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ABSTRACT	 The Mehdiabad complex deposit is located 116 km SE of Yazd, in the structural zone 
of central Iran. At this deposit, important decisions are often based on the grades of 
multiple elements (zinc, lead, and silver). In this context, it is therefore essential to 
devise a method that addresses the change of support from the data support to the 
target smu block, the multivariate nature of the ore control selection criteria and the 
uncertainty in the actual (unknown) block grades. The solution presented in this study 
is to employ block-support sequential co-simulation to construct multiple realizations 
or outcomes of the grade distribution within the deposit that reproduce the natural 
variability at all spatial scales. The set of realizations allow assessing both grade and 
tonnage uncertainties and can be used to evaluate the uncertainty on key aspects of 
the project and transferring uncertainty of the resource/reserve estimates into risk in 
downstream studies.
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uncertainty.
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1. Introduction

Recoverable reserve estimation describes the portion of a resource through a mine plan, which 
is economically and technologically viable, thereby providing the tonnage and grade that are 
expected to be recovered during mining. This enables calculating and forecasting a recoverable 
reserve, which is fundamental to the financial success of a mining operation (David, 1977; Peattie 
and Dimitrakopoulos, 2013) At the feasibility or early production stages, block grade estimates 
should be conditionally unbiased and have the lowest level of uncertainty. Estimation provides a 
value that is, on average, as close as possible to the actual (unknown) value, but suffers from an 
unavoidable smoothing effect that will generally overestimate the tonnage above the economic 
cut-off and underestimate the corresponding grade for cut-off grades below the mean grade of the 
ore body (Assibey-Bonsu et al., 2015). Stochastic simulation is one of the techniques proposed 
to correct this smoothing feature. It consists in constructing multiple outcomes (also called 
realizations) of the ore body that mimic the spatial variability of the true grades, providing a more 
complete representation of block grade uncertainty, in addition to the uncertainty jointly over 
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multiple blocks. Simulation methods allow quantifying the uncertainty of the mineral resource 
and ore reserve prediction risks in downstream studies, such as mine design, mine planning, or 
operational optimization studies. The risk assessment is achieved by applying transfer functions 
to the simulation models (Dimitrakopoulos, 2010; Rossi and Deutsch, 2014).

The simulation of mineral resources and ore reserves faces several challenges. On one hand, 
mine planning is always based on considerations of multiple elements, and the multivariate nature 
of the ore control selection criteria, as well as the consideration of their joint uncertainty, are common 
and critical. So, the spatial cross-correlation between elements observed in sampling data needs to 
be reproduced in simulation models for these to be realistic, for which joint simulation methods 
are often needed (Goovaerts, 1997). On the other hand, the support effect is a major concern 
in recoverable reserve estimation, insofar as the volumetric support of the available sampling 
data (typically, portions of drill holes of a few metres length and a few centimetres in diameter, 
which can be considered as a quasi-point support) is much smaller than the volumetric support 
of the selective mining units (smu) or blocks utilized during mining (Parker and Switzer, 1975; 
Krige, 1976; Armstrong and Champigny, 1989; Sinclair and Vallée, 1994). The usual approach 
is to simulate the variables of interest at a point support on a fine grid discretizing the entire 
deposit, then to average the simulated values within the relevant selective mining units so as to 
obtain a simulation at a block support. This procedure is time consuming and needs a significant 
amount of computer memory to store all the simulated point-support values. An alternative is 
direct block-support simulation, which avoids keeping the values simulated onto the discretizing 
grid in memory. This idea, originally proposed by Journel and Huijbregts (1978), was extended by 
Boucher and Dimitrakopoulos (2009, 2012) to block co-simulation (i.e., multivariate simulation), 
by incorporating a de-correlation method (minimum/maximum autocorrelation factors), while 
Emery and Ortiz (2011) presented two algorithms that significantly increase efficiency and 
decrease memory requirements during block co-simulation. In addition, block co-simulation was 
utilized to model porphyry copper deposits (Hosseini et al., 2017).

