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ABSTRACT	 Mining	operations	are	planned	and	designed	based	on	block	models.	A	fundamental	
parameter	of	this	type	of	model	is	the	choice	of	block	dimensions	or	selective	mining	
unit	(SMU)	size,	which	affects	the	operation	and	mining	costs.	In	the	early	stages	of	
mining	operations,	the	available	information	is	mainly	drill	holes	samples,	which	may	
bring	negative	outcomes	such	as	over-smoothed	models,	especially	for	complicated	
ore	deposits.	Therefore,	a	change	of	support	is	necessary	to	determine	the	distribution	
of	grades	at	an	equivalent	volume	to	the	SMU	size.	The	nonlinear	localized	uniform	
conditioning	(LUC)	and	direct	block	simulation	(DBSIM)	methods	are	appropriate	for	
optimal	grade	estimation	of	small	blocks,	when	the	input	data	spacing	is	excessively	
coarse.	This	paper	presents	an	extension	of	the	LUC	method,	incorporating	the	DBSIM	
in	 order	 to	 change	 the	 support	 on	 the	 Sungun	 porphyry	 deposit	 in	 Iran.	 Multiple	
realizations	of	Cu,	CuO,	and	Mo	grades	are	generated	for	the	dimensions	of	30×30×15	
m3,	25×25×12.5	m3,	and	20×20×10	m3,	respectively.	Comparing	the	standard	methods,	
the modified method proposed in this paper presents a more reliable spatial distribution 
of	attributes	and	an	acceptable	conformity	with	the	true	data	of	the	Sungun	deposit.

Key words:	 localized	 uniform	 conditioning,	 direct	 block	 simulation,	 selective	 mining	 unit,	 resource	
estimation,	geostatistical	method,	porphyry	copper	deposit.
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1. Introduction

Mining	operations	are	planned	and	designed	using	block	models.	The	statistical	distribution	of	
the	grades	depends	on	the	block	volume	to	which	the	grade	is	assigned.	The	dimensions	of	blocks	
have	a	great	economic	impact	on	the	mining	operation.	Selective	mining	unit	(SMU)	size	presents	
the	smallest	block	size	that	can	be	selected	as	the	proportion	of	ore	and	waste	(Leuangthong	et al.,	
2003;	Jara,	2006).	The	grade	of	large	blocks	is	estimated	according	to	the	drill	spacing.	Therefore,	it	
is	necessary	to	apply	a	change-of-support	method	to	determine	the	distribution	of	grades	at	a	volume	
equivalent	 to	 the	SMU	size.	This	subject	has	received	much	consideration	from	geostatisticians	
since	the	1970s	and	a	number	of	change-of-support	methods	have	been	proposed.	The	problem	of	
change	of	support	is	addressed	by	utilizing	nonlinear	and	conditional	simulation	methods.	

In	ore	reserve	evaluation,	available	information	generally	includes	coarse	exploration	samples,	
and	linear	regression-based	techniques	are	unsuitable	for	modelling	grades	of	small	blocks	in	the	
cases	in	question.	One	solution	is	to	apply	nonlinear-based	and	simulation	methods	at	the	early	
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stages	of	exploration	and	mining	project	evaluations,	when	sparsely	distributed	data	are	often	
the	only	available	 information	 (Armstrong	and	Champigny,	1989;	Ravenscrof	and	Armstrong,	
1990;	Pan,	1998;	Emery,	2002).	Direct	block	simulation	(DBSIM)	method	as	an	alternative	for	
sequential	Gaussian	simulation	(SGS)	and	localized	uniform	conditioning	(LUC)	as	a	non-linear	
method	 have	 been	 developed	 recently	 (Marcotte,	 1994;	 Emery,	 2002;	 Godoy,	 2003;	Abzalov,	
2006;	Boucher	and	Dimitrakopoulos,	2009).

LUC	was	proposed	as	a	solution	for	 the	mentioned	problem	(Abzalov,	2006).	This	method	
partitions	the	panels	into	small	blocks	and	ranks	them	in	an	increasing	order	of	grades,	then	localizes	
the resulted curve to the ranked blocks (Chiles and Delfiner, 1999; Wackernagel, 2002; Rivoirard 
et al.,	2014).	The	accuracy	of	the	local	estimation	depends	on	the	block	ranking	techniques.	In	
some deposits with complex geometry, the block rankings by kriging can differ significantly 
from	their	true	grade	distribution.	Therefore,	a	reliable	and	robust	method	is	necessary	for	block	
ranking	(Abzalov,	2014).	DBSIM	may	serve	as	an	appropriate	solution	for	the	LUC	block	ranking	
problem	(Godoy,	2003;	Boucher	and	Dimitrakopoulos,	2009).

