
Bollettino di Geofisica Teorica ed Applicata 	 Vol. 58, n. 3, pp. 181-204; September 2017

DOI 10.4430/bgta0207

181

Statistical de-spiking and harmonic interference  
cancellation from surface-NMR signals via a state-conditioned 
filter and modified Nyman-Gaiser method 

R. Ghanati1,2 and M.K. Hafizi1 
1 Institute of Geophysics, University of Tehran, Iran
2 Leibniz Institute for Applied Geophysics, Hannover, Germany

(Received: April 17, 2017; accepted: August 9, 2017)

ABSTRACT	 The ability to recover subsurface information from surface-NMR measurements 
depends upon the signal quality which is adversely affected by ambient electromagnetic 
interference, i.e., power-line harmonics and impulse noises. We discuss two algorithms 
to isolate and then subtract these interferences. This study first tackles the use of the 
signal dependent rank-order mean filter for the detection and mitigation of noise 
spikes from highly corrupted surface-NMR signals. This algorithm estimates the 
likelihood the sample under inspection is corrupt relative to a threshold value derived 
from a statistical procedure and replaces a sample identified as impulse noise with an 
appropriate value. Then, the removal of power-line harmonics is implemented through 
a linear adaptive method, called a modified frequency-estimation approach stemming 
from the estimator proposed by Nyman-Gaiser. To verify the performance of the 
proposed algorithms to eliminate harmonics and spikes, the methods are tested on 
synthetic signals embedded in artificial noise and noise-only recordings derived from 
surface-NMR field measurements and a real data set. The results from the numerical 
simulations reveal an output signal-to-noise ratio increase with an accompanying 
enhancement in recovery of the surface-NMR signal parameters. Close agreement is 
also observed between the results of the field example and a borehole located at the 
sounding.
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1. Introduction

The surface-NMR method, also called Magnetic Resonance Sounding (MRS), is a non-invasive 
and emerging geophysical technique providing key information regarding the distribution of water 
content in the shallow subsurface, pore geometry, and also hydraulic conductivity (Vouillamoz 
et al., 2012; Behroozmand et al., 2015). The main merit of the surface-NMR method compared 
with other geophysical tools is that the surface measurement of the surface-NMR signal responds 
directly to the presence of subsurface water. In other words, the surface-NMR procedure is a 
way to quantitatively determine water presence in the subsurface, which is impossible with other 
geophysical methods available today (Hertrich, 2005; Vouillamoz et al., 2007). Surface-NMR is 
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the field scale implementation of the nuclear magnetic resonance method in which the nuclei of the 
hydrogen atoms of water molecules (i.e., protons) in the subsurface are energized by transmitting 
a resonance EM pulse, and then the energized protons generate a secondary magnetic resonance 
signal after the excitation pulse is switched off. The signal response of the hydrogen nuclei, which 
is an exponentially decaying function of time, resonates at the proton Larmor frequency (the 
resonance frequency of the water molecules in the geomagnetic field varying from 1 kHz up to 
2.7 kHz) with signal phase φ0. According to Legchenko and Valla (2003), this so-called detectable 
free induction decay (FID) signal is given by:

S(t) = S0 cos (2π f0t + φ0) exp (–t/T *2)	 (1)
 

where φ0 is the phase offset of the signal, S0 is the initial amplitude, T *2 denotes decay time of the 
FID signal and f0 indicates the Larmor frequency. Both T *2 and S0 are key factors in discovering 
hydro-geological features. The initial amplitude S0 is correlated with the amount of water and the 
relaxation time provides information on the pore structures that contain water. It is well-known 
that when recording surface-NMR signals, the two most important environmental electromagnetic 
noise sources are power-line harmonics and noise spikes. Power line harmonics are complicated 
by the time-varying nature of the fundamental frequency and harmonic content, as well as the 
varying characteristics across different power grids (Cohen et al., 2010). Noise spikes originate 
from natural and anthropogenic noise sources with the varying appearance and lessen the quality 
of data. It is well-known that when recording surface-NMR signals, the two most important 
environmental electromagnetic noise sources are power-line harmonics and noise spikes. Power-
line harmonics are complicated by the time-varying nature of the fundamental frequency and 
harmonic content, as well as the varying characteristics across different power grids (Cohen et 
al., 2010). Noise spikes originate from natural and anthropogenic noise sources with the varying 
appearance and lessen the quality of data. Based on single-loop surface-NMR measurements, 
many practical methods have been developed for noise reduction (see Trushkin et al., 1994; Plata 
and Rubio 2002; Legchenko and Valla, 2003; Ghanati et al., 2014, 2016a, and references therein). 
Recently, multi-channel systems (the second generation of surface-NMR instruments consisting 
of a number of reference loops to record local noise conditions in addition to the primary loop 
for transmitting and receiving the surface-NMR signal) offer the possibility to measure the time 
series as broad-band data records at 50 kHz sampling rate instead of providing merely envelopes 
of the records. It makes to use more sophisticated noise cancelling techniques and it is possible to 
overcome the drawbacks from the single-channel surface-NMR filtering techniques (see Dalgaard 
et al., 2012; Walsh, 2008; Larsen et al., 2014; Müller-Petke and Costabel, 2014). In addition, a 
number of different spike detection approaches have been reported in the signal processing and 
geophysics literature, often taking inspiration from the closely related problem of identifying 
peaks in a time series. For instance, Legchenko (2007) suggested a spike exclusion method 
based on the simple obliterating of corrupted time sequences. A statistical approach called the 
Romanovsky criterion to identify and eliminate spiky noises was proposed by Jiang et al. (2011). 
Dalgaard et al. (2012) used a spike detection algorithm based on the non-linear energy operator so 
that the samples containing impulse noises are substituted with zeros. Costabel and Müller-Petke 
(2014) investigated three de-spiking methods where two of these schemes are applied in the time 
domain and the third de-spiking approach takes advantage of the wavelet-like nature of spike 
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events. Larsen (2016) addressed the removal of impulsive noise (spikes) from electric fences 
through a subtraction-based approach. It is noteworthy that the approach suffers from overfitting 
and subtraction of the NMR signal. In a recent paper, an efficient post-processing workflow for 
surface-NMR data using the singular spectrum analysis based de-noising algorithm for noise 
removal was proposed by Ghanati et al. (2016b).

1.1. Problem statement 
Since the data acquisition relies on the principle of induction that generates a rather weak 

voltage in the range of nV to few µV in the surface loop. In addition, the weakness of the recorded 
signal also causes the measurements to be intensely noise corrupted: as a results, robust and 
effective noise attenuation approaches are required to preserve the signal of interest which leads 
eventually to an increase in the accuracy of the parameter estimation. 

