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ABSTRACT	 In projects involving reserves estimation, a principal aim is to reduce the variance 
of the estimation and related uncertainty. This requires extensive and costly drilling. 
Among the variety of geostatistical-based techniques used to reduce the variance of 
the estimation in mineral reserves modelling, multivariate geostatistical methods can 
be appropriate tools when a sparse pattern of drilling boreholes exist. The present 
work introduces collocated cokriging and kriging with an external drift as multivariate 
geostatistical methods to incorporate sulphide factor as a secondary correlated variable 
to estimate Cu grade distribution. The study area is one of the potential zones of porphyry 
Cu occurrences, located in the Kerman province of southern Iran. To estimate the Cu 
grade distribution in this region, sulphide factor data as a dense correlated geophysical 
variable with the primary variable was used because this incurs less cost than 
drilling holes. Application of these multivariate geostatistical techniques to a specific 
exploration such as Seridune Copper Deposit in interpolating Cu grade measurements 
(primary data) using weakly correlated sulphide factor (secondary data) suggests that 
when Cu grade is undersampled, the secondary data can contribute substantially to 
identifying primary data. The results show that incorporating a secondary variable 
leads to better results than ordinary kriging (as a univariate method) that does not 
incorporate sulphide factor data. The validation of leave-out samples was used to 
compare the performance of the methods. Based on mean absolute error, root mean 
square error and the correlation coefficient of the observed and estimated values, the 
methods of the collocated cokriging and the kriging with an external drift outperformed 
grade estimation in comparison with ordinary kriging. 

Key words:	 sulphide factor, ordinary kriging, collocated cokriging, kriging with external drift, Seridune 
copper deposit, Iran.
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1. Introduction

In some engineering and industrial fields, interpolation methods are widely used to predict 
a spatial variable in an unknown region, and most times, multiple variables are sampled in 
addition to the one used to quantify the main phenomenon under study. That variable may be 
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correlated with the principal variable of interest, being especially useful when sampled on 
a larger support. Then, the main attribute can be estimated from measures of itself (primary 
variable) and from the additional correlated secondary variable. Incorporating a secondary 
variable leads to more consistent models of the phenomenon under study (Boezio et al., 2006a). 
Various geostatistical methods have been developed for incorporating a dense secondary 
variable. Among these methods are COllocated CoKriging (COCK) and Kriging with an 
External Drift (KED). Ordinary Kriging (OK) as a prevalent univariate geostatistical technique 
uses only one variable of interest to make estimates at unsampled locations. When secondary 
data are available, cokriging is the natural extension of kriging in the case of multiple variables. 
It presents several theoretical advantages over kriging a single variable. Its major advantages 
appear when secondary data are sampled on a larger support than the primary data (Boezio et 
al., 2006b). However, high sampling density leads to instability of the cokriging set of equations 
in the inversion process (Wenlong et al., 1992). Consequently, cokriging can be simplified to 
COCK by retaining only the secondary datum collocated with the location where the primary 
variable is being estimated. COCK also has the advantage over other methodologies in that 
it incorporates a secondary variable while accounting for spatial correlation. However, the 
principal disadvantage of this methodology comes from modelling of the coregionalisation, 
where direct and cross covariances must be inferred. The classic approach is based on the linear 
model of coregionalisation (LMC) where all direct and cross covariances are calculated as linear 
combinations of the same basic structures. As positive definiteness must be observed, modelling 
LMC is not straightforward (Boezio et al., 2006b). 

An alternative methodology taken into account for an exhaustive array of secondary variables 
is KED (Boezio et al., 2006b). KED is applied in cases in which the main variable is correlated 
with the dependent external variable (Fernandes and Rocha, 2010). In general, KED is used 
to merge two sources of variables: a primary variable that is precise but only known at a few 
locations; and a secondary variable that is not precise but is available everywhere in the spatial 
domain. The second variable is related statistically to the primary variable (Grimes et al., 1999). 
Finally, this method can be used if: 1) the spatial trend in the secondary (external) variable is 
related to that of the primary property of interest; 2) the residuals from the trend of the primary 
property can be modeled geostatistically; and 3) the property of interest and the variable from 
the more intensive sampling sites are linearly related (Boxter and Oliver, 2005).