This paper presents an application of block-support sequential Gaussian co-simulation to 
forecast the recoverable reserves at Mehdiabad, the biggest zinc, lead and silver deposit in Iran, 
in which oxide and sulfide domains, controlled by stratigraphy, need to be modelled separately. 
The following sections include a summary of the co-simulation framework and its extension to 
block simulation; a thorough description of the deposit and available data; joint simulation of 
Zn, Pb, and Ag grades in the oxide and sulfide domains, aiming at a geological plausibility of 
the complex ore body and control on operational quality, required by the mine design and the 
processing plant. Thereafter, the results from the generated grade-tonnage curves are discussed, 
followed by conclusions.

2. Block-support sequential Gaussian co-simulation

The following sequential algorithm, proposed by Emery and Ortiz (2011), can be used to 
simulate K coregionalized variables (such as metal grades) at a block support, based on the 
Gaussian random field model.

1) For each original variable of interest, the available point-support data are transformed into 
Gaussian data with a mean of 0 and variance of 1. In the following, the k-th original variable at 
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a point-support location x is denoted by Zk(x), the associated Gaussian transform is denoted by 
Yk(x), while the transformation function, denoted by φk, is such that:

Zk (x) = φk (Yk (x))	 (1)

In practice, knowing experimentally the distribution of the variable of interest Zk, the 
transformation function φk can be estimated and modelled by either an expansion into Hermite 
polynomials (Chilès and Delfiner, 2012) or by piecewise linear and exponential functions (Emery, 
2009).

2) Model the joint spatial correlation of the Gaussian data. If there are K Gaussian variables 
under consideration, then K (K+1)/2 experimental covariances or variograms must be calculated 
and jointly fitted with a theoretical model. The calculation of the experimental covariances or 
variograms requires identifying the main directions of anisotropy and setting tolerances on the lag 
separation distances and on the angles (azimuth and dip) defining a direction in space (Goovaerts, 
1997; Chilès and Delfiner, 2012). As for the joint fitting, it can be performed by the so-called 
linear model of coregionalization (LMC) (Goovaerts, 1997; Wackernagel, 2003), which amounts 
to modelling all the variograms with combinations of the same set of basic variogram models:

(2)

where h is a separation vector, G(h) is the K × K matrix of direct (diagonal) and cross (off-
diagonal) variograms for vector h, {γn(h): n = 1…nst} is a set of basic variogram models with a 
unit sill value, and {Bn: n = 1, …, nst} is a set of K×K symmetric, positive semi-definite matrices, 
called coregionalization matrices, indicating the contribution of each basic model to the total 
sill value of the direct and cross variograms. The anisotropy, scale and shape parameters are 
fitted in the specification of each constituent nested structure γn(h). Automated or semi-automated 
procedures can be employed for fitting a linear model of coregionalization with the constraint of 
positive definiteness of the coregionalization matrices (Goulard and Voltz, 1992; Emery, 2010).

3) Divide the domain targeted for simulation into non-overlapping blocks.
4) Select a block v in the domain among the blocks not yet simulated. Selection can be made 

according to a random sequence.
5) Discretize v into M points {x1… xM} and, for k = 1… K, define the k-th original and Gaussian 

transformed variables at the block support as:

(3)

(4)

The linear model of coregionalization (Eq. 2) provides the direct and cross covariance functions 
of the point- and block-support Gaussian variables. For any k, ḱ ∈ {1… K}, any pair of points x 
and x́, and any pair of blocks v and v́, we have 

- point-to-point covariance:
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(5)

- point-to-block covariance:

(6)

where {x1́...xḾ} are a set of points discretizing block v́.
- block-to-block covariance:

(7)

where {x1...xM} and {x1́...xḾ} discretize blocks v and v́, respectively.
6) Jointly simulate the Gaussian variables at points {x1… xM} within v, constrained by the 

original point-support Gaussian data and by the previously simulated block-support Gaussian 
values located in and around block v (this constrained simulation is referred to as a “conditional” 
simulation in the geostatistical literature). To this end, a non-conditional simulation at points 
{x1… xM} can be constructed with the well-known LU decomposition of the covariance matrix 
method (Davis, 1982), and subsequently converted into a conditional simulation by means of a 
cokriging step (Chilès and Delfiner, 2012, pp. 494-495). For the former stage (non-conditional 
simulation), as above we simply need to know the direct and cross-covariances of the point support 
Gaussian variables (Eq. 5), while for the latter stage (conditioning cokriging), the direct and 
cross-covariances between the point-support and block-support Gaussian variables are needed, 
according to Eqs. 5 to 7. Simple or ordinary cokriging can be utilized at this stage, depending 
on whether the mean values of the Gaussian variables are assumed known or not (Emery, 2007, 
2009).