Let us assume that the surface-NMR data record, S(t), contains spiky events and power-line 
interference of a quasi-periodic nature, i.e., consisting of a fundamental frequency (50/60 Hz) 
with harmonics at exactly integer multiples at any given time. The filtering is implemented by 
isolating and subtracting a reconstructed version of these interferences, i.e., 

Sfiltered (t) = Sraw (t) – P (t)	 (2)

where the second term of the above equation (P(t)) is related to the harmonic interference and 
spiky noise. Our task in mitigation the noise contaminators is to isolate P(t) accurately and with 
computational efficiency. To that end, two techniques are presented. Initially, using a non-linear 
filter called the signal dependent rank-order mean (SD-ROM), noise spike is detected based 
on an appropriate thresholding criterion, and then replaced by the mean value of the signal 
amplitude of the measurement repetitions for the same sample on the time axis. Then, a modified 
Nyman-Gaiser estimation (MNGE) proposed by Saucier et al. (2006) is implemented to remove 
the harmonic noise. We also apply a non-linear inversion algorithm as the method of reference 
to verify the estimation accuracy of fundamental frequency, amplitudes, and phases through 
the MNGE procedure. Furthermore, a performance comparison between the proposed harmonic 
suppression algorithm and the model-based noise reduction (Larsen et al., 2014) is carried out. 
After de-spiking and power-line harmonic noise removal the surface-NMR signal is still corrupted 
by the background noise (i.e., random and Gaussian distributed white noise). The Gaussian noise 
can be reduced by standard averaging of multiple measurements (i.e., the stacking). Finally, the 
parameters of the surface-NMR signal can be retrieved by the envelope detection process. This 
includes signal extraction using the digital quadrature detection with additional phase correction 
(Neyer, 2010; Müller-Petke et al., 2011) and the estimate of the underlying surface-NMR signal 
parameters, such as initial amplitude S0, decay time T *2, frequency, and phase φ0 through a 
Marquardt-type damped Gauss-Newton method.

1.2. Summary of the paper 
Section 2 gives a review of the methods and algorithms. An automatic and efficient thresholding 

function, that is proportional to the noise level of surface-NMR signals to detect spiky events, in 
particular those in which the period of their occurrence is too long, is presented.

Section 3 deals with the performance of the proposed strategies. It discusses simulations with 
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synthetic surface-NMR signals added to simulated noises and real noise-only measurements, as 
well as a field example.

Finally, a short conclusion summarizes the main ideas in section 4.

2. Methodology

2.1. Automatic detection of spikes 
Spiky events of various origins in surface-NMR measurements degrade the performance of 

the power-line harmonic noise cancelling algorithm (that we present here). Therefore, the noise 
spikes must be detected and removed before further noise cancelling. In practice, the spikes 
usually corrupt only a part of the signal section, leaving most of it undisturbed, hence obliterating 
entire time series is not necessary. In this section, we introduce a fast, robust and automatic de-
spiking procedure in the time domain, leading to a considerable reduction of impulse noises. As 
mentioned earlier, in a variety of de-spiking schemes, corrupted samples (the samples that are 
dissimilar with respect to their neighbors) are exchanged with zeros. This technique often causes 
notable distortions in the original signal. The signal dependent ranked-order mean (SD-ROM) 
filter (Abreu et al., 1996; Moor and Mitra, 2000) is a non-linear filter belonging to the class 
of decision-based filters, or state-conditioned filters (Ferahtia et al., 2009). The SD-ROM filter 
utilizes a spike detector to decide whether the sample under inspection is corrupted or not. In 
other words, the overall implementation can be viewed as special case of the spike noise-cleaning 
procedure in which the original sample of a spiky signal is replaced with an appropriate estimate 
if it is detected as corrupted. Otherwise, the corresponding sample (uncorrupted sample) is left 
unchanged. The spike detection process is implemented through the following 6 steps: 

Step 1: choose a 1-D odd sliding window of size moving on the entire time series (for instance k 
= 9):

T = {S1(t), S2(t), S3(t), S4(t), S5(t), S6(t), S7(t), S8(t), S9(t)}	 (3)

Step 2: designate the central element of vector T C(t) and then exclude it within the window:

T̃ = {S1(t), S2(t), S3(t), S4(t), S6(t), S7(t), S8(t), S9(t)}	 (4)

Step 3: sort the samples of vector T̃ in ascending order:

T̃rearrenged = {S̃1(t), S̃2(t), S̃3(t), S̃4(t), S̃5(t), S̃6(t), S̃7(t), S̃8(t)}	 (5)

such that S̃1(t) ≤ S̃2(t) ≤ ... ≤ S̃8(t);

Step 4: compute the rank-ordered differences W(t) between the elements of T̃rearrenged and C(t):

Wi(t) = {	 S̃1(t) – C(t)	 if C(t) ≤ µ	
(6)	 C(t) – S̃9–i(t)	 if C(t) > µ
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where µ = [S̃4(t) + S̃5(t)]/2 and is called the rank-order mean. For a window of size 9, i = 1,2,...4;

Step 5: the algorithm decides C(t) is a spike if any of the following conditions hold

Wi(t) ≥ �,  i = 1,2,...4 

where � is the thresholding criteria calculated statistically using T-distribution checking, which 
is principally processed based on the distribution range of actual error in T-distribution. The 
characteristic of T-distribution is to first exclude a doubtful sample, and then to check based on 
T-distribution if the excluded sample has gross error. Suppose that one of the measured samples 
Sq is a doubtful datum, delete this sample and then recalculate the standard deviation of the other 
measurements as

(7)

Then, based on the chosen conspicuousness (significant level) β and number of measurements N, 
the test coefficient K (N, β) of T-distribution function can be acquired by using the T-distribution 
coefficient table (Ross 2009).

Hence, the threshold criterion is defined as:

� = σK (N, β).	 (8)

Note that generally the choice of threshold is a very delicate and important statistical problem, 
so that a small threshold leads to attenuating the surface-NMR signal of interest inside the noise 
spikes, while a large threshold provides inappropriate de-spiking. Hence, choice of the threshold 
based on the noise level and statistical characteristics of the recordings (i.e., data-driven threshold) 
might bring about a more efficient elimination of the spiky noises. 

Steps 1 to 5 are implemented on all measurement repetitions of one pulse moment (i.e., the 
ensemble consisting of all single records to be stacked), and the time sequences identified as noise 
spikes are marked in all considered records;
Step 6: substitute the spiky sample (marked sample) detected in the previous steps with the mean 

values of the measurement repetitions at the corresponding position on the time axis excluding 
the marked samples, i.e., excluding the spiky features.
Our numerical experimentations show that a sliding window of size 9 gives better results. 