In this paper, the results of the aforementioned methods, OK, KED, and COCK, are 
compared in later sections. The main objective of the present work is to outperform the grade 
estimation maps obtained solely from a primary variable. In this framework, this paper presents, 
through a case study, how a dense secondary variable acquired from geo-electrical properties 
(sulphide factor) can be used to improve the estimation of the primary attribute (Cu grade) via 
COCK and KED. Comparison with the methodology of OK, which makes no use of a secondary 
variable, is also presented.

2. Methodologies

The methodologies applied in the present work (OK, KED, and COCK) are briefly described 
in this section.
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2.1. Ordinary Kriging (OK)
OK is one of the most commonly used forms of the generalized kriging estimator. Kriging is 

a method that is often associated with the best linear unbiased estimator. OK is linear because its 
estimates are weighted linear combinations of the available data; it is unbiased since it tries to 
have the mean of prediction errors equal to 0; it is best because it aims at minimizing the variance 
of error (Noshadi and Sepaskhah, 2005). Assuming the stationary characteristics of the domain 
of interest in reserves modelling (i.e., same statistical properties are applicable on the entire 
domain), the general equation of the OK estimator for the stationary random variable Z(x) is:

(1)

where wi is the weighting factor, Z is the measured (or random) variable, and Z *OK is the 
estimated variable by OK. In order to achieve unbiased estimators in kriging, the following set 
of equations should be solved simultaneously:

(2)

and the minimal prediction variance is:

(3)

where μ is the Lagrange multiplier, Cov and Var stand for covariance and variance, respectively, 
which are inferred from the semi-variogram models while we have: Cov (Z, Z) = Var (Z).

Two assumptions are needed to use kriging, namely stationarity and isotropy. Stationarity 
means that statistical properties do not depend on exact locations. Therefore, the mean (expected 
value) of a variable at one location is equal to the mean at any other location. Isotropy means 
that data variance is constant in the area under investigation and the correlation (covariance or 
semi-variogram) between any two locations depends only on the vector that separates them, not 
their exact locations.

2.2. Kriging with External Drift (KED)
In ordinary kriging, the assumption of local stationarity is made, i.e., the mean value of the 

variable over the search area is assumed constant. But in some situations, a trend is observed 
in the data such that the mean varies over the search area and it is therefore no longer locally 
stationary. In nonstationary cases, a secondary variable can be incorporated to specify the trend 
as a linear function of this external variable, using kriging with an external drift. 

KED enables the random variable Z, known at relatively few points, to be estimated from 
another variable, S, that varies smoothly and is known at all points where an estimate is required. 
The smooth variability (trend) of the secondary variable is assumed to be related to that of the 
primary or target variable, Z(x), being estimated. The method merges both variable sources; it 
uses S(x) as an external drift function to estimate Z(x). The aim is to increase the precision of 
the predictions of Z(x). The secondary variable must be known at all the sample locations of the 
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primary variable and at all places on the prediction grid (Boxter and Oliver, 2005). KED is a 
particular type of universal kriging. It allows the prediction of a random variable Z, known only 
at a small set of points of the study area, through another variable S, exhaustively known in the 
same area. We choose to model Z with a random function Z(x) and S as a deterministic variable 
S(x). The two quantities are assumed to be linearly related, i.e., it is assumed that the expected 
value of Z(x) is equal to S(x) up to a constant a0 and a coefficient b1 (Bourennane and King, 
2003):

(4)