7) The average simulated point-support Gaussian values [Yk(xi) with k = 1… K and i = 1… M] 
within block v, give block-support values to be used for further conditioning along the simulation 
path (step 6):

(8)

8) Back-transform the simulated point-support Gaussian values within block v, according to 
Eq. 1, and average them to obtain simulated block-support values for the original variables:

(9)

Note that the obtained block-support values are not used in the conditioning stage at step 6 and 
that the block-support Gaussian data (Eq. 8) are used instead.

9) Go back to step 4 until all the blocks are simulated.
Because the simulated point-support Gaussian values do not need to be stored and only block-

support information is retained at steps 7 and 8, the above algorithm drastically decreases the 
memory storage requirements of traditional sequential Gaussian simulation. In addition, the 
search for nearby conditioning data at step 6 is faster, given that the previously simulated data are 
considerably fewer when using block-support data instead of point-support data. As an additional 
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advantage, the algorithm can be applied without any difficulty to partially heterotopic data sets, 
i.e., data sets for which not all the variables are measured at all the data locations, inasmuch as 
Gaussian transformation (step 1), covariance or variogram calculation and fitting (step 2) and 
cokriging (step 6) do not require all the variables to be equally sampled. In the case of entirely 
heterotopic data sets, the experimental variograms can no longer be calculated and experimental 
covariances must be used at step 2.

3. Application to the Mehdiabad deposit

3.1. Geological description
The Mehdiabad deposit is a world-class Cretaceous deposit, located 116 km SE of the city of 

Yazd in the central Iranian tectonic block, one of the most important metallogenic provinces for zinc-
lead mineralization (Ghazanfari, 1993; Ghorbani, 2013). The deposit has been explored by various 
parties since the 1960s. The geologic map of the Mehdiabad area is shown in Fig. 1. Outcrops of the 
different geological units have been distinguished in the Mehdiabad deposit area, mainly formed by 
the Sangestan, Taft and Abkouh Formations. The structural geology is characterized by faults that 
are one of the main controlling factors of mineralization. The Mehdiabad deposit is divided into two 
parts: 1) the Mountain Ore Body (MOB) (also known as Calamine Mine) that represents the highest 
parts of the oxide ore mineralization; and 2) the Valley Ore Body (VOB), the main part of the ore 
body located in a depression surrounded by hills and mountains (Reichert, 2007).

3.1.1. The Mountain Ore Body (Calamine Mine)
The MOB, wedged-in between the Black Hill Fault in the west and the Forouzandeh Fault 

in the east, is located on a rugged mountainside in the north-western part of the deposit. The 
MOB is completely oxidized. The oxide ore is hosted by limestone and low magnesium dolomitic 
limestone (Abkou Formation) that are intensively faulted, brecciated and locally mylonitized 
(Reichert et al., 2003). The oxide ore occurs on three different levels due to tectonic repetition 
(GSI, 1998). Based on the composition of the sulfide ore of the VOB, the supposed main sulfide 
mineral association of the MOB domain was galena, sphalerite, barite, and pyrite. However, no 
clear indications for the sulfide protor of the MOB have been identified, which might be attributed 
to the thorough oxidation, folding, and faulting of the strata and solution collapse (Reichert, 
2007). The most important oxide ore minerals include hemimorphite, hydrozincite, smithsonite, 
goethite, in addition to small amounts of mimetite, hetaerolite, and sauconite (Reichert et al., 
2003). Three different stages of ore formation or alteration have been identified: 1) precipitation 
of stage-1 hemimorphite (and possibly minor smithsonite, hydrozincite, goethite, and hematite) 
within the fault zones and breccias; 2) alteration of hemimorphite to hydrozincite, and precipitation 
of goethite/hematite; 3) precipitation of type-2 hemimorphite as mineralization within fractures 
and open spaces of the fault breccia as well as the oxide ore without significant precipitation of 
goethite/hematite (Reichert et al., 2003).