The basic idea discussed in this paper is the application of modified localized multivariate 
uniform	conditioning	(LMUC)	for	 total	and	oxide	copper	grade	estimation	of	 the	complicated	
Sungun copper deposit. In the modified method, a ranking of small blocks is done using the DBSIM 
procedure	(Albert,	1987;	Davis,	1987;	Deutsch	and	Journel,	1992;	Glacken,	1996;	Boucher	and	
Dimitrakopoulos,	2009).	To	accomplish	this,	the	realizations	of	every	simulated	block	are	ranked	
and	the	average	of	their	ranks	is	considered	for	further	analyses.	In	the	next	sections,	the	proposed	
method,	geology	of	the	deposit,	and	applied	data	are	described.	In	addition,	the	prepared	models	
are	evaluated	using	cross-validation,	and	the	performance	of	the	proposed	method	is	tested	with	
satisfying	results.	

2. Methodology 

The LUC method was first introduced by Abzalov (2006). In the following, we present a short 
description of the original LUC estimation algorithm and the modified algorithm proposed in this 
study.	

2.1. Localized multivariate uniform conditioning (LMUC)
This	method	evaluates	block	grades	based	on	a	panel	grade	(comprising	blocks),	calculated	

using	the	linear	regression-based	techniques	such	as	kriging	(Abzalov,	2006).	It	represents	a	post-
processing	analysis	on	uniform	conditioning	technique	to	estimate	the	recoverable	reserves	using	
the	change	of	support	[i.e.,	discrete	Gaussian	model	(DGM)].	It	is	assumed	that	if	the	panel	grade	
is	known,	 then	 the	distribution	of	 the	blocks	within	 that	panel	 is	also	known.	Six	steps	of	 the	
workflow for uniform conditioning are as follows: 

1.	 estimate	the	panel	grades	using	Ordinary	Kriging;
2. fit the DGM to the data for normal transformation;
3. determine the change of support coefficients for the blocks and panel-sized blocks;
4.	 transform	the	panel-estimated	grades	to	normal	space;
5.	 transform	the	cut-off	grades	to	normal	space;
6.	 calculate	the	proportion	and	quantity	of	the	metals	(for	each	panel)	above	the	cutoffs.
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The	 standard	 uniform	 conditioning	 (UC)	 method	 estimates	 the	 mineralization	 tonnage	 and	
the	grade	that	are	recovered	using	the	block	size	at	the	considered	cut-off	value	(Ravenscrof	and	
Armstrong, 1990; Chiles and Delfiner, 1999; Wackernagel, 2002). In order to incorporate LUC 
post	processing,	the	3D	panels	need	to	be	split	into	sub-cells	with	cell	size	equal	to	that	of	the	
chosen	small	block	size.	All	small	blocks	distributed	in	a	panel	are	ranked	in	increasing	order	
based on their kriged grade. The next step is to define the grade classes using the relationships 
between	the	tonnage	of	recoverable	mineralization	(Tv)	and	the	cut-off	grade	(Zc)	estimated	by	UC	
technique	for	each	panel.	The	grade	class	(GCi)	represents	the	proportion	of	a	panel	whose	grade	is	
above	the	given	cut-off	(ZCi)	and	less	than	the	next	cut-off	value	(ZCi+1).	Then,	each	ranked	small	
block	is	matched	to	the	mean	grade	(Mi)	of	its	related	grade	class.	Fig.	1	illustrates	the	derivation	
of block grades by LUC assuming continuous panel-specific tonnage (T)	and	mean	grade	curves	
(M),	and	ranking	the	blocks	inside	the	panel.	For	further	information	on	UC	and	LUC	methods,	
interested	readers	are	referred	to	the	available	references	(Abzalov,	2006,	2014).	The	described	
algorithm on a multivariate case is summarized in Eqs. 1 to 5:

(1)

(2)

(3)

(4)

(5)

where	Qv,	Tv,	and	Mv	stand	for	metal	quantity,	tonnage,	and	mean	grade	recovered	by	small	blocks	
(v),	respectively;	Z*	and	Zc	are	estimated	grade	and	cutoff	grade;	and	v	and	V	denotes	the	small	
block	and	panel,	respectively.	As	indicated	in	section	1,	 the	accurate	rankings	of	blocks	in	the	
panels	can	be	inferred	from	the	major	spatial	distribution	trends,	which	are	often	recognized	by	
geologists	in	such	deposits.	Also,	in	complicated	deposits,	kriging	of	the	small	blocks	using	the	
sparse	input	data	is	obviously	different	from	the	real	grades	of	blocks.	A	more	precise	ranking	
leads to a more accurate final LUC modelling.

Fig. 1 - Schematic definition of the grade classes and assigning the grades to the SMU blocks. 



118

Boll. Geof. Teor. Appl., 58, 115-136 Khorram et al.