Here, the local mean of the primary variable E [Z (x)] is assessed locally, modelled as a linear 
function of a smoothly varying and exhaustively sampled secondary variable S(x) and with 
coefficients a0  and b1 considered constant in the local neighbourhood. Then, simple kriging is 
performed on the residuals from the local mean. The predictor is a linear combination of the 
sample values at location xi (i = 1, . . ., n):

	 with	 (5)

The kriging weights wi are obtained by the solution of the following system of equations 
(Bourennane and King, 2003):

(6)

where n is the number of points in the search neighbourhood, Cov is the covariance of the 
residue, and μ1 and μ2 are the Lagrange multipliers that account for the unbiasedness constraints 
with the minimal prediction variance

.                    (7)

The external drift method thus consists of incorporating into the kriging system additional 
universality conditions about one or several external drift variables, S(xi), i=1, 2, ..., M, 
measured exhaustively in the spatial domain. The function S(xi) needs to be known at all 
locations xi  of the samples of Z(xi), as well as at nodes of the prediction grid (Bourennane 
et al., 2000). To be able to use the KED, it is necessary to calculate the residual between the 
primary and secondary data in order to construct the variogram used in estimating the main 
variable. In other words, theoretically, the variogram for KED needs to be inferred from the 
residuals Z(x) - m(x), where m(x) is the drift between the primary and secondary variable (or 
the local smooth variation of the random variable Z(x) at the scale of observation). But this is 
not simple, because neither the residuals nor the trend m(x) is known a priori. A solution for 
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this problem can be obtained by inferring the residual component variogram (or covariance 
function) from pairs that are not or only slightly affected by the trend. This can be performed 
by computing the directional variograms and retaining only the directional variogram that 
shows the least evidence of the trend (Goovaerts, 1999; Boxter and Oliver, 2005; Boezio et al., 
2006b; Haberland, 2007). Another approach involves determining the experimental residuals by 
removing, from the data values, the drift determined by the linear regression of the secondary 
variable. Then, simple kriging is performed on these residuals, and a drift locally determined 
through the KED system is then added (Boezio et al., 2006b; Haberland, 2007). In kriging with 
external drift, the secondary variable needs to be known at all points as colocalization data. So, 
the secondary parameters were estimated by ordinary kriging, before the kriging with external 
drift for the primary variable was applied.

2.3. COllocated CoKriging (COCK)
COCK is a reduced and modified form of cokriging, in which the secondary variable used for 

estimation is reduced so as to retain only the secondary datum in the location where the primary 
variable is being estimated. 

The COCK estimator is given by the following expression (Kay and Dimitrakopoulos, 
2000),

(8)

where ai and b are kriging weights, S is the value of the secondary data set at the location where 
Z* is being estimated and Z–, S– are mean values of the primary and the secondary data. The 
COCK weights ai and b are obtained by solving the following set of equations,

(9)

Here, the S* (x0) is the value of the secondary variable at the location where Z* (x0) is being 
estimated. In this system we only require the inference of Cov(Z, Z), as Cov(S, S) is not required, 
and Cov(Z, S), Cov(S, Z) can be evaluated by,

(10)

where Var(S), Var(Z) are the variances of the S and Z sets of data and ρZS is the linear correlation 
coefficient of the collocated Z and S data sets (Kay and Dimitrakopoulos, 2000).

It is necessary to model the covariance function for the primary variable, and when there is 
low correlation between the secondary and primary data, the resulting Z will not be compelled 
to be similar to the secondary S variable map. A significant disadvantage of the mentioned 
algorithm is that all noncollocated secondary data are ignored when estimating the Z variable 
at a given location (Kay and Dimitrakopoulos, 2000). When performing ordinary collocated 
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cokriging in attendance of non-stationarity, the trend can be considered constant within a 
limitary local neighbourhood.