3.1.2. The Valley Ore Body
The VOB is located in a valley and is covered by an alluvial overburden of about 250 m. The 

Taft Formation hosts the main portion of the sulfide ore of the VOB (Azari and Sethna, 1994). 
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The strata of the Taft Formation mainly comprise dolomitic and ankeritic limestone, and are 
characterized by an intensive and extensive brecciation (BRGM, 1994) that is probably the result 
of emergence, paleo-karstification, and finally, the collapse of these strata (Reichert, 2007). The 
main portion of the VOB consists of sulfides. The main sulfide minerals are galena, sphalerite, 
barite, pyrite, and traces of chalcopyrite (Azari and Sethna, 1994), which occur as impregnation 
of the Taft Formation breccia and as a matrix in a complex fracture and breccia system, and also 
fill the interstitial space between the breccia fragments (Reichert, 2007). Three different stages of 
(tectonic or collapse) displacement and mineralization of the valley ore body can be interpreted: 
1) paleo-karst and partial collapse of the limestone of the Taft Formation; 2) the dolomitization of 
the carbonate rock that genetically linked with the emplacement of the sulfide ore and barite; 3) 
initiated with the oxidation of the sulfide ore that it is still going on (Reichert, 2007).

Fig. 1 - Geologic map of the Mehdiabad area.
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3.2. Presentation of the data set
The total length of diamond drilling in Mehdiabad is about 55,000 m. Comprehensive geological, 

structural and geotechnical information was recorded from cores that were composited to a length 
of 1 m. As the mine geologists claim, the boundaries of the oxide and sulfide mineralization 
domains were provided by a consulting company and the block-support sequential Gaussian 
co-simulation was carried out in oxide and sulfide domains separately, using the subset of the 
composites located within these domains. The grades of three elements (Zn, Pb, and Ag) are 
considered for this study. The general statistics of the composited data are shown in Table 1 and 
their histograms are displayed in Fig. 2. It can be seen that the three grades have not been measured 
for all the samples and the data set is therefore partially heterotopic. The Pearson correlation 
coefficients are shown in Table 2.

Fig. 2 - Histograms of Zn (%), Pb (%), and Ag (g/t) grade data in oxide (left) and sulfide domains (right).
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3.3. Block support co-simulation of grades
The following analyses deal with constructing a set of realizations of the zinc, lead, and silver 

grades over the oxide and sulfide domains of the deposit, which match the known values at the 
sample locations, reproduce the spatial variability of the true unknown grades at unsampled 
locations, in addition to the spatial dependence between the grades. The steps to construct these 
realizations using block-support sequential Gaussian co-simulation are as follows.

1)	 Declustering of the original data. In unequal sampling cases, declustering weights are 
primarily used to obtain a representative histogram for each variable (Goovaerts, 1997).

2)	 A Gaussian transformation was carried out for zinc, lead and silver grades. This nonlinear 
transformation tends to reduce the influence of outliers, to increase the correlation between 
variables and to make the estimation of experimental covariance and variograms in 
subsequent steps of the simulation process more robust (Desbarats and Dimitrakopoulos, 
2000). Table 3 shows the Pearson correlation after the Gaussian transformation.

3)	 The experimental variograms of the Gaussian data are calculated along the horizontal plane 
(i.e., all the directions with dip 0°, irrespective of their azimuth) and the vertical direction 
(i.e., the direction with dip 90°), and a linear model of coregionalization is fitted by a semi-
automated technique (Goulard and Voltz, 1992). The fitted model is presented in Figs. 3 and 

Table 1 - General statistics for the data in the oxide and sulfide domains.

