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ABSTRACT	 In	 projects	 involving	 reserves	 estimation,	 a	 principal	 aim	 is	 to	 reduce	 the	 variance	
of	the	estimation	and	related	uncertainty.	This	requires	extensive	and	costly	drilling.	
Among	the	variety	of	geostatistical-based	techniques	used	to	reduce	the	variance	of	
the	estimation	in	mineral	reserves	modelling,	multivariate	geostatistical	methods	can	
be	 appropriate	 tools	 when	 a	 sparse	 pattern	 of	 drilling	 boreholes	 exist.	The	 present	
work	introduces	collocated	cokriging	and	kriging	with	an	external	drift	as	multivariate	
geostatistical	methods	to	incorporate	sulphide	factor	as	a	secondary	correlated	variable	
to	estimate	Cu	grade	distribution.	The	study	area	is	one	of	the	potential	zones	of	porphyry	
Cu	occurrences,	located	in	the	Kerman	province	of	southern	Iran.	To	estimate	the	Cu	
grade	distribution	in	this	region,	sulphide	factor	data	as	a	dense	correlated	geophysical	
variable	 with	 the	 primary	 variable	 was	 used	 because	 this	 incurs	 less	 cost	 than	
drilling holes. Application of these multivariate geostatistical techniques to a specific 
exploration	such	as	Seridune	Copper	Deposit	in	interpolating	Cu	grade	measurements	
(primary	data)	using	weakly	correlated	sulphide	factor	(secondary	data)	suggests	that	
when	Cu	grade	 is	undersampled,	 the	 secondary	data	can	contribute	 substantially	 to	
identifying	 primary	 data.	 The	 results	 show	 that	 incorporating	 a	 secondary	 variable	
leads	 to	 better	 results	 than	 ordinary	 kriging	 (as	 a	 univariate	 method)	 that	 does	 not	
incorporate	 sulphide	 factor	 data.	 The	 validation	 of	 leave-out	 samples	 was	 used	 to	
compare	the	performance	of	the	methods.	Based	on	mean	absolute	error,	root	mean	
square error and the correlation coefficient of the observed and estimated values, the 
methods	of	the	collocated	cokriging	and	the	kriging	with	an	external	drift	outperformed	
grade	estimation	in	comparison	with	ordinary	kriging.	

Key words:	 sulphide	 factor,	ordinary	kriging,	 collocated	cokriging,	kriging	with	external	drift,	Seridune	
copper	deposit,	Iran.

© 2016 – OGS

1. Introduction

In	some	engineering	and	 industrial	 fields,	 interpolation	methods	are	widely	used	 to	predict	
a	 spatial	 variable	 in	 an	 unknown	 region,	 and	 most	 times,	 multiple	 variables	 are	 sampled	 in	
addition	 to	 the	one	used	 to	quantify	 the	main	phenomenon	under	study.	That	variable	may	be	
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correlated	 with	 the	 principal	 variable	 of	 interest,	 being	 especially	 useful	 when	 sampled	 on	
a	 larger	 support.	Then,	 the	 main	 attribute	 can	 be	 estimated	 from	 measures	 of	 itself	 (primary	
variable)	 and	 from	 the	 additional	 correlated	 secondary	 variable.	 Incorporating	 a	 secondary	
variable	leads	to	more	consistent	models	of	the	phenomenon	under	study	(Boezio	et al.,	2006a).	
Various	 geostatistical	 methods	 have	 been	 developed	 for	 incorporating	 a	 dense	 secondary	
variable.	Among	 these	 methods	 are	 COllocated	 CoKriging	 (COCK)	 and	 Kriging	 with	 an	
External	Drift	(KED).	Ordinary	Kriging	(OK)	as	a	prevalent	univariate	geostatistical	technique	
uses	only	one	variable	of	 interest	 to	make	estimates	at	unsampled	 locations.	When	secondary	
data	are	available,	cokriging	is	the	natural	extension	of	kriging	in	the	case	of	multiple	variables.	
It	 presents	 several	 theoretical	 advantages	 over	 kriging	 a	 single	 variable.	 Its	 major	 advantages	
appear	when	secondary	data	are	sampled	on	a	 larger	support	 than	the	primary	data	(Boezio	et 
al.,	2006b).	However,	high	sampling	density	leads	to	instability	of	the	cokriging	set	of	equations	
in	 the	 inversion	process	 (Wenlong	et al.,	 1992).	Consequently,	 cokriging	can	be	 simplified	 to	
COCK	by	retaining	only	 the	secondary	datum	collocated	with	 the	 location	where	 the	primary	
variable	 is	 being	 estimated.	 COCK	 also	 has	 the	 advantage	 over	 other	 methodologies	 in	 that	
it	 incorporates	 a	 secondary	 variable	 while	 accounting	 for	 spatial	 correlation.	 However,	 the	
principal	 disadvantage	 of	 this	 methodology	 comes	 from	 modelling	 of	 the	 coregionalisation,	
where	direct	and	cross	covariances	must	be	inferred.	The	classic	approach	is	based	on	the	linear	
model	of	coregionalisation	(LMC)	where	all	direct	and	cross	covariances	are	calculated	as	linear	
combinations	of	the	same	basic	structures.	As	positive	definiteness	must	be	observed,	modelling	
LMC	is	not	straightforward	(Boezio	et al.,	2006b).	

