated	using	the	variables	Ok	and	Pk,	respectively.	The	variables	Qk	and	Rk	allow	the	estimation	
of	the	frequency	shift	δ	=	ω0	–	ω.	Using	Eqs.	15	a	collection	of	M	estimators	of	δ̃k	δ of is expressed 
as	follows:

(16)

Eq. 16 defines one estimator of δ	for	each	harmonic	of	the	fundamental	frequency.	It	can	be	
proved	that	δ̃k	are	unbiased	estimators	of	δ.

The	estimators	of	C̃k	and	Θ̃k	of	Ck	and	Θk	are	also	represented	by:

(17a)

(17b)

(17c)

In the statistical context, an optimum estimator needs to be unbiased, meaning that on the 
average the estimator will yield the true value of the unknown parameter, and minimizes the 
variance criterion (Kay, 1993). Such an estimator is called the minimum variance unbiased 
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(MVU) estimator. The determination of the MVU estimator is in general a difficult task because 
in practice the MVU estimator, if it exists, often cannot be found. For instance, we may not know 
the probability density function (PDF) of the data or even be willing to assume a model for it. In 
this case, even some methods which take advantage of the Cramer-Rao lower bound (Kay, 1993), 
which is a lower bound on the variance of any unbiased estimator, and the theory of sufficient 
statistics	(Fisher,	1922)	cannot	be	applied.	Faced	with	our	inability	to	determine	the	optimal	MVU	
estimator,	 it	 is	 reasonable	 to	 resort	 to	a	 suboptimal	estimator.	However,	 if	 the	variance	of	 the	
suboptimal	estimator	can	be	ascertained	and	if	it	meets	our	system	properties,	then	its	use	may	be	
justified as being adequate for the problem at hand. If its variance is too large, then we will need 
to consider other suboptimal estimators to detect one that meets our specifications. A common 
practice is to limit the estimator to be linear in the data and find the linear estimator that is unbiased 
and has minimum variance. This estimator is termed the best linear unbiased estimator (BLUE) 
and can be determined without complete knowledge of the PDF of the data (Kay, 1993). 

Saucier	et al. (2006) demonstrated that the BLUE can be used to develop a single estimator 
for	the	error	in	the	initial	estimate	of	the	fundamental	frequency.	This	single	estimator	combines	
all	the	estimates	for	the	frequency	shifts	δ̃k	and	amplitudes	for	each	of	the	harmonics.	Whereas	
the	variables	δ̃k	are	uncorrelated,	which	is	a	consequence	of	the	orthogonality	of	the	estimation	
variables	 (Eq.	 14),	 according	 to	Saucier	et al.	 (2006)	 for	mutually	uncorrelated	variables,	 the	
BLUE takes the form as

	 .	 (18)

Here,	σk
2	=	Var	(δ̃k)	and	Var	(δ̃)	=	 .	It	can	be	proved	that	σk

2 is defined as [the readers are 
referred	to	Saucier	et al.	(2006),	for	more	details	about	determination	of	variance	of	estimation	
variables]

(19)

where	σ2 is the white process variance. Substituting Eq. 19 into Eq. 17, the BLUE takes the 
following	form:

	 .	 (20)

2.2.1. Algorithm implementation
First,	the	estimation	variables	for	k	=	1,	2,...,	M	are	calculated	with	the	discrete	form	of	Eq.	

15 (see Appendix A) using the initial angular-frequency estimates ωk	=	k2πfn.	Then	the	frequency	
shifts	δ̃k are determined using Eq. 16. We next compute the amplitudes with the help of Eq. 17a 
and	use	 the	 results	 in	Eq.	20	 to	obtain	 the	 angular-frequency	 shift	 estimate	 δ̃.	We	 then	use	 δ̃	
to	revise	the	initial	angular-frequency	estimate	with	ωnew	=	ω	+	 δ̃.	The	optimization	process	is	
continued	with	this	new	angular-frequency	estimate	until	ω converges. Once ω	is	calculated,	the	
amplitude	estimation	problem	is	implemented	using	the	cost	function	given	by	Eq.	12	so	that	the	
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final amplitudes obtained by using Eq. 12 are more accurate than those of Eq. 16a. Note that the 
convergence	rate	associated	to	the	proposed	method	is	relatively	faster	than	the	NGE	algorithm	
so	that	the	convergence	of	the	proposed	method	is	usually	achieved	with	less	than	6	iterations.	
In	the	following,	a	non-linear	optimization	problem	is	presented	to	estimate	the	harmonic-noise	
parameters.