Furthermore, it should be noted that in the original SD-ROM algorithm, the detected spiky samples 
are replaced by the rank-order mean µ, leading to major distortions during the de-spiking process 
of surface-NMR data. On the other hand, the use of the proposed thresholding criteria enables 
more accurately identifying spiky events in surface-NMR recordings rather than the median 
absolute deviation and the standard deviation of the data. In Fig. 1, we present the design of the 
SD-ROM based de-spiking algorithm. In the following, we deal with the performance of our de-
spiking strategy using the modelling of an exponentially decaying synthetic signal with initial 
amplitude S0 = 250 nV , decay time T *2 = 100 ms, the Larmor frequency f0 = 2237 Hz, phase φ0 = 
1.03 rad, and the time length of 500 ms and the sampling frequency of 20 kHz corrupted by spiky 
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events and Gaussian-distributed noise with standard deviation σ = 150 nV and mean value m = 
0. To simulate a spiky event as realistic as possible, we isolate a spiky signal from a real surface-
NMR signal recording (see Fig. 2a). Then we simulate realistic measurements by repeating the 
numerical procedure to generate the synthetic signal 30 times with additional spiky events and 
Gaussian noise. Each time, the spiky signal occurs randomly at another position on the time axis. 
It should be noted that the presence of single spikes in the surface-NMR measurements is not a 
challenging issue, even if many such events occur in the data. In this case, the application of a 
simple de-spiking procedure provides satisfactory results. But the removal of such noise events 
from very long periods be might problematic (Costabel and Müller-Petke, 2014). Hence, for the 
following analysis, we consider a series of spikes like the feature at t = 241 ms to 262 ms shown in 
Fig. 2a. Fig. 2b illustrates the result of applying the proposed de-spiking method to the single stack 
shown in Figs. 2a. In addition, the resulting signal after de-spiking and staking 30 single records 

Fig. 1 - Flowchart of the signal 
dependent rank-order mean filter.
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and the unprocessed and stacked signal are shown in Figs. 2c and 2d, respectively. Referring 
to Fig 2c, it can be seen that the spiky noises have been substantially removed through the SD-
ROM algorithm and the signal-to-noise ratio increases from -8.21 dB (related to the stacked noisy 
signal) to 4.67 dB. For comparison, the de-spiking process can also be implemented through the 
strategies proposed by Costabel and Müller-Petke (2014) on surface-NMR data based on two 
time-domain thresholding criteria called TDzero and TDmean. The main reason to use TD-based 
techniques is that in a variety of de-spiking schemes, corrupted samples are exchanged with 
zeros that may lead to notable distortions in the original signal, while in the TDzero and TDmean 
methods a more reasonable strategy is applied to substitute spiky samples. Both TDmean and 
TDzero contain three steps as follows: 1) the threshold value can be determined by relating it to 
the standard deviation of the data. Then, a user-specified factor is multiplied with the standard 
deviation of the time series and determines up to which maximum amplitudes the data are accepted 
and what amplitudes are regarded as spikes. Note that the above process is applied to all single 
records and the detected spiky samples are marked in all considered records. 2) For every single 
time sample, the mean value of the whole ensemble is calculated excluding the spiky features. 
3) Subsequently, the spiky samples are substituted with the mean values at the corresponding 
position on the time axis. It should be noted that the only difference between TDmean and TDzero 
is in the calculation of the transfer function. This means that in TDzero, a time window with 
the length equal to 2 ms, depending on the data we have, around the corresponding sample on 
time axis is replaced with zeros, while in TDmean the spiky sample is exchanged with the mean 
values of uncorrupted samples. Whereas in our proposed processing workflow it is not required 

Fig. 2 - Results of applying different de-spiking strategies to a synthetic surface-NMR signal with initial amplitude	
S0 = 250 nV and a decay time T2

* = 100 ms contaminated with spiky events and Gaussian-distributed noise with standard 
deviation σ = 150 nV. Left column, single record; unprocessed (a), processed via SD-ROM (b), processed via TDmean 
(c). Right column, stacked signal; unprocessed (d), processed via SD-ROM (e), processed via TDmean (f).
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to calculate a transfer function, for comparison we only consider the results derived from the 
TDmean algorithm. The processing result of the synthetic signal for TD-based strategy is shown 
in Figs 2e and 2f. Representative results from the proposed de-spiking strategies (i.e., TDmean 
and SD-ROM) to retrieve the surface-NMR signal parameters (the signal parameters are estimated 
by envelope detection and fitting the envelope to the mono-exponential decay that are discussed 
in a later section) are shown in Table 1. One can see that the values of mean absolute percentage 
error (MAPE) obtained by using the proposed algorithm are lower than those of TDmean, and that 
the signal parameters (i.e., T *2 and S0) are better estimated through SD-ROM. This validates the 
use of the SD-ROM based de-spiking method over TDmean. 

Table 1 - Estimated parameters and MAPE performance of different de-spiking strategies implemented on a synthetic 
surface-NMR signal (T2

*=100 ms and S0=250 nV) corrupted by Gaussian noise and spiky events.

	 Parameters    Methods	 TDmean	 SD-ROM

	 T2
* (ms)	 106.2  ±7.71	 104.1  ±6.51

	 S0 (nV)	 262.16±18.94	 259.13±14.61

	 MAPEa [%]	 11.41±6.99	     7.9  ±12.32

a MAPE: Mean Absolute Percentage Error

2.2. Harmonic interfering noise cancelling
One of the biggest challenges to estimate surface-NMR signal parameters accurately is the 

presence of harmonic interference that intensively affects the signal of interest. Based on the idea 
of using multi-channel systems, the data from reference loops are used to reduce the noise level 
from the surface-NMR measurements by harmonic noise cancellation. Although the reference-
loop based noise cancellation methods have proved promising in enhancing the signal to noise 
ratio in surface-NMR measurements, the presence of spikes in any of the channels results in 
unreliable adaptive noise cancelling. In other words, for adaptive noise cancelling (ANC) to work 
efficiently, the primary signal and the reference signal must be highly linearly correlated, whereas 
the spikes from different sources considerably lessen the correlation between the primary channel 
and reference channel in the surface-NMR recordings. Furthermore, the adaptive noise canceller 
may become ineffective when the reference signal contains higher order harmonics (Keshtkaran 
and Yang, 2014). In this section, we present a relatively robust and computationally efficient 
processing technique based on the modified Nyman-Gaiser estimation (MNGE) method for 
suppressing power-line noise in the surface-NMR recordings. This technique involves subtracting 
an estimation of the harmonic component without distorting or enervating the signal of interest. 
Nyman and Gaiser (1983) demonstrated that it is possible to eliminate power-line noise in seismic 
reflection records by modelling the noise as a sum of stationary sinusoids and then subtracting 
them from each trace. Their technique includes finding a refined fundamental frequency and then 
sequentially finding phase and amplitude for each harmonic component through Fourier time 
series analysis. 