2.2. Direct block multivariate simulation
The	 direct	 block	 simulation	 algorithm	 randomly	 visits	 all	 the	 blocks	 in	 the	 domain	 and	

simulates	 the	 N discretizing	 points	 for	 each	 block	 and	 for	 each	 factor	 (orthogonalization),	
ml*(ui),	 i =	1, . . . , N;	 l =	1, . . . , K conditional	 to	point	and	block	data.	For	each	block,	 the	
simulation	is	performed	pointwise	with	the	generalized	(group)	sequential	Gaussian	simulation	
(GSGS)	 approach	 (Dimitrakopoulos	 and	 Luo,	 2004).	 The	 simulated	 point-support	 values	 are	
averaged	into	the	simulated	block	support, the	simulated	points	are	not	used	in	other	conditioning	
and	are	discarded.	For	block	simulation,	 the	simulated	discretizing	point	values	conditional	 to	
the	neighboring	point	and	block	data	are	obtained	with	joint	localized	uniform	(LU)	simulation	
(Verly	et al.,	1984).	In	the	present	case,	let	Cl IIVV be	the	covariance	matrix	of	all	the	conditioning	
information	and Cl

pIV be	the	covariance	matrix	between	the	discretizing	point	and	the	neighboring	
point	and	block	data	for	the	lth factor: 

(6)

where	Cl
II ,Cl

IV ,	and	Cl
VV are	respectively	the	point-to-point	covariance	matrices,	points	to	block,	

and	 block-to-block	 covariance,	 for	 the	 lth	 factor;	 Cl
pI and	 Cl

pV are	 respectively	 the	 covariance	
between	the	discretizing	points	and	the	point	data	and	block	data,	for	the	lth	factor.	The	covariance	
values	 between	 data	 on	 different	 supports	 are	 generated	 from	 regularizing	 the	 point-support	
covariance C(ui,uj),	where	ui,	i	=	1,	.	.	.	,	N	are	discretizing	point-support	variables.	The	point-to-
block and the block-to-block covariances are obtained, respectively, with: 

(7)

(8)

where	weight	vector	wIV is obtained by solving:

(9)

where	ml
IV is	the	vector	containing	the	neighboring	point.	The	block	data	for	factor	l and ml*

p is	a	
vector	with	the	discretizing	points	for	factor	l to	be	simulated.	The	matrices Ll

IIVV , Ll
pIV ,	and	Ll

pp 
are obtained from the following (Davis, 1987): 

(10)

Finally,	the	vector	of	N simulated	values	ml*
p for	factor	l is obtained from:

(11)

and	the	block	value	can	be	obtained	through	averaging	the	back-transformed	points	discretizing	
the	block.	Once	 the	neighboring	point	 and	block	data	 are	 found,	 the	process	 is	 split	 into	 two	
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parts: 1) the block values for the factors are achieved by averaging the simulated factors on 
point	support,	and	2)	 the	 internal	points	are	rotated	back	into	 the	normal	score	 transform	and,	
subsequently, back transformed into the data space and, finally, averaged to generate the desired 
block	value.	The	value	from	part	(1)	is	saved	for	further	conditioning,	while	the	value	of	part	(2)	
is the final output simulated value for the block, and is written in a file. Fig. 2 depicts the flow 
diagram	for	the	DBSIM	algorithm.

2.3. Modified localized multivariate uniform conditioning 
In	 the	original	 implementation	of	 the	LUC	algorithm,	a	ranking	of	 the	small	block	is	done	

based on its kriged grades. When the variogram of the studied variable is characterized by a 
large nugget effect, the block ranks produced by kriging can significantly differ from their “true” 

Fig. 2 - Flow diagram for the DBSIM program: nx, ny, and nz are the numbers of blocks in three dimensions.
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distribution (Abzalov, 2014). To overcome this challenge, a step involving modified ranking of 
LUC	post-processing	is	suggested	in	the	current	paper.	For	this	purpose,	the	DBSIM	method	was	
used	to	model	the	blocks	within	a	panel.	First,	the	simulated	block	was	arranged	in	an	increasing	
order,	considering	each	of	the	realizations.	Then,	the	mean	of	assigned	ranks	to	a	block	(based	on	
different realizations of the block) was presented as the final rank of the mentioned small block. 
Fig.	3	is	shown	schematically	for	better	understanding	of	the	algorithm	in	the	general	form.	It	
presents	the	mean	grade	(M)	and	considered	cut-off	of	the	curve,	which	is	divided	into	several	
classes with respect to different cut-offs. As can be inferred from the figure, the highest mean 
grade	class	is	assigned	to	the	green	block,	based	on	the	mean	ranks	of	50	realizations	of	the	block.	
This procedure is performed to assign a specific rank to other blocks.