2.2.2. Non-linear least squares estimation
In	 this	 section,	 we	 introduce	 a	 non-linear	 least	 squares	 problem	 based	 on	 least	 squares	 as	

the	method	of	reference	to	assess	the	estimation	accuracy	of	fundamental	frequency,	phase,	and	
amplitude using the proposed method. Briefly, the determination of the model parameters f0,	Θk	
and	Ck	in	Eq.	11	is	a	non-linear	optimization	problem.	If	we	assume	that	the	measurement	errors	
are normally distributed, then the maximum likelihood principle leads us to minimizing the sum 
of squared errors normalized by their respective standard deviations. We seek to minimize:

(21)

with	WX	=	diag	(1/εi),	where	F	is	the	forward	modelling	operator	which	is	non-linear,	X	is	the	
measured	data	vector	of	length	n,	WX	is	an	n×n data weighting matrix containing the reciprocal 
of	standard	deviation	for	each	datum,	m is	the	model	parameters,	consisting	of	the	fundamental	
frequency, phase, and amplitude. The data-weighted misfit can also be expressed as chi-square 
function,	χ2	=	φ(m)/n. A value of 1 means fitting the data within error bounds in a least-squares 
sense	(Constable,	1987).

Eq.	20	may	be	written	in	the	equivalent	form:

	 .	 (22)

Expanding the cosine leads to

(23)

Note	that	the	cost	function	φ is non-convex in Ck	and	Θk. Hence, we transform it to a convex 
function	by	letting	αk	=	CkcosΘk	and	βk	=	CksinΘk.	Therefore,	the	new	quadratic	cost	function	is	
presented	as:

	 .	 (24)

Here,	instead	of	directly	estimating	Ck	and	Θk	in	Eq.	22	we	can	equivalently	estimate	αk	and	βk	
in Eq. 23 to obtain h(t). Accordingly, the unknown model parameters become f0,	αk,	and	βk.	Since	
the	problem	is	non-linear,	an	iterative	minimization	is	applied.	
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3. Simulation results

In this section, we present experiments illustrating the performance of the proposed de-spiking 
and power-line interference removal algorithms in some numerical examples from the modelling 
of synthetic surface-NMR signals embedded in artificial and real noise recordings. We, then, 
compare	the	results	with	those	of	a	non-linear	least	squares	problem,	which	is	used	to	determine	
the	fundamental	frequency	and	the	amplitudes	and	phases	of	all	harmonics.

In	addition,	to	better	verify	the	functionality	of	the	MNGE	method,	particularly	in	predicting	
the	fundamental	frequency,	a	comparison	is	made	between	the	proposed	method	and	the	model-
based removal of harmonics provided by Larsen et al.	 (2014).	 It	 is	 noteworthy	 that,	 for	 both	
MNGE	and	the	model-based	method,	the	better	the	fundamental	frequency	estimation,	the	more	
accurate	 the	 harmonics	 retrieval.	 The	 processing	 steps	 presented	 in	 this	 paper	 for	 a	 surface-
NMR recording include: 1) de-spiking, 2) harmonic noise cancelling, 3) stacking, 4) envelope 
detection, and 5) signal parameters estimation. Based on the proposed processing workflow, the 
synthetic surface–NMR signal is retrieved by first de-spiking the records corrupted by noise-only 
measurements.	Then,	power-line	interference	is	eliminated	with	the	MNGE	method	or	non-linear	
least squares estimation. After applying the first two processing steps to each simulated single 
record, the data (the single records) are stacked. Subsequently, the parameters of the surface-
NMR signal are determined through envelope identification and fitting the envelope to the mono-
exponential decay. 