A recorded surface-NMR signal X(t) can be represented by the following model:

X(t) = S(t) + h(t) + ε(t)	 (9)
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where S(t) is the ideal surface-NMR signal from the subsurface protons, h(t) is the power-line 
interference, and ε(t) is the non-harmonic noise (i.e., spiky events and Gaussian noise), all sampled 
at fS Hz. h(t) consists of a set of harmonic sinusoidal components with unknown frequencies, 
phases and amplitudes as:

(10)

Here, ωf is the fundamental frequency in rad/s, the amplitude and phase of the kth harmonic 
are denoted by Ck and Θk, respectively, and M indicates the number of harmonics present in 
the interference. An appropriate harmonic interference elimination algorithm should remove the 
interference h(t), while preserving the free induction decay signal S(t). Note that the amplitude, 
phase, and frequency of all harmonics are assumed to remain constant over the length of the 
record. This assumption is reasonable for recorded lengths of a few seconds or less (Butler and 
Russell, 1993; Larsen et al., 2014). Whereas the maximum signal length recorded by the surface-
NMR instruments is less than 1 s, the above assumption is accepted as being valid for the surface-
NMR measurements. 

The harmonic noise h(t) given by Eq. 10 may also be written in the form 

(11)

where ak = Ck cos (Θk) and bk = –Ck sin (Θk). Putting Eq. 11 into Eq. 9, we arrive at the following 
equation. Note that the term ε(t) is neglected for simplicity.

	 .	 (12)

The recent equation can be written as a system of linear equation: X = Hd + S, where S = 
(s1(t), s2(t),..., sN(t))T, d = (a1, b1,..., aM, bM)T, X = (x1(t), x2(t),..., xN(t))T and H is an N×2M matrix 
with Hn,2i–1 = cos (iω0tn), Hn,2i = sin (iω0tn), for n = 1, 2,... N, i = 1, 2, 3,..., 2M. If S(t) is assumed 
to have Gaussian distribution, the maximum likely estimator of X is Hd̃  where d̃  is the standard 
least-squares solution and hence

	 .	 (13)

For a certain value of the fundamental frequency f0 an estimator d̃  of the amplitude d can be 
computed by minimizing the above cost function.

Based on the Nyman-Gaiser estimation (NGE) methodology, frequency f0 is known to be 
approximately equal to fn = 50/60 Hz to estimate the amplitude and phase. Considering an initial 
guess of fn of f0, NGE generates an estimate δ̃ of the fundamental frequency shift δ as:

f0 = fn + δ.	 (14)
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Once δ̃ is achieved, the frequency estimate is revised with fn
r+1 = fn

r + δ̃, where r is the number of 
iterations, and this value is used as a starting value for the next iteration. The optimization process 
is continued until convergence of f̃  is achieved. The NGE algorithm estimates each harmonic 
separately, leading to a collection (f̃ 1, f̃ 2,..., f̃ M) of harmonic frequency estimates. Whereas these 
frequencies fn are related to each other by fn = nf0 (n = 1, 2,..., M), it is possible to use a linear 
combination of the estimates f̃ 1, f̃ 2,..., f̃ M to construct a single lower variance estimator of the 
fundamental frequency f0. 

The proposed method is based on the Nyman and Gaiser’s estimation variables defined as:

(15a)

(15b)

(15c)

(15d)

where T is signal duration and k = 1, 2,..., M. The above estimation variables are used to construct 
an estimator of the kth harmonic. Note that the amplitude Ck and phase Θk of the kth harmonic are 
estimated using the variables Ok and Pk, respectively. The variables Qk and Rk allow the estimation 
of the frequency shift δ = ω0 – ω. Using Eqs. 15 a collection of M estimators of δ̃k δ of is expressed 
as follows:

(16)

Eq. 16 defines one estimator of δ for each harmonic of the fundamental frequency. It can be 
proved that δ̃k are unbiased estimators of δ.

The estimators of C̃k and Θ̃k of Ck and Θk are also represented by:

(17a)

(17b)

(17c)

In the statistical context, an optimum estimator needs to be unbiased, meaning that on the 
average the estimator will yield the true value of the unknown parameter, and minimizes the 
variance criterion (Kay, 1993). Such an estimator is called the minimum variance unbiased 



Statistical de-spiking and harmonic interference cancellation	 Boll. Geof. Teor. Appl., 58, 181-204

191

(MVU) estimator. The determination of the MVU estimator is in general a difficult task because 
in practice the MVU estimator, if it exists, often cannot be found. For instance, we may not know 
the probability density function (PDF) of the data or even be willing to assume a model for it. In 
this case, even some methods which take advantage of the Cramer-Rao lower bound (Kay, 1993), 
which is a lower bound on the variance of any unbiased estimator, and the theory of sufficient 
statistics (Fisher, 1922) cannot be applied. Faced with our inability to determine the optimal MVU 
estimator, it is reasonable to resort to a suboptimal estimator. However, if the variance of the 
suboptimal estimator can be ascertained and if it meets our system properties, then its use may be 
justified as being adequate for the problem at hand. If its variance is too large, then we will need 
to consider other suboptimal estimators to detect one that meets our specifications. A common 
practice is to limit the estimator to be linear in the data and find the linear estimator that is unbiased 
and has minimum variance. This estimator is termed the best linear unbiased estimator (BLUE) 
and can be determined without complete knowledge of the PDF of the data (Kay, 1993). 

Saucier et al. (2006) demonstrated that the BLUE can be used to develop a single estimator 
for the error in the initial estimate of the fundamental frequency. This single estimator combines 
all the estimates for the frequency shifts δ̃k and amplitudes for each of the harmonics. Whereas 
the variables δ̃k are uncorrelated, which is a consequence of the orthogonality of the estimation 
variables (Eq. 14), according to Saucier et al. (2006) for mutually uncorrelated variables, the 
BLUE takes the form as

	 .	 (18)

Here, σk
2 = Var (δ̃k) and Var (δ̃) = . It can be proved that σk

2 is defined as [the readers are 
referred to Saucier et al. (2006), for more details about determination of variance of estimation 
variables]

(19)

where σ2 is the white process variance. Substituting Eq. 19 into Eq. 17, the BLUE takes the 
following form:

	 .	 (20)

2.2.1. Algorithm implementation
First, the estimation variables for k = 1, 2,..., M are calculated with the discrete form of Eq. 