3. Background geology

The study area is part of the Urumieh-Dokhtar (Sahand-Bazman) magmatic arc assemblage 
that runs from NW to SE of Iran. This belt is classified as an Andean type magmatic arc shown 
in Fig. 1 (Alavi, 1980; Berberian et al., 1982; John et al., 2010). The north-western part of the 
Urumieh-Dokhtar magmatic arc is the product of Tethys oceanic plate subducted under the 
Iranian microplate followed by continent-to-continent collision of the Arabian and Eurasian 
plates (Regard et al., 2004; John et al., 2010). Seridune porphyry copper deposit is in a 
granodiorite-quartz monzonite pluton. Two large deposits belonged to this area are Sarcheshmeh 
and Darrehzar (Abedi et al., 2013).

The detailed lithological map of the Seridune prospect is shown in Fig. 2a. This deposit 
consists of Eocene andesite and trachyandesite intruded by upper Miocene granodiorite, which 

Fig. 1 - Location map of the study area in Iran (a), the 
general geological map (b) of the Seridune area (modified 
from Huber, 1969; John et al., 2010; Abedi et al., 2013). 

is cut by quartz monzonite and granodiorite porphyry dikes (Barzegar, 2007; John et al., 2010). 
Post mineralization Pliocene dacite and Quaternary gravels cover parts of the andesite and 
intrusive rocks. The granodiorites, monzonites, and andesites adjacent to the intrusive rocks 

a

b
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contain complexly intermixed argillic and sericitic alteration zones and an area of propylitically 
altered rocks in the south-eastern part of the prospect. North-trending silica lithocaps cut argillic, 
sericitic, and propylitic alteration zones. A zone of advanced argillic-altered rocks borders the 
lithocaps, and quartz stockwork veins are in the central part of the prospect, Fig. 2b (Barzegar, 
2007; John et al., 2010; Abedi et al., 2013). 

4. Case study

Previous studies show that the Seridune copper deposit located in the Kerman province 
of Iran has high potential of copper occurrences. A fuzzy knowledge-based method which 
integrated various geophysical data in order to prepare a mineral prospectivity map generated 
a map in which high-potential zones correspond to higher fuzzy values. To prepare this map, 
shown in Fig. 3, different geophysical layers which derived from magnetic and electrical 

Fig. 2 - a) Detailed lithological map of the Seridune prospect; b) hydrothermal alteration map of the Seridune prospect 
(reproduced from Barzegar, 2007; John et al., 2010; Kazemi Mehrnia et al., 2011). 

(a) (b)
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surveys were used to evaluate the Seridune copper deposit (Abedi et al., 2013). Based on the 
mineral potential map, a sparse pattern of drilling was recommended. In the following, since 
multivariate kriging of a sparse pattern of drilling yields lower uncertainty in mineral deposit 
modelling, a model of geo-electrical property (i.e., the sulphide factor) as a second variable 
which has an acceptable level of correlation with the first variable, Cu, is used to make a model 
of Cu grade. 

Fig. 3 - Mineral prospectivity map generated by fuzzy 
knowledge-based method, which indicates high-potential 
zones of mineral occurrences with higher fuzzy values. 
Drilled boreholes are shown by symbols on the map 
(Abedi et al., 2013). 

4.1. Data and methods
The primary data used in this study was Cu grade of boreholes and sulphide factor used as 

the secondary variable. The most common geophysical methods for exploration of sulphide 
deposits are electrical techniques. In this study, first Induced polarization (IP) “chargeability 
map” and resistivity (RS) surveys with rectangle array and two pole-dipole electrical profiles 
were implemented, and then with available resistivity and chargeability data, sulphide factor 
could be approximated by (Loke, 2010):

	 ,	 (11)

where M is chargeability, ρa is electrical resistivity, and SF is sulphide factor. The chargeability 
and resistivity are in terms of ms and Ω·m. Here, the 2D electrical data are inverted using 
RES2DINV Software as in Loke (2010). Fig. 4 shows the sulphide factor maps of rectangle 
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(a)

(b)

(c)

Fig. 4 - Sulphide factor maps of: a) rectangle array; b) and c) two pole-dipole profiles.

array and two pole-dipole profiles. Here a rectangular array with 1200-m space as current 
electrode was used such that distances between profiles and stations were 100 and 20 m. 
Electrode spacing for both pole-dipole profiles is 40 m. 