Here, the digital quadrature detection with phase correction is used to extract the surface-
NMR	signal	envelope.	The	quadrature	detection	multiplies	the	FID	signal	S(t)	by	e(–j2πfRt),	where	fR	
denotes the frequency of the excitation signal. Then, the phase correction is done by multiplying 
the complex signal, obtained from the previous step, with e(–jα),	where	α	the	phase	offset	of	the	
signal is defined as:

(25)

Finally, a low-pass filter (Butterworth filter of fifth order) of e.g., 500 Hz is implemented 
to improve the signal-to-noise ratio. The cutoff frequency of the low-pass filter is determined 
based on the idea proposed by Müller-Petke et al.	(2011).	Accordingly,	two	derived	signals	are	
obtained,	one	in	phase	(real	part)	and	one	in	out-of-phase	(imaginary	part),	where	the	real	part	
of	 the	 signal	 is	composed	of	noise	and	 the	FID,	while	 the	 imaginary	part	 includes	only	noise	
components (Müller-Petke et al.,	2011).	Hence,	the	real	part	(amplitude)	is	used	for	inversion.	
The performance of the low-pass filter causes distortions in initial amplitude so that even a careful 
filter design does not counteract such an effect. To remedy this deficiency, the first few samples of 
the envelope signal are not included in the exponential fit based on the filter response to an impulse 
test (Müller-Petke et al., 2016). To estimate the signal parameters, in synthetic experiments, the 
signal parameters are calculated using the complex mono-exponential fitting through a non-linear 
optimization problem based on the regularized Levenberg-Marquardt method (Chavent, 2009).

We	use	two	metrics	in	terms	of	signal-to-noise	ratio	improvement	and	mean	absolute	percentage	
error (MAPE), which is a scale error metric and widely understood criterion for assessing 
estimation accuracy (Hyndman and Koehler, 2006). Mathematically, the MAPE is expressed as:
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(26)

where	 S̃(ti) is the reconstructed signal (the processed and stacked signal) and S(ti)	 is	 the	 ideal	
signal.

3.1. Application of the proposed schemes to synthetic signals with artificial noise 
The	applications	consist	of	three	synthetic	surface-NMR	signals	generated	through	Eq.	1	with	

the parameters defined in Table 2. Then, the simulated signals are corrupted by Gaussian noise 
with a standard deviation of 110 nV and zero mean. Spiky events and harmonic signals with ten 
frequencies	starting	at	1700	Hz,	equally	spaced	by	50	Hz,	and	the	amplitude	of	each	harmonic	is	
randomly chosen between 100 nV and 150 nV. To simulate a spiky event as realistic as possible, we 
isolate a spiky signal from a real surface-NMR signal recording. Figs. 3a, 3b and 3c show the results 
of the simulation, which we will refer to as signals 1, 2 and 3, respectively. Then, we simulate realistic 
measurements (i.e., the stacking process) by repeating the numerical procedure to generate all three 
synthetic FID signals 15 times. It should be noted that for the simulated stacking the phases of the 
harmonics	were	randomly	changed	(uniformly	distributed	between	–π and	π) in every single stack. 
Furthermore, each time the spiky signal (the isolated spike) occurs randomly at another position on 
the time axis. It is well-known that by increasing the stack size further suppression of the coherence 
noise	 is	provided.	This	 is	because	 the	phases	of	 the	power-line	harmonics	 randomly	change	 in	
every single stack, so that a part of the energy at the harmonic frequencies is diminished during 
the stacking process (Plata and Rubio, 2002; Strehl, 2006; Costabel and Müller-Petke, 2014). The 
post-processing sequence starts with the filtering based on the SD-ROM (in all applications, we set 
the window length of the SD-ROM algorithm equal to 9; in general, we have found that this choice 
leads	to	the	best	results)	followed	by	the	proposed	harmonic	cancellation	algorithms	that	are	applied	
to the single records before stacking. The results of applying the proposed combined procedure to 
single records associated with signals 1, 2 and 3 are shown in Figs. 3d, 3e and 3f, respectively. 
Referring to Figs. 3d and 3f, it can be observed that the time series now reveals the presence of 
a number of small spikes that were masked by the power-line interference. The remaining noise 
spikes can be removed by a second de-spiking process (Larsen et al., 2014). The stacked signals 
after 15 repetitions are depicted in Figs. 3g to 3i. The consequences of the filtering of signals 1, 2 
and 3, i.e., the application of the de-spiking and subsequently of harmonic noise cancellation, in the 
frequency	domain	are	shown	in	Fig.	4.	From	Fig.	4,	we	can	see	that	the	harmonic	components	are	
efficiently removed from the corresponding surface-NMR signals, while the Larmor frequencies 
remain	unchanged.	Note	that	the	main	energy	of	the	desired	surface-NMR	signal	is	located	at	the	
Larmor frequency which should be preserved during the processing of the data. 