15 (see Appendix A) using the initial angular-frequency estimates ωk = k2πfn. Then the frequency 
shifts δ̃k are determined using Eq. 16. We next compute the amplitudes with the help of Eq. 17a 
and use the results in Eq. 20 to obtain the angular-frequency shift estimate δ̃. We then use δ̃ 
to revise the initial angular-frequency estimate with ωnew = ω + δ̃. The optimization process is 
continued with this new angular-frequency estimate until ω converges. Once ω is calculated, the 
amplitude estimation problem is implemented using the cost function given by Eq. 12 so that the 
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final amplitudes obtained by using Eq. 12 are more accurate than those of Eq. 16a. Note that the 
convergence rate associated to the proposed method is relatively faster than the NGE algorithm 
so that the convergence of the proposed method is usually achieved with less than 6 iterations. 
In the following, a non-linear optimization problem is presented to estimate the harmonic-noise 
parameters.

2.2.2. Non-linear least squares estimation
In this section, we introduce a non-linear least squares problem based on least squares as 

the method of reference to assess the estimation accuracy of fundamental frequency, phase, and 
amplitude using the proposed method. Briefly, the determination of the model parameters f0, Θk 
and Ck in Eq. 11 is a non-linear optimization problem. If we assume that the measurement errors 
are normally distributed, then the maximum likelihood principle leads us to minimizing the sum 
of squared errors normalized by their respective standard deviations. We seek to minimize:

(21)

with WX = diag (1/εi), where F is the forward modelling operator which is non-linear, X is the 
measured data vector of length n, WX is an n×n data weighting matrix containing the reciprocal 
of standard deviation for each datum, m is the model parameters, consisting of the fundamental 
frequency, phase, and amplitude. The data-weighted misfit can also be expressed as chi-square 
function, χ2 = φ(m)/n. A value of 1 means fitting the data within error bounds in a least-squares 
sense (Constable, 1987).

Eq. 20 may be written in the equivalent form:

	 .	 (22)

Expanding the cosine leads to

(23)

Note that the cost function φ is non-convex in Ck and Θk. Hence, we transform it to a convex 
function by letting αk = CkcosΘk and βk = CksinΘk. Therefore, the new quadratic cost function is 
presented as:

	 .	 (24)

Here, instead of directly estimating Ck and Θk in Eq. 22 we can equivalently estimate αk and βk 
in Eq. 23 to obtain h(t). Accordingly, the unknown model parameters become f0, αk, and βk. Since 
the problem is non-linear, an iterative minimization is applied. 
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3. Simulation results

In this section, we present experiments illustrating the performance of the proposed de-spiking 
and power-line interference removal algorithms in some numerical examples from the modelling 
of synthetic surface-NMR signals embedded in artificial and real noise recordings. We, then, 
compare the results with those of a non-linear least squares problem, which is used to determine 
the fundamental frequency and the amplitudes and phases of all harmonics.

In addition, to better verify the functionality of the MNGE method, particularly in predicting 
the fundamental frequency, a comparison is made between the proposed method and the model-
based removal of harmonics provided by Larsen et al. (2014). It is noteworthy that, for both 
MNGE and the model-based method, the better the fundamental frequency estimation, the more 
accurate the harmonics retrieval. The processing steps presented in this paper for a surface-
NMR recording include: 1) de-spiking, 2) harmonic noise cancelling, 3) stacking, 4) envelope 
detection, and 5) signal parameters estimation. Based on the proposed processing workflow, the 
synthetic surface–NMR signal is retrieved by first de-spiking the records corrupted by noise-only 
measurements. Then, power-line interference is eliminated with the MNGE method or non-linear 
least squares estimation. After applying the first two processing steps to each simulated single 
record, the data (the single records) are stacked. Subsequently, the parameters of the surface-
NMR signal are determined through envelope identification and fitting the envelope to the mono-
exponential decay. 

Here, the digital quadrature detection with phase correction is used to extract the surface-
NMR signal envelope. The quadrature detection multiplies the FID signal S(t) by e(–j2πfRt), where fR 
denotes the frequency of the excitation signal. Then, the phase correction is done by multiplying 
the complex signal, obtained from the previous step, with e(–jα), where α the phase offset of the 
signal is defined as:

(25)

Finally, a low-pass filter (Butterworth filter of fifth order) of e.g., 500 Hz is implemented 
to improve the signal-to-noise ratio. The cutoff frequency of the low-pass filter is determined 
based on the idea proposed by Müller-Petke et al. (2011). Accordingly, two derived signals are 
obtained, one in phase (real part) and one in out-of-phase (imaginary part), where the real part 
of the signal is composed of noise and the FID, while the imaginary part includes only noise 
components (Müller-Petke et al., 2011). Hence, the real part (amplitude) is used for inversion. 
The performance of the low-pass filter causes distortions in initial amplitude so that even a careful 
filter design does not counteract such an effect. To remedy this deficiency, the first few samples of 
the envelope signal are not included in the exponential fit based on the filter response to an impulse 
test (Müller-Petke et al., 2016). To estimate the signal parameters, in synthetic experiments, the 
signal parameters are calculated using the complex mono-exponential fitting through a non-linear 
optimization problem based on the regularized Levenberg-Marquardt method (Chavent, 2009).

We use two metrics in terms of signal-to-noise ratio improvement and mean absolute percentage 
error (MAPE), which is a scale error metric and widely understood criterion for assessing 
estimation accuracy (Hyndman and Koehler, 2006). Mathematically, the MAPE is expressed as:
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(26)

where S̃(ti) is the reconstructed signal (the processed and stacked signal) and S(ti) is the ideal 
signal.

3.1. Application of the proposed schemes to synthetic signals with artificial noise 
The applications consist of three synthetic surface-NMR signals generated through Eq. 1 with 