The algorithm code of the LUC-modified version is written in MATLAB software. This 
modification can provide a more reliable grade assignment and subsequently a more robust 
recoverable	resource	model.	

Fig. 4 shows the flow diagram of the proposed algorithm, which is executed on the real data, 
and	its	outcomes	are	presented	in	section	4.2.

a)

Fig.	3	-	a)	Illustration	of	proposed	ranking	method;	b)	sketch	presenting	the	grade	classes	and	assigning	the	grade	values	
to	the	blocks.

b)
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3. Case study: Sungun copper deposit

3.1. Regional geology
The Sungun porphyry copper deposit is located 100 km NE of Tabriz, in east Azerbaijan, NW 

of	Iran.	This	porphyry	system	is	situated	on	the	Urumieh-Dokhtar	magmatic	arc.	The	Urumieh-
Dokhtar	 arc	 contains	 the	main	 copper-bearing	 regions	 in	 Iran,	 such	as	Sarcheshmeh,	Sungun,	
Meiduk,	Darehzar,	Sarkuh,	and	Daralu	(Hezarkhani	et al.,	1998;	Hezarkhani,	2006).	

The	porphyry	Sungun	deposit	is	formed	by	hydrothermal processes,	but	the	arrangement	of	
alterations	and	mineralization	domains	does	not	follow	the	simple	models	of	porphyry	systems	
(Hezarkhani	 et al.,	 1998;	 Hezarkhani,	 2006;	Asghari	 and	 Hezarkhani,	 2008).	 There	 are	 four	
types of hypogene alterations in Sungun (Hezarkhani, 2006): i) potassic; ii) potassic–phyllic; iii) 
phyllic;	and	iv)	propylitic.

Fig. 4 - Flow diagram of the modified LMUC algorithm. 



122

Boll. Geof. Teor. Appl., 58, 115-136 Khorram et al.

Types	i,	ii,	and	iii	are	principally	developed	within	porphyry	stock,	whereas	the	Type	iv	alteration	
is	restricted	to	the	porphyry	stocks	and	some	of	the	early	dike	series.	Hypogene	mineralization	
is characterized by the introduction of sulfides (Hezarkhani et al.,	1998;	Hezarkhani,	2006).	Fig.	
5	shows	the	geological	map	of	the	Sungun	deposit.	In	this	deposit,	pyrite	is	the	most	abundant	
sulfide and chalcopyrite is the dominant copper ore, which is accompanied by minor amounts 
of	molybdenite.	Previous	studies	on	the	geological	features	of	this	deposit	revealed	three	main	
rock	type	domains	controlling	the	copper	grade	distribution	(Hezarkhani	et al., 1998): Sungun 
porphyry	(SP)	stock,	skarn	mineralization	(SK),	and	late	injected	dikes	(DK).	In	this	research,	
geological	 domaining	 is	 performed	 and	 the	 potassic	 alteration	 on	 the	 hypogene	 zone	 i	 was	
selected	to	delineate	the	homogeneous	areas	of	data	for	prediction	purposes.	The	case	study	area	
is	illustrated	in	Fig.	6.

3.2. Presentation of the data set
The	main	spatial	variation	through	a	site	can	result	in	a	violation	of	the	stationary	assumption	

and	 can	 create	 biased	 estimates	 (Journel	 and	 Huijbregts,	 1978;	 Dagdelen	 and	 Turner,	 1996).	
Based	on	the	stationary	theory,	the	mean	behavior	of	the	studied	area	should	represent	a	spatial	
variation,	assuming	the	neighboring	data	samples	are	stationary.	Therefore,	geological	domaining	
is	performed	 to	divide	 the	estimation	area	 into	an	optimal	number	of	zones,	and	a	part	of	 the	
potassic	alteration	is	selected	as	the	area	of	interest.	This	domain	covers	an	area	of	approximately	
2.5 km (E-W) by 1.7 km (N-S) and 1.2 km below the surface. To evaluate recoverable resources, 
the	exploratory	data	set	includes	the	grade	of	copper,	oxide	copper,	molybdenum,	and	iron	oxide.	
Some	 262	 drill	 holes	 (880	 samples	 selected	 from	 potassic	 alteration	 of	 the	 hypogene	 zone)	
intersect	 the	case	 study	area.	Analysis	of	Cu,	CuO,	and	Mo	exist	 in	 all	drill	holes,	which	are	

Fig.	5	-	Geological	map	of	Sungun	deposit.