Table 2 - Assumed parameters for synthetic signals 1, 2 and 3 contaminated with simulated noise signals.

 Parameters  Signals Signal 1 Signal 2 Signal 3

 S0 (nV)  170  170  170

 T2
* (ms)  100  100  100

 f0(Hz) 1916 1907 1902

 φ0 (rad)    1    1    1
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For	comparison,	the	harmonic	noise	subtraction	can	also	be	implemented	using	a	non-linear	
least	squares	inversion	(referred	to	as	the	reference	method).	Fig.	5	displays	the	resulting	time	
series after implementing the de-spiking method and non-linear least squares estimation on the 
synthetic signals presented in Figs. 3a to 3c.

In addition, Fig. 6 shows the difference between the power spectrums of the filtered time 
series (i.e., signals 1, 2, and 3) obtained from the proposed method and the reference method. 
This	difference	is	small	almost	everywhere,	implying	a	close	correlation	between	the	spectrum	
obtained	with	the	proposed	method	and	that	of	non-linear	least	squares	estimation.	After	applying	
the proposed filtering procedure, the next step is the envelope detection and fitting the envelope to 
the mono-exponential decay. The ability of the filtering strategy compared to the reference method 
to retrieve the surface-NMR signal parameters can be seen in Table 3. The surface -NMR signals 
have also been retrieved in the case where no filtering has been done. As indicated in Table 3, our 

Fig. 3 - Results of applying the proposed filtering method to the synthetic signals contaminated with artificial noise: 
unprocessed single records (panels a to c), processed single records (panels d to f), and processed and stacked results 
with	15	repetitions	(panels	g	to	i).

Fig. 4 - Results of applying the proposed filtering method to signals 1 (a), 2 (b), and 3 (c) shown in Fig. 3 in the 
frequency	domain.
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filtering scheme shows a close agreement between the assumed and estimated model parameters. 
We	also	note	that	the	MNGE	algorithm	and	the	reference	method	give	equal	overall	performance,	
indicating	the	relatively	high	accuracy	of	the	proposed	post-processing	algorithm.	Based	on	the	
above observations, it is worth noting that the proposed filtering procedure successfully works 
even if the Larmor frequency is close to one of the parasitic harmonics, particularly for signal 
3 where the frequency offset is equal to 2 Hz. This is a promising result in surface-NMR signal 
processing, where the adjacency of the Larmor frequency to one of the power-line harmonics is 
a problem for many algorithms in the surface-NMR literature. Furthermore, Table 3 summarizes 
the	 results	obtained	using	 the	model-based	method,	 indicating	a	 trivial	difference	between	 the	
parameters	 estimated	 after	 implementing	 the	 proposed	 method	 and	 those	 of	 the	 model-based	
method.

3.2. Application of the proposed schemes to synthetic signals with real noise 
In	 this	 subsection,	 the	 proposed	 noise	 suppression	 algorithm	 is	 analyzed	 using	 synthetic	

surface-NMR	signals	superimposed	on	real	surface-NMR	noise	records	with	special	emphasis	on	
the cases when one power-line harmonic frequency is close to the Larmor frequency. Numerical 
simulation	is	carried	out	using	two	synthetic	FID	signals	generated	through	Eq.	1	and	perturbed	
by	two	different	real	noise	recordings	from	two	different	sites	at	the	sampling	frequency	of	19,200	
Hz,	referred	to	as	site	1	and	site	2,	with	dissimilar	noise	conditions	so	that	the	noise	levels	at	site	
1	are	relatively	greater	than	at	site	2.	Fifteen	real	noise	recordings,	collected	with	a	surface-NMR	
system	from	each	of	the	sites	1	and	2,	are	used	to	corrupt	the	simulated	signals	with	the	parameters	
represented	in	Table	4.	Figs	7a	and	7b	show	the	result	of	the	simulation	for	one	single	record,	
which	we	will	refer	to	as	signal	1	and	signal	2.	From	Fig.	7,	it	can	be	seen	that	the	surface-NMR	
signals are completely masked by electromagnetic noises and the decaying exponential form is 
not	observable;	consequently,	the	retrieval	of	signal	parameters	may	fail	without	noise	removal.	
As explained, the filtering procedure of the surface-NMR signal includes two stages based on the 
proposed combined algorithm. Initially, by applying the SD-ROM method, the noise spikes are 
removed	and	in	the	second	stage	by	applying	MNGE	or	the	reference	method,	then	the	harmonic	
components	 are	 removed.	 Figs.	 7c	 and	 7d	 show	 the	 processing	 result	 of	 the	 single	 records	