the parameters defined in Table 2. Then, the simulated signals are corrupted by Gaussian noise 
with a standard deviation of 110 nV and zero mean. Spiky events and harmonic signals with ten 
frequencies starting at 1700 Hz, equally spaced by 50 Hz, and the amplitude of each harmonic is 
randomly chosen between 100 nV and 150 nV. To simulate a spiky event as realistic as possible, we 
isolate a spiky signal from a real surface-NMR signal recording. Figs. 3a, 3b and 3c show the results 
of the simulation, which we will refer to as signals 1, 2 and 3, respectively. Then, we simulate realistic 
measurements (i.e., the stacking process) by repeating the numerical procedure to generate all three 
synthetic FID signals 15 times. It should be noted that for the simulated stacking the phases of the 
harmonics were randomly changed (uniformly distributed between –π and π) in every single stack. 
Furthermore, each time the spiky signal (the isolated spike) occurs randomly at another position on 
the time axis. It is well-known that by increasing the stack size further suppression of the coherence 
noise is provided. This is because the phases of the power-line harmonics randomly change in 
every single stack, so that a part of the energy at the harmonic frequencies is diminished during 
the stacking process (Plata and Rubio, 2002; Strehl, 2006; Costabel and Müller-Petke, 2014). The 
post-processing sequence starts with the filtering based on the SD-ROM (in all applications, we set 
the window length of the SD-ROM algorithm equal to 9; in general, we have found that this choice 
leads to the best results) followed by the proposed harmonic cancellation algorithms that are applied 
to the single records before stacking. The results of applying the proposed combined procedure to 
single records associated with signals 1, 2 and 3 are shown in Figs. 3d, 3e and 3f, respectively. 
Referring to Figs. 3d and 3f, it can be observed that the time series now reveals the presence of 
a number of small spikes that were masked by the power-line interference. The remaining noise 
spikes can be removed by a second de-spiking process (Larsen et al., 2014). The stacked signals 
after 15 repetitions are depicted in Figs. 3g to 3i. The consequences of the filtering of signals 1, 2 
and 3, i.e., the application of the de-spiking and subsequently of harmonic noise cancellation, in the 
frequency domain are shown in Fig. 4. From Fig. 4, we can see that the harmonic components are 
efficiently removed from the corresponding surface-NMR signals, while the Larmor frequencies 
remain unchanged. Note that the main energy of the desired surface-NMR signal is located at the 
Larmor frequency which should be preserved during the processing of the data. 

Table 2 - Assumed parameters for synthetic signals 1, 2 and 3 contaminated with simulated noise signals.

	 Parameters    Signals	 Signal 1	 Signal 2	 Signal 3

	 S0 (nV)	   170	   170	   170

	 T2
* (ms)	   100	   100	   100

	 f0(Hz)	 1916	 1907	 1902

	 φ0 (rad)	       1	       1	       1
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For comparison, the harmonic noise subtraction can also be implemented using a non-linear 
least squares inversion (referred to as the reference method). Fig. 5 displays the resulting time 
series after implementing the de-spiking method and non-linear least squares estimation on the 
synthetic signals presented in Figs. 3a to 3c.

In addition, Fig. 6 shows the difference between the power spectrums of the filtered time 
series (i.e., signals 1, 2, and 3) obtained from the proposed method and the reference method. 
This difference is small almost everywhere, implying a close correlation between the spectrum 
obtained with the proposed method and that of non-linear least squares estimation. After applying 
the proposed filtering procedure, the next step is the envelope detection and fitting the envelope to 
the mono-exponential decay. The ability of the filtering strategy compared to the reference method 
to retrieve the surface-NMR signal parameters can be seen in Table 3. The surface -NMR signals 
have also been retrieved in the case where no filtering has been done. As indicated in Table 3, our 

Fig. 3 - Results of applying the proposed filtering method to the synthetic signals contaminated with artificial noise: 
unprocessed single records (panels a to c), processed single records (panels d to f), and processed and stacked results 
with 15 repetitions (panels g to i).

Fig. 4 - Results of applying the proposed filtering method to signals 1 (a), 2 (b), and 3 (c) shown in Fig. 3 in the 
frequency domain.
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filtering scheme shows a close agreement between the assumed and estimated model parameters. 
We also note that the MNGE algorithm and the reference method give equal overall performance, 
indicating the relatively high accuracy of the proposed post-processing algorithm. Based on the 
above observations, it is worth noting that the proposed filtering procedure successfully works 
even if the Larmor frequency is close to one of the parasitic harmonics, particularly for signal 
3 where the frequency offset is equal to 2 Hz. This is a promising result in surface-NMR signal 
processing, where the adjacency of the Larmor frequency to one of the power-line harmonics is 
a problem for many algorithms in the surface-NMR literature. Furthermore, Table 3 summarizes 
the results obtained using the model-based method, indicating a trivial difference between the 
parameters estimated after implementing the proposed method and those of the model-based 
method.

3.2. Application of the proposed schemes to synthetic signals with real noise 
In this subsection, the proposed noise suppression algorithm is analyzed using synthetic 

surface-NMR signals superimposed on real surface-NMR noise records with special emphasis on 
the cases when one power-line harmonic frequency is close to the Larmor frequency. Numerical 
simulation is carried out using two synthetic FID signals generated through Eq. 1 and perturbed 
by two different real noise recordings from two different sites at the sampling frequency of 19,200 
Hz, referred to as site 1 and site 2, with dissimilar noise conditions so that the noise levels at site 
1 are relatively greater than at site 2. Fifteen real noise recordings, collected with a surface-NMR 
system from each of the sites 1 and 2, are used to corrupt the simulated signals with the parameters 
represented in Table 4. Figs 7a and 7b show the result of the simulation for one single record, 
which we will refer to as signal 1 and signal 2. From Fig. 7, it can be seen that the surface-NMR 
signals are completely masked by electromagnetic noises and the decaying exponential form is 
not observable; consequently, the retrieval of signal parameters may fail without noise removal. 
As explained, the filtering procedure of the surface-NMR signal includes two stages based on the 
proposed combined algorithm. Initially, by applying the SD-ROM method, the noise spikes are 
removed and in the second stage by applying MNGE or the reference method, then the harmonic 
components are removed. Figs. 7c and 7d show the processing result of the single records 

Table 3 - Performance comparison results of a combination of SD-ROM and MNGE and reference method as well as 
model-based method implemented on signals 1, 2, and 3 with initial amplitude S0=170 nV, relaxation time T2

*=100 ms, 
phase φ0=1 rad, and the Larmor frequencies equal to 1916, 1907, and 1902 Hz, respectively. The standard deviations 
of the derived signal parameters are calculated from 10 independent runs.

		  Signal 1			   Signal 2			                             Signal 3

	 Parameters	 SD-	 SD-ROM+	 SD-ROM+model	 SD-	 SD-ROM+	 SD-ROM+model	 SD-ROM	 SD-ROM+	 SD-ROM+model 
	 Methods	 ROMb+MNGEc	 reference method	 based method	 ROM+MNGE	 reference method	 based method	 +MNGE	 reference method	 based method

	 S0(nV)	   167.64±3.16	   167.74±4.51	   168.57±5.1	   164.7±2.74	   164.91±3.09	 166.43±4.12	   163.46±2.07	   162.37±4.12	   161.82±6.15

	 T2
*(ms)	   108.52±3.1	   104.25±3.01	   103.87±6.12	   109.9±3.86	   108.21±3.14	 107.06±3.46	   112.28±2.76	   109.78±3.19	   113.71±5.3

	 f0(Hz)	 1915.95±0.04	 1915.95±0.05	 1915.95±0.05	 1906.92±0.07	 1906.89±0.061	 1907.03±0.02	 1902.06±0.031	1902.06±0.029	1902.94±0.045