In this survey, Cu data were composited from the sparse drilled boreholes which are shown 
in Fig. 5. The length of the composited boreholes is 5 m at three dimentions x, y, and z. A grid 
with specific dimensions has been designed to interpolate Cu grade for an undersampled pattern 
of boreholes. This grid contains all primary and secondary data (Fig. 5). Since the semi-detailed 
exploration drilling has been done in this study, the drilling grid is sparse and undersampled 
to create a 3D model of Cu grade in the desired area. The length of the boreholes varies from 
250 up to 360 m for 9 drilled boreholes, which certainly yields high uncertainty when applying 
kriging. Therefore, incorporating a secondary variable can decrease the uncertainty of the 
constructed Cu grade model. The point should be noted that a high correlation between the 
primary variable (Cu grade) and the secondary one (SF) should exist to allow the application of 
a multivariate geostatistical approach like the COCK and KED. The estimation of the SF was 
performed by ordinary kriging. SF at the locations of measured Cu was also determined. This 
collocated data configuration allows verification of the correlation and the linear relationship 
between the primary and the secondary variables. The scatter plot shows that the correlation 
coefficient exceeds 0.466 (Fig. 6). Since the correlation coefficient is a bit low, we used the 
collocated values of SF rather than using all data. One of the main advantages of this technique 
is the reduction of the effect of the secondary variable when this correlation is low (Abedi et al., 
2015).

Two compulsory assumptions of stationarity and isotropy are required to apply any kriging 
methods. Here, to demonstrate that the data satisfy the “isotropy assumptions”, Fig. 7 is 
provided, showing the regional variable (SF) has isotropic behaviour in different directions 
(variograms are provided for four 0, 45, 90, 135 azimuths). As illustrated, the variograms in 
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different azimuths have approximately the same ranges and sills. It is worth mentioning that in 
comparison with anisotropy in layered deposits, it can be ignored.  

To address the stationarity of the data, scatter plots of the SF variable are plotted versus 
coordinates of X and Y, respectively. Fig. 8 indicates that there is not any significant trend in 
either X or Y directions. Therefore, it can be assumed that there is no meaningful trend in any 
direction, indicating stationarity of the studied domain.

To apply three methods, i.e., COCK, KED, and OK, we need to have information about 
semi-variogram models of both the primary and the secondary variable. The Experimental 

Fig. 5 - Grid for estimation of Cu grade based on the primary variable derived from composited drilled boreholes and 
the sulphide factor as a correlated secondary variable.

Fig. 6 - Scatter plot of Cu and SF variables, which 
shows linear correlation between the composited 
Cu grade data and the SF. Here, the correlation 
coefficient is equal to 0.466.
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Fig. 7 - Similar variogram 
curves of secondary variable 
SF for four azimuths of 0, 
45, 90, and 135, showing 
the isotropic behaviour of 
the studied domain. 

Fig. 8 - Scatter plot of SF versus coordinates of X (a), and Y (b), showing the stationarity behaviour of the studied 
domain.  

(a)

(b)
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omni-directional semi-variograms models for both the composited Cu grade data and the SF are 
shown in Figs. 9a and 9b, respectively. Since the kriging set of equations should be applied to a 
variable with normalized distribution, the normalized transform was applied for both variables. 
The ranges of the semi-variogram models for the composited Cu grade and the SF are 300 and 
200 m, respectively. The experimental semi-variogram of the composited Cu grade has been 
modelled with a spherical variogram which has a nugget and sill values equal to 0.37 and 0.63, 
respectively. The spherical model has also been used to fit a model which has a nugget and 
sill values equal to 0.3 and 0.7, respectively, for the SF data. Here, we have used the Stanford 
Geostatistical Modeling Software (SGeMS), which is free for all users. 