	 Field	 Mean	 Std dev	 Min	 Max	 0.25Q	 0.50Q	 0.75Q	 Number

	  Oxide domain

	 Zn (%)	 2.741	 3.2510	 0.0025	 27.00	 0.686	 1.560	 3.665	 6630

	 Pb (%)	 1.263	 1.5066	 0	 23.24	 0.184	 0.730	 1.882	 6626

	 Ag (g/t)	 28.190	 40.5850	 0	 660.00	 5.200	 14.400	 35.794	 6461

	  Sulfide domain

	 Zn (%)	 3.370	  3.8600	 0	 43.66	 1.015	 2.220	 4.350	 9902

	 Pb (%)	 1.259	 1.4555	 0	 23.60	 0.298	 0.784	 1.675	 9881

	 Ag (g/t)	 32.25	 43.4150	 0	 825.00	 8.633	 20.000	 39.002	 9096

Table 2 - Pearson correlation coefficients between grade variables: oxide domain (upper diagonal) and sulfide domain 
(lower diagonal).

		  Zn	 Pb	 Ag

	 Zn	 1.000	 0.339	 0.110

	 Pb	 0.535	 1.000	 0.616

	 Ag	 0.339	 0.600	 1.000

Table 3 - Pearson correlation coefficients between variables after Gaussian transformation: oxide domain (upper 
diagonal) and sulfide domain (lower diagonal).

		  Zn	 Pb	 Ag

	 Zn	 1.000	 0.507	 0.267

	 Pb	 0.606	 1.000	 666

	 Ag	 0.411	 0.668	 1.000



Forecasting grade-tonnage curves at the Mehdiabad deposit	 Boll. Geof. Teor. Appl., 58, 217-232

225

4 for the oxide and sulfide domains, respectively. The coregionalization model considers 
three nested structures:

Oxide domain:
i)	 an exponential variogram with practical ranges of 20 m (horizontal) and 25 m (vertical);
ii)	 an exponential variogram with practical ranges of 30 m (horizontal) and 80 m (vertical);
iii)	 a spherical variogram with ranges of 150 m (horizontal) and 180 m (vertical).
The respective coregionalization matrices are found to be as follows:

	 0.349  0.170  0.152		 0.021  0.005  0.015		 0.630  0.332  0.100
B1 = (	0.170  0.659  0.329	), B2 = (	0.005  0.016  0.005	), B3 = (	0.332  0.325  0.332 )	 0.152  0.329  0.362		 0.015  0.005  0.010		 0.100  0.332  0.628

Sulfide domain:
i)	 an exponential variogram with practical ranges of 20 m (horizontal) and 25 m (vertical);
ii)	 an exponential variogram with practical ranges of 30 (horizontal) and 100 m (vertical);
iii)	 a spherical variogram with ranges of 150 m (horizontal) and ∞ (vertical).
The respective coregionalization matrices are found to be as follows:

	 0.573  0.397  0.273		 0.091  –0.020  0.062		  0.336  0.229  0.076
B1 = (	0.397  0.633  0.458	), B2 = (	–0.020  0.137  –0.018	), B3 = (	0.229  0.230  0.227 )	 0.273  0.458  0.496		 0.062  –0.018  0.051		  0.076  0.227  0.453

4)	 The Zn, Pb, and Ag grades are co-simulated separately in the oxide and sulfide domains 
using the block-support sequential Gaussian co-simulation method. The results of both 
domains are subsequently merged. A total of 100 realizations are constructed on 34,054 
blocks of size 25×25×10 m located within the ultimate pit limit, representing the smu that 

Fig. 3 - Experimental (dashed lines) and modelled (solid lines) direct and cross variograms of Gaussian transforms of 
zinc, lead, and silver grades, along the horizontal plane (red) and the vertical direction (blue) in the oxide domain.
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will be mined. The block discretization is set to 5×5×2; this discretization level is deemed 
sufficient, as a finer discretization does not bring much difference in the calculation of 
point-to-block and block-to-block covariances (Eqs. 6 and 7).