46°40'

38°43'

46°45'

38°40'



Change of support on Sungun deposit  Boll. Geof. Teor. Appl., 58, 115-136

123

composited	to	2-m	downhole length	before	geostatistical	analysis.	Fig.	7	shows	the	location	map	
and value of available data. The Pearson correlation coefficients (r) are as follows: between Mo 
and	Cu	is	0.415	and	between	Cu	and	CuO	is	0.594.	The	multivariate	LUC	model	can	be	created	
based on the correlation coefficients between these variables and the Cu variable. About 25% of 
the	total	data	are	randomly	selected	as	actual	data	from	the	different	parts	of	the	case	study	area.	
In	order	to	compare	the	actual	data	set	with	the	estimated	value,	the	target	variable	at	a	test	point	
is	temporarily	discarded.	Next,	an	estimation	value	of	this	variable	at	this	point	is	calculated	and	
compared	to	the	discarded	actual	value	(Efron,	1982).	

Fig.	6	-	Different	types	of	copper	mineralization	in	Sungun	porphyry	copper	deposit	at	an	elevation	of	1,850	m.	The	
red line determines the leach-supergene contact, and the blue one determines the supergene-hypogene zones (modified 
from	Pars	Olang	Engineering	Consultant	Company,	2006).	
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4. Discussion

This	section	shows	and	discusses	the	results	of	the	geostatistical	processing,	the	classic	method	
of	estimation,	and	the	proposed	algorithm.	Before	presenting	the	results	of	the	proposed	algorithm,	
we	describe	the	steps	of	geostatistical	preprocessing	to	generate	the	multivariate	models.	Fig.	8	
illustrates	the	frequency	histograms	of	the	Cu,	CuO,	and	Mo	grades.	The	total	Cu	values	are	more	
continuous,	compared	to	the	CuO	and	Mo,	so	the	Cu	value	was	selected	as	the	main	variable.	In	this	
regard,	CuO	and	Mo	are	considered	as	the	secondary	variables.	The	localized	multivariate	uniform	
conditioning model and its modified version are created considering the previously mentioned 
correlation coefficients. The grades were estimated using ordinary kriging with panel sizes of 
80×80×40	m3,	60×60×30	m3,	and	50×50×25	m3,	with	an	approximate	drill	spacing	of	100	m.	

Fig.	7	-	Location	map	and	value	of	available	data.
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Fig.	8	-	Frequency	histogram	of	grades.	

To	determine	the	geometric	anisotropy	of	considered	variables,	directional	variograms	were	
computed	 in	 different	 dips	 and	 azimuths	 with	 a	 22.5°	 tolerance.	According	 to	 the	 directional	
variography for all aforementioned variables, most fitted models of variograms show relatively 
the	 same	 parameters.	 Thus,	 an	 isotropic	 model	 with	 a	 2/3	 variogram	 range	 as	 search	 radius	



126

Boll. Geof. Teor. Appl., 58, 115-136 Khorram et al.

was	used	instead	of	an	anisotropic	ellipsoid.	Fig.	9	demonstrates	the	omnidirectional and	some 
directional	variogram/cross	variogram	models	of	the	Cu,	CuO,	and	Mo	grades.	The	parameters	
and formulation of exponential variogram models fitted to variables are presented in Table 1 
and	Eq.	12.	Sill	 is	 the	variance	value	at	which	the	variogram	levels	off;	range	denotes	 the	lag	
distance	at	which	the	semivariogram	(or	semivariogram	component)	reaches	the	sill	value;	nugget	
indicates	the	semivariogram	value	at	the	origin	(Bohling,	2005).	Using	h to	represent	lag	distance,	
a to	represent	(practical)	range,	C to	represent	sill	and	C0 to represent nugget effect, the five most 
frequently used models are as follows:

(12)

Table 1 - Parameters of fitted variogram models.

  Nugget Sill Range

 Cu 0.02    0.15   110

 Mo 0.0001  0.0009 160

 CuO 0.00002 0.0001 150

 Cu/CuO 0.00001 0.0022  90

 Cu/Mo 0.0005  0.0045 150

4.1. Grade estimation 
In the present study, the LMUC and modified LUC estimation methods were applied to provide 

SMU	grade	estimates	with	the	minimal	conditional	bias	and	high	correlation	with	true	data.	The	
UC	method,	as	the	base	of	both	the	classic	and	proposed	approaches,	requires	the	calculation	of	the	
support coefficients on the SMU supports and panel sizes. The support correction depends on the 
variance	computed	from	the	raw	data	variogram	model,	based	on	the	theoretical	dispersion	variance.	
The	distribution	of	2-m	composites	was	modelled	using	a	Gaussian	anamorphosis	function	and	
then	decomposed	into	Hermite	polynomials.	After	determining	the	changes	of	support	on	SMUs,	
the coefficients of the Hermite polynomials were calculated based on the selected main variable. 
The interpreted coefficients applied during estimation are presented in Table 2. In the current 
research,	support	sizes	are	presented	as	large	(50×50×25	m3),	medium	(60×60×30	m3),	and	small	
(80×80×40	m3)	panels	for	grade	estimation	at	25×25×12.5	m3,	30×30×15	m3	and	20×20×10	m3	
SMU	block	sizes,	respectively,	conforming	to	the	Sungun	production	plan	for	SMU	block	size.