	 φ0 (rad)	 1.02	 0.96	 1.021	 0.99	 0.985	 1.01	 0.97	 0.974	 0.981

	 SNR (dB)	 25.34	 25.01	 24.67	 23.43	 25.01	 26.53	 19.55	 17.01	 16.01

	 MAPEa [%]	     10.92±3.48	     10.46±4.48	       8.87±5.41	     12.2±3.58	     11.71±2.92	 11.01±2.71	     17.21±4.75	     15.74±4.13	     18.71±5.23

a MAPE: Mean Absolute Percentage Error, b Signal dependent rank-order mean, c Modified Nyman-Gaiser estimation.
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associated to signals 1 and 2 for the proposed noise cancellation. Furthermore, the processed and 
stacked signals after 15 repetitions are shown in Figs. 7e and 7f. Inspection of Fig. 7 reveals that 
the proposed combined method adequately removes the electromagnetic interferences from the 
simulated FID signals. The consequences of the processing of signals 1 and 2, i.e., the application 
of the de-spiking and subsequently of harmonic noise cancellation, in the frequency domain are 
shown in Fig. 8. The figures show that the power-line harmonics are efficiently eliminated by the 
proposed algorithm and the peak at the Larmor frequency is left undisturbed. It should be recalled 
that whenever one power-line harmonic is close to the Larmor frequency, retrieval of the surface-
NMR is a challenging task, so that the application of common de-noising strategies (e.g., narrow-
band IIR notch filter) may lead to the distortion of the wanted signal. In addition, the resulting 
time series of signals 1 and 2 after applying the presented de-spiking method followed by the 
reference method are shown in Fig. 9. According to Fig. 10, showing the difference between the 

Fig. 5 - Results of applying the reference method to the synthetic signals contaminated with artificial noise: unprocessed 
single records (panels a to c), processed single records (panels d to f), and processed and stacked results with 15 
repetitions (panels g to i).

Fig. 6 - Difference between the spectrums obtained with the combination of SD-ROM and MNGE and the reference 
method associated with: a) processed and stacked signal 1; b) processed and stacked signal 2; and c) processed and 
stacked signal 1 shown in Figs. 3 and 5.
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Table 4 - Assumed parameters for synthetic signals 1 and 2 corrupted by real-noise recordings form sites 1 and 2, 
respectively.

	 Parameters    Signals	 Signal 1	 Signal 2

	 S0 (nV)	   190	   190  

	 T2
* (ms)	   105	     90  

	 f0 (Hz)	 2108	 2102  

	 φ0 (rad)	       1	         0.9

Fig. 7 - Results of applying the proposed filtering method to the synthetic signals contaminated with real-noise 
recordings: unprocessed single records (panels a and b), processed single records (panels c and d), and processed and 
stacked results with 15 repetitions (panels e and f).

power spectra associated with the processed and stacked time series (i.e., signals 1 and 2) from the 
proposed and reference method, one can see that the spectra obtained with our method and with 
non-linear inversion are comparable almost everywhere except around some of the higher-order 
harmonics of 50 Hz, where it can reach at most 3 nV. Representative results from the proposed 
filtering strategies (i.e., model-based method, MNGE and reference method) to retrieve the surface-
NMR signal parameters are shown in Table 5. Moreover, Table 5 lists the standard deviation of the 
signal parameters obtained from 10 independent runs of signal creation. The results clearly show 
the signal improvements obtained using the presented approach, leading to improved parameter 
estimation. Referring to Table 5, a reasonable agreement is found between the values of estimated 
parameters obtained using the proposed scheme and those of the reference method. Moreover, 
after implementing the model-based method on signals 1 and 2, the resulting parameters are 
reported in Table 5. The fundamental frequencies predicted using the model-based method and 
MNGE algorithm associated with signal 1 with the time length of 1000 ms are 49.969 and 49.97, 
respectively. It is evident that the difference between the fundamental frequency obtained using 
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Fig. 8 - Results of applying the proposed filtering method to signals 1 (a) and 2 (b) shown in Fig. 7 in the frequency 
domain.

the model-based method and that of MNGE is trivial. It should be noted that the model-based 
method is implemented in a two-step process. First, all harmonics are removed, except for the 
harmonic close to the Larmor frequency, on the whole time-series. Then, and in the second step, 
amplitude and phase of the excluded harmonic are calculated based on fitting the model of the 
corresponding harmonic the last 500 ms of the time-series and extrapolating to the first 500 ms. 
Through the second step, the model parameters of the harmonic adjacent to the Larmor frequency 
are estimated using the last part of the FID signal where the MRS signal is low. Our numerical 
experiments show that often the application of this strategy to signals with duration less than 500 
ms leads to unsatisfactory outcomes in accurately estimating the parameters (phase and amplitude) 
of the harmonic close to the Larmor frequency (this distortion increases for the smaller values of 
the difference between the Larmor frequency and the closest power-line harmonic). 

Fig. 9 - Results of applying the reference method to the synthetic signals contaminated with real-noise recordings: 
unprocessed single records (panels a and b), processed single records (panels c and d), and processed and stacked 
results with 15 repetitions (panels e and f).
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Fig. 10 - Difference between 
the spectra obtained with the 
combination of SD-ROM 
and MNGE and the reference 
method associated with: a) 
processed and stacked signal 1, 
and b) processed and stacked 
signal 2 shown in Figs. 7 and 
9, respectively.

Considering the above observations, the following may be noted: 
i)	 the processing of Surface Nuclear Magnetic Resonance signals is a highly challenging task 

because the main energy of the wanted signal is located at the Larmor frequency, and hence 
great care must be taken in preserving the Larmor frequency during the electromagnetic 
noise cancellation from the surface-NMR measurements;

ii)	 the main issues related to the proposed de-spiking strategy are: 1) the reliability of 
the thresholding criterion and 2) the substitution of the detected spiky samples with 
appropriate values. The de-spiking method with a data-driven threshold was presented 
aimed at responding to both the first and second issue;

iii)	 a surface-NMR survey is rather time-consuming, so an arbitrary increase of the stacking 
rate is not possible. Referring to the synthetic experimentations, it was shown that using the 
proposed filtering strategy a small number of stacks is required to achieve reliable results. 
Furthermore, in cases where the power-line harmonics from different sources consist of 
more than one fundamental frequency, the MNGE method is implemented only once with 
an initial guess equal to 50/60 Hz, which provides a computationally fast harmonic noise 
cancellation method; 

iv)	 based on the numerical experiments, in cases where the signal length does not allow 
estimating the harmonic signal parameters (phase and amplitude) using the last part of the 
FID signal where the surface-NMR signal mostly includes noise, the proposed method 
outperforms the model-based method. 