The maps of the first realization for a selected section at 3,484,300 m north are shown in Fig. 
5 (left) for zinc, lead, and silver. Also, the corresponding expected values were constructed by 
averaging the 100 realizations on a block-by-block basis (Fig. 5, right). The latter maps show 
less contrasts than the former, which is aimed at reproducing the true smu grade variability at 

Fig. 4 - Experimental (dashed lines) and modelled (solid lines) direct and cross variograms of Gaussian transforms of 
zinc, lead, and silver grades, along the horizontal plane (red) and the vertical direction (blue) in the sulfide domain.

Table 4 - Statistics on simulated grades at block support.

	 Field	 Block model	 Mean	 Std dev	 Min	 Max	 0.25Q	 0.50Q	 0.75Q

	   Oxide domain

	
Zn

	 Realization # 1	   2.577	   2.026	 0.0086	   16.865	   0.932	   1.738	   3.014

		  Average of all realizations	   2.397	   1.018	 0.2680	   10.420	   1.757	   2.285	   2.823

	
Pb

	 Realization # 1	   1.261	   0.894	 0.0125	     8.133	   0.681	   1.155	   1.785

		  Average of all realizations	   1.342	   0.335	 0.3270	     2.846	   1.131	   1.324	   1.510

	
Ag

	 Realization # 1	 28.888	 27.330	 0.1500	 366.061	 11.946	 22.917	 40.09 

		  Average of all realizations	 30.076	 11.935	 2.1150	   91.679	 22.061	 29.458	 36.801

	   Sulfide domain

	
Zn

	 Realization # 1	   3.493	   2.091	 0.1450	   22.247	   1.700	   2.658	   4.053

		  Average of all realizations	   3.178	   0.683	 0.5140	     8.592	   2.802	   3.163	   3.523

	
Pb

	 Realization # 1	   1.279	   0.806	 0.0440	     7.926	   0.803	   1.224	   1.791

		  Average of all realizations	   1.361	   0.233	 0.3110	     3.500	   1.240	   1.358	   1.469

	
Ag

	 Realization # 1	 39.815	 28.815	 0.486 	  403.744	 19.250	 30.367	 47.704

	  	 Average of all realizations	 35.408	 10.229	 5.946 	  130.815	 29.969	 35.125	 40.657
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all spatial scales. This fact is corroborated by examining the statistics of the simulated block-
support grades, where a higher dispersion and a larger range of the simulated grades for a single 
realization than for the average of 100 realizations can be observed (Table 4).

The variability of the simulated grades is, nevertheless, smaller than that of the original 
point-support grades (Table 1), while the mean values are not significantly different between one 
support and the other, which agrees with the change-of-support theory (Matheron, 1984; Chilès 
and Delfiner, 2012, pp. 433). The Pearson correlation coefficient between the simulated grades 
(Table 5) are also higher than that of the original data (Table 2), which is a consequence of the 
support effect that tends to smooth out the small-scale variability and to improve the correlation 
between variables.

Fig. 5 - Maps of simulated zinc (top), lead (middle), and silver (bottom) block-support grades for realization #1 (left) 
and maps of expected zinc, lead, and silver grades (average of 100 realizations) (right).

Table 5 - Pearson correlation coefficients between simulated grades: oxide domain (upper diagonal) and sulfide domain 
(lower diagonal).

		  Zn	 Pb	 Ag

	 Zn	 1.000	 0.576	 0.187

	 Pb	 0.634	 1.000	 0.646

	 Ag	 0.346	 0.657	 1.000
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4. Risk assessment results and discussion

The prediction of the tonnages and grade of ore recoverable with particular selective mining 
units or blocks is a central problem in mineral resource and ore reserve estimation (Rossi and 
Deutsch, 2014). In polymetallic deposits, some minerals and different metals can be exploited 
with an acceptable economic value. The analysis of the uncertainty in grade, tonnage and metal 
curves by long-term planning engineers can be performed to understand the recoverable mineral 
resource and ore reserve scenarios at different cut-offs (Hosseini et al., 2017). The Mehdiabad 
mining project represented a total investment of about 1.3 billion dollars. The high investment, 
associated with the mineral asset and its metallurgical complexity, highlights the importance of 
assessing the risks using the jointly simulated variables to ensure the financial viability of the 
project.