The global grade-tonnage curve within the mineralized domain, obtained using modified LUC 
models,	 demonstrated	 the	different	 support	 sizes	 (Fig.	 10).	 It	 can	be	 inferred	 from	 the	output	
grade-tonnage	curves	that	the	transformation	from	large-	to	medium-sized	blocks	is	accompanied	
by	a	greater	loss	of	selectivity	and	metal	for	a	given	ore	tonnage.	The	total	tonnage	of	ore	and	
metal	quantity	for	30×30×15	m3	and	25×25×12.5	m3	SMU	are	respectively	highest	and	lowest	
for	all	considered	cut-offs.	The	greatest	impact	of	the	support	effect	is	concentrated	on	the	low-
grade	range,	for	which	there	is	a	greater	loss	of	metal	content	for	a	given	ore	tonnage.	Mixed	with	
ore,	this	waste	decreases	the	mineral	grade	and	increases	its	tonnage.	The	following	activities	are	
considered for performing a uniform conditioning that is the basis of the LUC and modified LUC 
methods:
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Fig.	 9	 -	 Directional	 and	 omnidirectional	 variograms	 of	
drillhole	data.

a) b)

c) d)

e)
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Table 2 - Change-of-support coefficients on different supports.

 Panel Size (m3) 80×80×40 60×60×30 50×50×25

 Variable Cu Cu Cu

 Punctual Variance 0.13 0.13 0.13

 Variogram Sill 0.13 0.13 0.13

 Gamma(V,v) 0.03 0.03 0.04

 Real Block Variance 0.09 0.1 0.08

 Real Block Support Correction 0.87 0.88 0.83

 Kriged Block Support Correction 0.87 0.88 0.83

 Kriged Panel Support Correction 0.31 0.32 0.22

 Zmin Block 0 0 0

 Zmax Block 1.49 1.49 1.49

 Block Support Correction CuO=0.82 Mo=0.86 CuO=0.83 
  Mo=0.88 CuO=0.78 Mo=0.83

Fig.	10	-	Grade-tonnage	curve	for	Cu	and	Mo	elements.

a) b)

c) d)
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•	 transform	the	raw	variables	into	Gaussian	space;
•	 appropriate	 cell	 declustering	 weights	 are	 applied	 to	 obtain	 unbiased	 histograms	 and	

variograms;
•	 a	uniform	conditioning	 is	applied	 to	all	 supports	 in	order	 to	obtain	 the	probability	above	

the	cut-off	grade	(P(Z(u)) ≥ zc)	and	probability	below	the	cut-off	grade	(P(Z(u))	<	zc).	The	
tonnes	of	waste	(Tw),	tonnes	of	ore	(TO),	and	the	grade	of	ore	are	calculated	with	respect	to	
the	panels;

•	 the	small	blocks	within	a	panel	are	arranged	in	an	increasing	order	considering	the	ordinary	
kriging (LUC) and direct block multivariate simulation (DBMS) realization results (modified 
LUC).	 For	 the	 latter,	 the	 average	 of	 ranking	 values	 (based	 on	 the	 histograms	 of	 SMU	
realizations) is presented as the final rank of the mentioned small block;

•	 the	results	are	compared	with	true	values;
•	 a	sensitivity	analysis	is	conducted	on	SMU	sizes.	

4.2. Grade estimation using the modified LUC method 
The schematic illustration and algorithm of the modified LMUC method are demonstrated 

in Figs. 3 and 4. To rank the modified version of this method, the DBSIM is executed after 
the	maximum/minimum	autocorrelation	factor	(MAF)	approach	at	the	block	support	scale.	This	
procedure is performed as follows: a) transformation of (normal transformed) data to MAF using 
a	 20-m	 lag,	 b)	 independent	 conditional	 simulation	 of	 each	 MAF	 with	 the	 DBSIM	 algorithm;	
and c) subsequent back-transformation of the generated realizations using the MAF coefficients 
(Desbarats	and	Dimitrakopoulos,	2000).	The	three	factors	of	MAF1,	MAF2,	and	MAF3	are	shown	
at below: 

MAF1	=	0.408	Cu	-	0.170	Mo	+	0.864	CuO	 (13)

MAF2	=	0.994	Cu	+	0.503	Mo	+	0.873	CuO	 (14)

MAF3	=	0.106	Cu	+	0.673	Mo	+	0.473	CuO	 (15)
	