Table 3 - Performance comparison results of a combination of SD-ROM and MNGE and reference method as well as 
model-based method implemented on signals 1, 2, and 3 with initial amplitude S0=170	nV, relaxation time T2

*=100	ms,	
phase	φ0=1 rad, and the Larmor frequencies equal to 1916, 1907, and 1902 Hz, respectively. The standard deviations 
of	the	derived	signal	parameters	are	calculated	from	10	independent	runs.

  Signal 1   Signal 2                Signal 3

 Parameters SD- SD-ROM+ SD-ROM+model SD- SD-ROM+ SD-ROM+model SD-ROM SD-ROM+ SD-ROM+model 
 Methods ROMb+MNGEc reference method based method ROM+MNGE reference method based method +MNGE reference method based method

 S0(nV)  167.64±3.16  167.74±4.51  168.57±5.1  164.7±2.74  164.91±3.09 166.43±4.12  163.46±2.07  162.37±4.12  161.82±6.15

 T2
*(ms)  108.52±3.1  104.25±3.01  103.87±6.12  109.9±3.86  108.21±3.14 107.06±3.46  112.28±2.76  109.78±3.19  113.71±5.3

 f0(Hz) 1915.95±0.04 1915.95±0.05 1915.95±0.05 1906.92±0.07 1906.89±0.061 1907.03±0.02 1902.06±0.031 1902.06±0.029 1902.94±0.045

 φ0 (rad) 1.02 0.96 1.021 0.99 0.985 1.01 0.97 0.974 0.981

 SNR (dB) 25.34 25.01 24.67 23.43 25.01 26.53 19.55 17.01 16.01

 MAPEa [%]   10.92±3.48   10.46±4.48    8.87±5.41   12.2±3.58   11.71±2.92 11.01±2.71   17.21±4.75   15.74±4.13   18.71±5.23

a MAPE: Mean Absolute Percentage Error, b Signal dependent rank-order mean, c Modified Nyman-Gaiser estimation.
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associated	to	signals	1	and	2	for	the	proposed	noise	cancellation.	Furthermore,	the	processed	and	
stacked signals after 15 repetitions are shown in Figs. 7e and 7f. Inspection of Fig. 7 reveals that 
the	proposed	combined	method	adequately	removes	the	electromagnetic	interferences	from	the	
simulated	FID	signals.	The	consequences	of	the	processing	of	signals	1	and	2,	i.e.,	the	application	
of the de-spiking and subsequently of harmonic noise cancellation, in the frequency domain are 
shown in Fig. 8. The figures show that the power-line harmonics are efficiently eliminated by the 
proposed algorithm and the peak at the Larmor frequency is left undisturbed. It should be recalled 
that whenever one power-line harmonic is close to the Larmor frequency, retrieval of the surface-
NMR is a challenging task, so that the application of common de-noising strategies (e.g., narrow-
band IIR notch filter) may lead to the distortion of the wanted signal. In addition, the resulting 
time series of signals 1 and 2 after applying the presented de-spiking method followed by the 
reference	method	are	shown	in	Fig.	9.	According	to	Fig.	10,	showing	the	difference	between	the	

Fig. 5 - Results of applying the reference method to the synthetic signals contaminated with artificial noise: unprocessed 
single records (panels a to c), processed single records (panels d to f), and processed and stacked results with 15 
repetitions	(panels	g	to	i).

Fig. 6 - Difference between the spectrums obtained with the combination of SD-ROM and MNGE and the reference 
method associated with: a) processed and stacked signal 1; b) processed and stacked signal 2; and c) processed and 
stacked signal 1 shown in Figs. 3 and 5.
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Table	4	 -	Assumed	parameters	 for	synthetic	signals	1	and	2	corrupted	by	 real-noise	 recordings	 form	sites	1	and	2,	
respectively.