In polymetallic ores, it is common to use a “metal-equivalent grade” to simplify the analysis 
(Kelmendi and Azemi, 2011). Typically, the contents of minor metals are converted and added 
to the grade of the major metal with the most stable market price. The equivalence factor for 
converting the grades of metal 1 and 2 into an equivalent grade is equal to:

(10)

Zeq = Z1 + Feq Z2	 (11)

Fig. 6 - Tonnage (top-left), mean zinc grade (top-right), mean lead grade (bottom-left), and mean silver grade (bottom-
right) recovered after applying a cut-off on the block-support equivalent zinc grade, calculated for each realization 
(solid gray lines) and averaged over all the realizations (black dash line).
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where s the selling price, y the recovery and Z the grade for each metal. Note that the weights of 
metal are in-situ and have no mining factors applied to them. In the present case, the equivalent 
zinc grade for oxide and sulfide types is defined as follows:

Oxide domain:

Zneq = Zn(%) + (0.956 × Pb(%)) + (0.0174 × Ag(g/t))	 (12)

Sulfide domain:

Zneq = Zn(%) + (0.837 × Pb(%)) + (0.0152 × Ag(g/t))	 (13)

The assumed prices are 0.98 USD/lb for Zn, 0.82 USD/lb for Pb, and 20.29 USD/oz for Ag. A 
recovery of 63% and 72% was applied to Zn in the oxide and sulfide domains, respectively, 72% 
was applied to Pb and 40% was applied to Ag (BRGM, 1994).

For each realization, the recoverable zinc, lead, and silver grades above given cut-offs on 
the equivalent zinc grade are calculated, together with the ore tonnages obtained by considering 
the average rock density in each mineralization domain, which is derived from a total of 1277 

Fig. 7 - Distributions of ore tonnage per production period (top-left), mean equivalent zinc grade per production period 
(top-right), and overall ore tonnage (bottom), calculated through 100 realizations. Boxplots in the top figures indicate 
the extremes and the quartiles of the distributions.
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measurements. The expected recoverable grades and tonnages are then defined by an average over 
the 100 realizations (Fig. 6). As each realization constitutes a plausible outcome for the deposit, 
the true grade-tonnage curves should lie within the set of simulated curves. The simulated grade-
tonnage curves are helpful for ore/waste selection, for resource/reserve classification (Emery et 
al., 2006), for finding the optimum cut-off grade (Osanloo and Ataei, 2003) and for operational 
and planning purposes (Kelmendi and Azemi, 2011). As an illustration, let us consider a long-
term mine plan with 21-year production periods, established by planning engineers, together with 
an economic cut-off on the equivalent zinc grade equal to 4.7%. The ore tonnage and equivalent 
zinc grade extracted in each period can be evaluated in each realization. Accordingly, when 
considering the 100 realizations, one obtains distributions of ore tonnages and grades that quantify 
the uncertainty on the ore reserves per production period (Fig. 7, top). The overall distribution of 
ore tonnage (considering the 20 periods) can also be calculated (Fig. 7, bottom), which indicates 
the quantity of ore to be mined as a function of the level of risk (between 0 to 1).

5. Conclusions

The study shows an application and practical aspects of the block sequential Gaussian co-
simulation technique proposed by Emery and Ortiz (2011), which provides efficient forecasting 
of multiple recoverable metals at the Mehdiabad deposit in central Iran for mine planning and 
financial assessment. The joint simulation of zinc, lead, and silver grades is performed in the 
oxide and sulfide domains separately. Such an approach is remarkably simple, as it depends on a 
few key parameters (essentially, the transformation functions from original to Gaussian variables 
and the coregionalization model for the Gaussian data), and is capable of handling the change 
of support from the data to the target SMU supports, the multivariate nature of the ore control 
selection criteria and the uncertainty in the actual (unknown) block grades. The assessment of 
global uncertainty of the in-situ resources and ore reserves by a set of realizations should be 
considered in feasibility studies and in supporting important decisions concerning the Mehdiabad 
project and allow transferring uncertainty of the resource estimates into risk in downstream 
studies.
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