Table 5 - Performance comparison results of pure stacking, a combination of SD-ROM and MNGE and reference 
method as well as model-based method implemented on signal 1 with S0=195 nV, T2

*=105 ms, f0=2108 Hz and φ0=1 
rad and signal 2 with S0=190 nV, T2

*=90 ms, f0=2102 Hz  and φ0=0.9 rad. The standard deviations of the derived signal 
parameters are calculated from 10 independent runs. 

			   Signal 1				    Signal 2

	 Parameters	 Pure	 SD-ROMb+	 SD-ROM+	 SD-ROM+model-	 Pure	 SD-ROM+	 SD-ROM+	 SD-ROM+model 
	 Methods	 stacking	 MNGEc	 reference method	 based method	 stacking	 MNGE	 reference method	 based method

	 S0(nV)	   214.14±27.77	 191.09±9.16	 192.79±7.21	 191.74±5.14	 232.1±33.95	 183.18±6.54	 184.14±8.89	 186.39±7.45

	 T2
*(ms)	 118±14.02	 104.06±7.03	 103.27±5.85	 105.2±8.15	 81.41±16.85	 97.75±5.4	 96.43±5.12	 95.61±2.54

	 f0(Hz)	 2107.091±0.08	 2108.02±0.032	 2108.028±0.041	 2107.97±0.029	 2102.094±0.074	 2102.05±0.018	 2101.94±0.031	 2102.04±0.043

	 φ0 (rad)	 1..089	 0.978	 1.012	 0.97	 0.96	 0.91	 0.991	 0.984

	 SNR (dB)	 -1.089	 23.47	 21.96	 24.12	 -0.321	 27.05	 25.74	 26.29

	 MAPEa [%]	 32.51±396	 12.21±6.71	 12.13±6.33	 12.25±6.02	 27.51±7.53	 9.76±4.07	 11.04±3.59	 9.11±6.67

a MAPE: Mean Absolute Percentage Error, b Signal dependent rank-order mean, c Modified Nyman-Gaiser estimation.
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3.3. Field example
In the previous subsections, the performance of the proposed algorithm was demonstrated by 

presenting the results of implementing the combination of the MNGE method and SD-ROM-
based de-spiking on several synthetic MRS signals embedded in both artificial and real noises. 
In the following, we will show the results from the inverted parameters associated with the 
processed real MRS signals. As explained, the de-noising procedure of the MRS signal includes 
two stages based on the proposed method. Initially, by applying the SD-ROM algorithm, the MRS 
signal is recovered by de-spiking the records and in the second stage by applying the MNGE 
method, then the parasitic harmonics are cancelled. Finally, the data are stacked and the MRS 
signal parameters are retrieved by an envelope detection technique based on the digital quadrature 
detection with phase correction followed by a non-linear fitting algorithm. The field data used 
here was carried out in cooperation with the U.S. Geological Survey, in the Platte River alluvial 
valley, central Nebraska, U.S.A., within the framework of investigating hydrologic parameters in 
the near-surface aquifer system. The survey was conducted with GMR instruments (Vista Clara 
Inc.) using a 46-m-side-eight loop with one turn. The Earth’s magnetic field had an intensity of 
54013 nT at an inclination of 68.33° and a declination of +7.98°. The MRS field measurements 
consisted of 20 pulse moments ranging from 134.33 to 11566.94 A·ms. Initially, by applying 
the proposed filtering algorithm, data are processed. In the second stage, the parameters water 
content and relaxation time of the processed FID signals, are inverted. Figs. 11a, 11b, and 11c 

a) b)

c) d)

Fig. 11 - Representation of the envelopes detected (green lines) from all the unprocessed (a) and processed (b) FID 
signals S as functions of measurement time t and pulse moment q, processed (c) and unprocessed (d) data set in the 
frequency domain, as well the exponential fit (black lines) to the processed signals with data fit residual 11 nV. 
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show the fit to all the processed signals as functions of measurement time and pulse moment, 
processed and unprocessed data set in the frequency domain, respectively. The data fit residual, 
as the L2-norm of the difference of observed data from calculated data divided by the square root 
of number of measurements, is calculated at 11 nV. The MRS inversion results, using the rotated 
amplitude data set corresponding to water content and relaxation time, are represented in Figs. 
12a and 12b, respectively. Referring to the inversion result, an aquifer layer is detected containing 
10% of water, while using the inverted parameter of relaxation time, two layers with decay 
time of 205 and 251 ms, indicating a significant difference between pore size distribution of the 
corresponding two layers, are observed. Note also that the water table measured in the borehole 
lithology approximately corresponds to the depth at which a 205 ms decay time is reached. The 
information obtained from a borehole located at the sounding corresponds reasonably closely 
with the resulting inverted parameters from the MRS measurements.

4. Concluding remarks

There has been progress in developing procedures for noise cancellation on multi-channel 
surface-NMR signals including field and analytical techniques, but little has been done for the 
noise cancelling of single-channel surface-NMR signals. In this paper, we have presented a new 
signal dependent rank-order mean filter and MNGE method, which potentially improve these 
techniques for removing spiky events and power-line harmonics from surface-NMR signals. 
The proposed de-spiking algorithm was compared with a time domain de-spiking method (i.e., 
TDmean) so that the application of the signal dependent rank order mean filter for removing noise 
spikes from the surface-NMR measurements revealed a better performance in terms of MAPE, 
in addition to improving the fitting parameters. We also compared the results using the proposed 
harmonic noise cancelling method with those of a non-linear optimization problem as the method 
of reference to verify the estimation accuracy of fundamental frequency, amplitudes, and phases 
through the MNGE procedure. The results of numerical experiments from applying the proposed 
filtering strategy to the removal of electromagnetic noise induced by power-line harmonics, as well 
as spiky events from synthetic signals corrupted by artificial and real noise recordings, confirmed 
the relatively good capability of the proposed scheme, leading to more accurate recovery of the 
signal parameters. It was also shown that the parameters estimated from signals restored with 

Fig. 12 - Left: inversion results of the 
field example: a) free water content and 
b) relaxation time. Right: subsurface 
according to a borehole lithology located 
at the sounding with the thickness of each 
layer. The water table measured in the 
borehole can be found at a depth of 4.5 m 
from the subsurface. 



Statistical de-spiking and harmonic interference cancellation	 Boll. Geof. Teor. Appl., 58, 181-204

203

the proposed harmonic noise cancelling method have comparable accuracy to those of signals 
restored with the algorithm based on the model-based method. Furthermore, the application of 
the presented method on a real data set, followed by the inversion of the processed data, resulted 
in reasonable match between the estimated parameters of the aquifer and those obtained from a 
borehole lithology located at the sounding.
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