The	above	additional	variables	MAF1,	MAF2,	and	MAF3	are	Gaussian	with	zero	mean	and	unit	

variance	and	have	zero	covariance	at	lag	0	and	at	lag	20.	The	direct	block	multivariate	simulation	
was	applied	to	generate	50	realizations	of	the	three	orthogonalized	factors.	The	simulation	method	
was	independently	performed	for	each	factor	on	the	three	block	sizes.	The	simulation	results	must	
be	back-transformed	to	 the	original	units	of	data.	Finally,	50	realizations	of	 the	Cu,	CuO,	and	
Mo	in	blocks	were	considered	for	ranking.	The	simulated	blocks	within	a	panel	were	arranged	
in	an	increasing	order	through	each	of	50	realizations.	Then,	the	average	of	all	assigned	ranks	
to a block was considered as the final rank of the mentioned block. A number of basic checks 
must	be	performed	prior	to	applying	the	ranking	results.	Simulations	should	consider	the	input	
information,	including	the	data	values	at	their	locations	and	the	data	distributions	(Leuangthong	
et al.,	2003).	

The	multivariate	relations	are	important	and	must	be	taken	into	account.	The	correlation	of	
back-transformed	 simulated	values	 shows	 a	good	 reproduction	of	 the	bivariate	 distribution	of	
input	data.	Histograms	and	variograms	of	the	simulated	values	after	back	transformation,	as	well,	
are	important	factors	to	be	investigated.	These	distributions	should	be	similar	to	the	input	data	
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histogram,	 with	 comparable	 statistics.	 Table	 3	 summarizes	 the	 statistics	 of	 some	 realizations	
considered	 for	 histogram	 reproduction.	 For	 each	 realization,	 there	 is	 a	 mean	 and	 a	 variance	
associated	with	the	resulting	distribution.	Fig.	11	presents	the	consistency	between	the	regularized	
variogram	models	and	the	DBSIM	block	simulations.	The	block	conditioning	certainly	produces	
a	good	variogram	reproduction	of	the	block	supports.	It	can	be	inferred	that	the	histograms	and	
the	variograms	of	simulation	realizations	are	subsequently	and	satisfactorily	reproduced	on	the	
large	and	small	block	sizes.

Table	3	-	Reproduction	of	statistical	parameter	by	DBSIM.

    Mean Median Skewness Variance

   Raw data 0.42 0.37 1.1 0. 6

  30 m-Realization 15 0.40 0.35 0.91 0.51

 
Cu

 25 m-Realization 5 0.39 0.34 1.03 0.53

  20 m-Realization 20 0.39 0.34 1.01 0.54

  Raw data 0.015 0 0.027 1.83

  30 m Realization 15 0.012 0.01 0.020 1.81

 
Mo

 25 m Realization 5 0.013 0.01 0.022 1.82

  20 m Realization 20 0.012 0.01 0.021 1.81

  Raw data 0.011 0.01 1.23 0.00011

  30 m Realization 15 0.010 0.01 1.14 0.00008

 
CuO

 25 m Realization 5 0.011 0.01 1.08 0.00009

  20 m Realization20 0.011 0.01 1.08 0.00009 

4.3. Comparison between the results of the standard and new methods
Figs. 12 to 14 present the 3D model of LMUC, modified LMUC, and E-type value of DBSIM 

outputs	for	Cu	variable	on	the	considered	block	supports.	E-type	value	of	simulation	outputs	can	
be	explained	as	the	mean	value	of	realizations	in	a	block.	According	to	the	geological	maps	of	the	
case	study	(Fig.	6),	the	minimum	and	the	maximum	estimated	copper	grades	are	in	the	leached	
and	supergene	zones,	respectively.	Both	estimation	and	simulation	of	the	3D	model	demonstrated	
high	values	of	Cu	on	the	north-western	part	of	the	area,	which	is	superposed	on	the	high-grade	
zone.	As	highlighted	earlier,	 the	main	advantage	of	 the	proposed	approach	 is	 to	derive	a	non-
smoothed	 block	 model	 through	 the	 high	 variability	 area.	 The	 performance	 of	 the	 simulation	
technique	was	presented	by	plotting	the	scatter	diagrams	between	output	grades	and	true	variables	
(Fig.	15).	The	trend	line	between	estimated	Cu	variables	and	true	data	for	large	block	size	shows	
a slope of less than 1, reflecting significant biases and underestimation. The slope of regressions 
for	medium	and	small	blocks,	however,	is	close	to	unity	if	the	model	is	conditionally	unbiased	
and	robust.	It	would	also	mean	a	high	level	of	correlation	between	the	results	and	true	variables.	
Furthermore, the performance of the LMUC and modified LMUC techniques can be compared 
using the correlation coefficient between the outputted grades and true variables. The Pearson 
correlation coefficient (r)	between	the	outputs	of	applied	methods	and	the	true	data	are	presented	
in	Table	4.	Based	on	this	table,	the	r between modified LUC results and true data for Cu, CuO, 
and	Mo	in	a	small	SMU	size	is	more	than	that	for	medium	and	large	SMU	sizes.	The	table	can	