 Parameters  Signals Signal 1 Signal 2

 S0 (nV)  190  190  

 T2
* (ms)  105   90  

 f0 (Hz) 2108 2102  

 φ0 (rad)    1      0.9

Fig. 7 - Results of applying the proposed filtering method to the synthetic signals contaminated with real-noise 
recordings:	unprocessed	single	records	(panels	a	and	b),	processed	single	records	(panels	c	and	d),	and	processed	and	
stacked results with 15 repetitions (panels e and f).

power spectra associated with the processed and stacked time series (i.e., signals 1 and 2) from the 
proposed	and	reference	method,	one	can	see	that	the	spectra	obtained	with	our	method	and	with	
non-linear inversion are comparable almost everywhere except around some of the higher-order 
harmonics of 50 Hz, where it can reach at most 3 nV. Representative results from the proposed 
filtering strategies (i.e., model-based method, MNGE and reference method) to retrieve the surface-
NMR	signal	parameters	are	shown	in	Table	5.	Moreover,	Table	5	lists	the	standard	deviation	of	the	
signal	parameters	obtained	from	10	independent	runs	of	signal	creation.	The	results	clearly	show	
the	signal	improvements	obtained	using	the	presented	approach,	leading	to	improved	parameter	
estimation.	Referring	to	Table	5,	a	reasonable	agreement	is	found	between	the	values	of	estimated	
parameters	obtained	using	the	proposed	scheme	and	those	of	the	reference	method.	Moreover,	
after	 implementing	 the	 model-based	 method	 on	 signals	 1	 and	 2,	 the	 resulting	 parameters	 are	
reported	in	Table	5.	The	fundamental	frequencies	predicted	using	the	model-based	method	and	
MNGE	algorithm	associated	with	signal	1	with	the	time	length	of	1000	ms	are	49.969	and	49.97,	
respectively.	It	is	evident	that	the	difference	between	the	fundamental	frequency	obtained	using	
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Fig. 8 - Results of applying the proposed filtering method to signals 1 (a) and 2 (b) shown in Fig. 7 in the frequency 
domain.

the	model-based	method	and	that	of	MNGE	is	trivial.	It	should	be	noted	that	the	model-based	
method is implemented in a two-step process. First, all harmonics are removed, except for the 
harmonic close to the Larmor frequency, on the whole time-series. Then, and in the second step, 
amplitude and phase of the excluded harmonic are calculated based on fitting the model of the 
corresponding harmonic the last 500 ms of the time-series and extrapolating to the first 500 ms. 
Through the second step, the model parameters of the harmonic adjacent to the Larmor frequency 
are estimated using the last part of the FID signal where the MRS signal is low. Our numerical 
experiments show that often the application of this strategy to signals with duration less than 500 
ms	leads	to	unsatisfactory	outcomes	in	accurately	estimating	the	parameters	(phase	and	amplitude)	
of the harmonic close to the Larmor frequency (this distortion increases for the smaller values of 
the difference between the Larmor frequency and the closest power-line harmonic). 

Fig.	9	 -	Results	of	applying	 the	 reference	method	 to	 the	synthetic	signals	contaminated	with	 real-noise	 recordings:	
unprocessed single records (panels a and b), processed single records (panels c and d), and processed and stacked 
results	with	15	repetitions	(panels	e	and	f).
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Fig.	 10	 -	 Difference	 between	
the	 spectra	 obtained	 with	 the	
combination of SD-ROM 
and	 MNGE	 and	 the	 reference	
method	 associated	 with:	 a)	
processed and stacked signal 1, 
and b) processed and stacked 
signal	2	shown	in	Figs.	7	and	
9,	respectively.