At first the KED and the COCK were carried out to estimate distribution of Cu grade. The 
kriging maps are presented in Figs. 10b and 10c. To compare, the Cu grades were also estimated 

(a)

(b)

Fig. 9 - Experimental omni-directional semi-variograms and the models of: a) the composited Cu grade data; b) the SF. 
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by OK (Fig. 10a). The obtained maps of the Cu grades show the difference between the three 
estimators, but it is clear that estimates by the COCK and the KED are less influenced by 
boreholes than ordinary kriging. The maps obtained using the COCK (Fig. 10c) and the KED 
(Fig. 10b) reveal a greater influence of the sulphide factor compared with the excessively 
smooth OK estimates. 

Table 1 - Statistical parameters for the methods applied in this study.

		  COCK	 KED	 OK

	 Standard deviation of the estimates 	 0.035	 0.148	 0.166

	 Mean Cu	 0.05	 0.059	 0.062

	 Standard deviation of Cu	 0.045	 0.046	 0.052

	 Minimum	 0.001	 0.001	 0.001

	 Maximum	 0.542	 0.45	 0.35

	 Range	 0.541	 0.449	 0.349

Fig. 10 - 3D interpolation of Cu grade using: a) OK; b) KED; 
c) COCK.

(a) (b)

(c)

Table 1 summarizes the statistical parameters for methods that were used in this study. 
Standard deviation of the estimates with the minimum and maximum interpolated values of Cu 
and standard deviation of Cu with a range of interpolated values of Cu are shown in Table 1. 
The histograms of the estimates are presented in Fig. 11. The range of changes for Cu in COCK 
and KED is greater than with OK. It shows that these methods can estimate low/high values of 
Cu grades better than the OK. But the OK shows greater dispersion in the distribution around 
the mean value.
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4.2. Validation
A survey validation was performed by leaving out 20% of the samples that were selected 

randomly from the data set and then estimated using the remaining data and methods. Using 
the real data value and the estimated value, based on mean absolute error (MAE), root mean 
square error (RMSE), and the correlation coefficient of real and estimated values (R), validation 
was performed. Scatter plots of real and estimated values of all methods that were used are 
presented in Fig. 10. The comparison of the results shows that the COCK and the KED methods 
by incorporating the secondary variable, i.e., SF, have better results. Results for validations are 
presented in Table 2.

(a)

Fig. 11 - Histograms of the estimated Cu grade obtained 
by: a) OK; b) KED; c) COCK.

(b)

(c)

Table 2 - Validation results for the methods applied in this study.

		  MAE	 RMSE	 R

	 OK	 0.0309	 0.00488	 0.8025

	 KED	 0.02806	 0.00439	 0.84897

	 COCK	 0.03218	 0.00470	 0.82116
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5. Conclusions

This paper described the application of three well-known geostatistical approaches known as 
ordinary kriging, collocated cokriging, and kriging with an external drift in order to estimate Cu 
grade distribution. To reduce the uncertainty arising from a sparse pattern of drilled boreholes 
in a studied area, sulphide factor (SF) as a correlated auxiliary geophysical variable was 
incorporated in Cu grade estimation, showing its effectiveness when information is lacking. 
Collocated cokriging and kriging with an external drift that incorporate a secondary variable 
based on SF lead to better results than ordinary kriging that does not incorporate SF data. The 
resultant maps of the Cu grades show that estimates by the collocated cokriging and the kriging 
with external drift are less influenced by drilled boreholes than ordinary kriging. Based on the 
statistical values of the mean absolute error, the root mean square error, and the correlation 
coefficient of the real and the estimated values acquired from the leave-out-samples, two 
multivariate geostatistical methods could substantially outperform Cu estimates in the studied 
porphyry deposit located in Iran.  

(a)

Fig. 12 - Scatter plots of Cu estimates versus real values: 
a) OK; b) KED; c) KED.

(b)

(c)
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