Change of support on Sungun deposit  Boll. Geof. Teor. Appl., 58, 115-136

131

Fig.	 11	 -	 Regularized	 variogram	 of	 Cu	 variable	 and	 block	
simulation	realizations.

a) b)

c)

generally	depict	the	strength	of	the	results	of	a	20×20×10	m3	block	model,	and	the	match	between	
the	outputs	of	the	proposed	method	to	those	of	standard	methods	and	actual	data.	Based	on	the	
above	descriptions	and	 the	 reliable	 results	of	 the	block	 simulation	as	 the	basis	of	 the	 ranking	
approach, it can be deduced that the introduced method benefits from the advantages of both 
simulation	and	nonlinear	methods.

Table 4 - Pearson correlation coefficient between the results of different methods and true data. 

    Modified LUC   DBMS   LUC

 SMU (m3) 30×30×15 25×25×12.5 20×20×10 30×30×15 25×25×12.5 20×20×10 30×30×15 25×25×12.5 20×20×10

 Cu 0.73 0.75 0.76 0.66 0.77 0.78 0.73 0.72 0.72

 Mo 0.73 0.78 0.71 0.72 0.71 0.73 0.68 0.70 0.70

 CuO 0.66 0.68 0.70 0.63 0.69 0.70 0.67 0.62 0.67
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Fig. 12 - 3D plan of Cu modified LMUC estimation assigned to: a) 30×30×15 m3;	b)	25×25×12.5	m3;	and	c)	20×20×10	
m3	SMU.

a)

b)

c)

5. Conclusions 

At	the	exploration	stage	of	new	mining	projects,	drilling	data	are	distributed	on	a	relatively	
large	grid	which	is	typically	larger	than	the	SMUs.	Hence,	direct	estimates	of	blocks	will	then	be	
smoothed	due	to	the	information	effect	and	the	high	error	variance.	Any	capital	project	decision	
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Fig. 13 - 3D plan of Cu E-type (DBMS) assigned to: a) 30×30×15 m3;	 b)	 25×25×12.5	 m3;	 and	 c)	 20×20×10	 m3	
SMU.

a)

b)

c)

made	on	 the	basis	of	 the	smoothed	estimates	 is	 likely	 to	misrepresent	 the	economic	values	of	
the	 project	 or	 operation.	 The	 LMUC	 technique	 provides	 a	 consistent	 framework	 to	 represent	
the	economic	values	more	accurately.	The	accuracy	of	the	local	estimation	through	this	method	
depends	on	the	block	ranking	techniques.	The	idea	proposed	in	this	study	is	the	application	of	
DBSIM realizations for ranking. The applied method efficiently preserves the spatial variation 
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Fig. 14 - 3D plan of Cu LMUC estimation assigned to: a) 30×30×15 m3;	b)	25×25×12.5	m3;	and	c)	20×20×10	m3	
SMU.

a)

b)

c)

of	attributes	and	provides	an	accurate	ranking	and	robust	recoverable	resource	estimation.	The	
grades of total Cu, CuO, and Mo were estimated in the case study area using LUC and the modified 
LMUC	methods.	Also,	a	sensitivity	analysis	was	performed	on	 the	out-puts	of	different	block	
sizes. The performance and evaluation are briefly described in the following:

•	 estimation/simulation	methods	yield	SMU	grade	estimates	with	minimal	conditional	bias	
and	high	correlation	with	true	data	(r>0.7	for	all	the	block	estimations	in	this	paper);
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a) b)

c)
Fig.	15	-	Scatter	plot	of	Cu	DBMS	E-type	and	true	variable	
for	different	supports.

•	 the	support	effect	generates	a	loss	of	selectivity	as	the	block	size	increases	from	a	medium	
to	a	large	panel	and	decreases	from	a	large	to	a	small	panel.	This	variation	is	more	critical	
when	passing	from	a	model	with	medium	block	size	to	one	with	a	large	block	size	than	when	
passing	from	the	medium	to	small	block	size.	Accordingly,	the	support	effect	is	more	critical	
for	smaller	blocks;

•	 	the	greatest	impact	of	the	support	effect	is	concentrated	on	the	low-grade	range,	for	which	
there	is	a	greater	loss	of	metal	content	for	a	given	ore	tonnage;

• the case study shows that the results from modified LUC are superior or equal to those 
from other methods. The similarity and adjustment between the outputs of modified LUC 
and standard methods and the real data demonstrates the robustness and efficiency of the 
modified method. 
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