Considering	the	above	observations,	the	following	may	be	noted:	
i) the processing of Surface Nuclear Magnetic Resonance signals is a highly challenging task 

because the main energy of the wanted signal is located at the Larmor frequency, and hence 
great care must be taken in preserving the Larmor frequency during the electromagnetic 
noise	cancellation	from	the	surface-NMR	measurements;

ii) the main issues related to the proposed de-spiking strategy are: 1) the reliability of 
the thresholding criterion and 2) the substitution of the detected spiky samples with 
appropriate values. The de-spiking method with a data-driven threshold was presented 
aimed at responding to both the first and second issue;

iii) a surface-NMR survey is rather time-consuming, so an arbitrary increase of the stacking 
rate is not possible. Referring to the synthetic experimentations, it was shown that using the 
proposed filtering strategy a small number of stacks is required to achieve reliable results. 
Furthermore,	in	cases	where	the	power-line	harmonics	from	different	sources	consist	of	
more	than	one	fundamental	frequency,	the	MNGE	method	is	implemented	only	once	with	
an	initial	guess	equal	to	50/60	Hz,	which	provides	a	computationally	fast	harmonic	noise	
cancellation	method;	

iv) based on the numerical experiments, in cases where the signal length does not allow 
estimating	the	harmonic	signal	parameters	(phase	and	amplitude)	using	the	last	part	of	the	
FID	signal	where	the	surface-NMR	signal	mostly	includes	noise,	 the	proposed	method	
outperforms	the	model-based	method.	

Table 5 - Performance comparison results of pure stacking, a combination of SD-ROM and MNGE and reference 
method	as	well	as	model-based	method	implemented	on	signal	1	with	S0=195	nV,	T2

*=105	ms,	f0=2108	Hz	and	φ0=1	
rad	and	signal	2	with	S0=190	nV,	T2

*=90	ms,	f0=2102	Hz		and	φ0=0.9	rad.	The	standard	deviations	of	the	derived	signal	
parameters	are	calculated	from	10	independent	runs.	

   Signal 1    Signal 2

 Parameters Pure SD-ROMb+ SD-ROM+ SD-ROM+model- Pure SD-ROM+ SD-ROM+ SD-ROM+model 
 Methods stacking MNGEc reference method based method stacking MNGE reference method based method

 S0(nV)  214.14±27.77 191.09±9.16 192.79±7.21 191.74±5.14 232.1±33.95 183.18±6.54 184.14±8.89 186.39±7.45

 T2
*(ms) 118±14.02 104.06±7.03 103.27±5.85 105.2±8.15 81.41±16.85 97.75±5.4 96.43±5.12 95.61±2.54

 f0(Hz) 2107.091±0.08 2108.02±0.032 2108.028±0.041 2107.97±0.029 2102.094±0.074 2102.05±0.018 2101.94±0.031 2102.04±0.043

 φ0 (rad) 1..089 0.978 1.012 0.97 0.96 0.91 0.991 0.984

 SNR (dB) -1.089 23.47 21.96 24.12 -0.321 27.05 25.74 26.29

 MAPEa [%] 32.51±396 12.21±6.71 12.13±6.33 12.25±6.02 27.51±7.53 9.76±4.07 11.04±3.59 9.11±6.67

a MAPE: Mean Absolute Percentage Error, b Signal dependent rank-order mean, c Modified Nyman-Gaiser estimation.
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3.3. Field example
In	the	previous	subsections,	the	performance	of	the	proposed	algorithm	was	demonstrated	by	

presenting the results of implementing the combination of the MNGE method and SD-ROM-
based de-spiking on several synthetic MRS signals embedded in both artificial and real noises. 
In	 the	 following,	 we	 will	 show	 the	 results	 from	 the	 inverted	 parameters	 associated	 with	 the	
processed real MRS signals. As explained, the de-noising procedure of the MRS signal includes 
two stages based on the proposed method. Initially, by applying the SD-ROM algorithm, the MRS 
signal is recovered by de-spiking the records and in the second stage by applying the MNGE 
method, then the parasitic harmonics are cancelled. Finally, the data are stacked and the MRS 
signal	parameters	are	retrieved	by	an	envelope	detection	technique	based	on	the	digital	quadrature	
detection with phase correction followed by a non-linear fitting algorithm. The field data used 
here was carried out in cooperation with the U.S. Geological Survey, in the Platte River alluvial 
valley, central Nebraska, U.S.A., within the framework of investigating hydrologic parameters in 
the	near-surface	aquifer	system.	The	survey	was	conducted	with	GMR	instruments	(Vista	Clara	
Inc.) using a 46-m-side-eight loop with one turn. The Earth’s magnetic field had an intensity of 
54013 nT at an inclination of 68.33° and a declination of +7.98°. The MRS field measurements 
consisted of 20 pulse moments ranging from 134.33 to 11566.94 A·ms. Initially, by applying 
the proposed filtering algorithm, data are processed. In the second stage, the parameters water 
content and relaxation time of the processed FID signals, are inverted. Figs. 11a, 11b, and 11c 

a) b)

c) d)

Fig.	11	-	Representation	of	the	envelopes	detected	(green	lines)	from	all	the	unprocessed	(a)	and	processed	(b)	FID	
signals	S	as	functions	of	measurement	time	t	and	pulse	moment	q,	processed	(c)	and	unprocessed	(d)	data	set	in	the	
frequency domain, as well the exponential fit (black lines) to the processed signals with data fit residual 11 nV. 
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show the fit to all the processed signals as functions of measurement time and pulse moment, 
processed and unprocessed data set in the frequency domain, respectively. The data fit residual, 
as the L2-norm of the difference of observed data from calculated data divided by the square root 
of	number	of	measurements,	is	calculated	at	11	nV.	The	MRS	inversion	results,	using	the	rotated	
amplitude data set corresponding to water content and relaxation time, are represented in Figs. 
12a	and	12b,	respectively.	Referring	to	the	inversion	result,	an	aquifer	layer	is	detected	containing	
10% of water, while using the inverted parameter of relaxation time, two layers with decay 
time of 205 and 251 ms, indicating a significant difference between pore size distribution of the 
corresponding	two	layers,	are	observed.	Note	also	that	the	water	table	measured	in	the	borehole	
lithology approximately corresponds to the depth at which a 205 ms decay time is reached. The 
information	obtained	 from	a	borehole	 located	 at	 the	 sounding	 corresponds	 reasonably	 closely	
with	the	resulting	inverted	parameters	from	the	MRS	measurements.

4. Concluding remarks

There	 has	 been	 progress	 in	 developing	 procedures	 for	 noise	 cancellation	 on	 multi-channel	
surface-NMR signals including field and analytical techniques, but little has been done for the 
noise	cancelling	of	single-channel	surface-NMR	signals.	In	this	paper,	we	have	presented	a	new	
signal dependent rank-order mean filter and MNGE method, which potentially improve these 
techniques for removing spiky events and power-line harmonics from surface-NMR signals. 
The proposed de-spiking algorithm was compared with a time domain de-spiking method (i.e., 
TDmean) so that the application of the signal dependent rank order mean filter for removing noise 
spikes from the surface-NMR measurements revealed a better performance in terms of MAPE, 
in addition to improving the fitting parameters. We also compared the results using the proposed 
harmonic	noise	cancelling	method	with	those	of	a	non-linear	optimization	problem	as	the	method	
of	reference	to	verify	the	estimation	accuracy	of	fundamental	frequency,	amplitudes,	and	phases	
through the MNGE procedure. The results of numerical experiments from applying the proposed 
filtering strategy to the removal of electromagnetic noise induced by power-line harmonics, as well 
as spiky events from synthetic signals corrupted by artificial and real noise recordings, confirmed 
the	relatively	good	capability	of	the	proposed	scheme,	leading	to	more	accurate	recovery	of	the	
signal	parameters.	 It	was	also	shown	 that	 the	parameters	estimated	from	signals	 restored	with	

Fig. 12 - Left: inversion results of the 
field example: a) free water content and 
b) relaxation time. Right: subsurface 
according	 to	 a	 borehole	 lithology	 located	
at the sounding with the thickness of each 
layer.	 The	 water	 table	 measured	 in	 the	
borehole	can	be	found	at	a	depth	of	4.5	m	
from	the	subsurface.	
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the	proposed	harmonic	noise	cancelling	method	have	comparable	accuracy	 to	 those	of	signals	
restored	with	the	algorithm	based	on	the	model-based	method.	Furthermore,	the	application	of	
the	presented	method	on	a	real	data	set,	followed	by	the	inversion	of	the	processed	data,	resulted	
in	reasonable	match	between	the	estimated	parameters	of	the	aquifer	and	those	obtained	from	a	
borehole	lithology	located	at	the	sounding.
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