An	alternative	methodology	taken	into	account	for	an	exhaustive	array	of	secondary	variables	
is	KED	(Boezio	et al.,	2006b).	KED	is	applied	in	cases	in	which	the	main	variable	is	correlated	
with	 the	 dependent	 external	 variable	 (Fernandes	 and	 Rocha,	 2010).	 In	 general,	 KED	 is	 used	
to	merge	 two	sources	of	variables:	a	primary	variable	 that	 is	precise	but	only	known	at	a	 few	
locations;	and	a	secondary	variable	that	is	not	precise	but	is	available	everywhere	in	the	spatial	
domain.	The	second	variable	is	related	statistically	to	the	primary	variable	(Grimes	et al.,	1999).	
Finally,	 this	method	can	be	used	 if:	1)	 the	spatial	 trend	 in	 the	secondary	(external)	variable	 is	
related	to	that	of	the	primary	property	of	interest;	2)	the	residuals	from	the	trend	of	the	primary	
property	can	be	modeled	geostatistically;	and	3)	the	property	of	interest	and	the	variable	from	
the	more	intensive	sampling	sites	are	linearly	related	(Boxter	and	Oliver,	2005).

In	 this	 paper,	 the	 results	 of	 the	 aforementioned	 methods,	 OK,	 KED,	 and	 COCK,	 are	
compared	in	later	sections.	The	main	objective	of	 the	present	work	is	 to	outperform	the	grade	
estimation	maps	obtained	solely	from	a	primary	variable.	In	this	framework,	this	paper	presents,	
through	 a	 case	 study,	 how	a	dense	 secondary	variable	 acquired	 from	geo-electrical	 properties	
(sulphide	factor)	can	be	used	to	improve	the	estimation	of	the	primary	attribute	(Cu	grade)	via	
COCK	and	KED.	Comparison	with	the	methodology	of	OK,	which	makes	no	use	of	a	secondary	
variable,	is	also	presented.

2. Methodologies

The	methodologies	applied	in	the	present	work	(OK,	KED,	and	COCK)	are	briefly	described	
in	this	section.
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2.1. Ordinary Kriging (OK)
OK	is	one	of	the	most	commonly	used	forms	of	the	generalized	kriging	estimator.	Kriging	is	

a	method	that	is	often	associated	with	the	best	linear	unbiased	estimator.	OK	is	linear	because	its	
estimates	are	weighted	 linear	combinations	of	 the	available	data;	 it	 is	unbiased	since	 it	 tries	 to	
have	the	mean	of	prediction	errors	equal	to	0;	it	is	best	because	it	aims	at	minimizing	the	variance	
of	error	(Noshadi	and	Sepaskhah,	2005).	Assuming	the	stationary	characteristics	of	the	domain	
of	 interest	 in	 reserves	 modelling	 (i.e.,	 same	 statistical	 properties	 are	 applicable	 on	 the	 entire	
domain),	the	general	equation	of	the	OK	estimator	for	the	stationary	random	variable	Z(x)	is:

(1)

where	 wi	 is	 the	 weighting	 factor,	 Z	 is	 the	 measured	 (or	 random)	 variable,	 and	 Z *OK	 is	 the	
estimated	variable	by	OK.	In	order	to	achieve	unbiased	estimators	in	kriging,	the	following	set	
of	equations	should	be	solved	simultaneously:

(2)

and	the	minimal	prediction	variance	is:

(3)

where	μ	is	the	Lagrange	multiplier,	Cov	and	Var	stand	for	covariance	and	variance,	respectively,	
which	are	inferred	from	the	semi-variogram	models	while	we	have:	Cov	(Z, Z)	=	Var	(Z).

Two	 assumptions	 are	 needed	 to	 use	 kriging,	 namely	 stationarity	 and	 isotropy.	 Stationarity	
means	that	statistical	properties	do	not	depend	on	exact	locations.	Therefore,	the	mean	(expected	
value)	of	a	variable	at	one	location	is	equal	to	the	mean	at	any	other	location.	Isotropy	means	
that	data	variance	is	constant	in	the	area	under	investigation	and	the	correlation	(covariance	or	
semi-variogram)	between	any	two	locations	depends	only	on	the	vector	that	separates	them,	not	
their	exact	locations.

2.2. Kriging with External Drift (KED)
In	ordinary	kriging,	the	assumption	of	local	stationarity	is	made,	i.e.,	the	mean	value	of	the	

variable	over	 the	search	area	 is	assumed	constant.	But	 in	some	situations,	a	 trend	 is	observed	
in	the	data	such	that	 the	mean	varies	over	 the	search	area	and	it	 is	 therefore	no	longer	locally	
stationary.	In	nonstationary	cases,	a	secondary	variable	can	be	incorporated	to	specify	the	trend	
as	a	linear	function	of	this	external	variable,	using	kriging	with	an	external	drift.	

KED	enables	 the	 random	variable	Z,	 known	at	 relatively	 few	points,	 to	be	estimated	 from	
another	variable,	S,	that	varies	smoothly	and	is	known	at	all	points	where	an	estimate	is	required.	
The	smooth	variability	(trend)	of	the	secondary	variable	is	assumed	to	be	related	to	that	of	the	
primary	or	 target	variable,	Z(x),	being	estimated.	The	method	merges	both	variable	sources;	 it	
uses	S(x)	as	an	external	drift	function	to	estimate	Z(x).	The	aim	is	 to	increase	the	precision	of	
the	predictions	of	Z(x).	The	secondary	variable	must	be	known	at	all	the	sample	locations	of	the	
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primary	variable	and	at	all	places	on	 the	prediction	grid	 (Boxter	and	Oliver,	2005).	KED	is	a	
particular	type	of	universal	kriging.	It	allows	the	prediction	of	a	random	variable	Z,	known	only	
at	a	small	set	of	points	of	the	study	area,	through	another	variable	S,	exhaustively	known	in	the	
same	area.	We	choose	to	model	Z	with	a	random	function	Z(x)	and	S	as	a	deterministic	variable	
S(x). The	two	quantities	are	assumed	to	be	linearly	related,	i.e.,	it	is	assumed	that	the	expected	
value	of	Z(x)	 is	 equal	 to	S(x)	 up	 to	 a	 constant	a0	 and	a	 coefficient	b1	 (Bourennane	and	King,	
2003):

(4)

Here,	the	local	mean	of	the	primary	variable	E [Z (x)]	is	assessed	locally,	modelled	as	a	linear	
function	 of	 a	 smoothly	 varying	 and	 exhaustively	 sampled	 secondary	 variable	 S(x)	 and	 with	
coefficients	a0	  and	b1	considered	constant	in	the	local	neighbourhood.	Then,	simple	kriging	is	
performed	on	 the	 residuals	 from	 the	 local	mean.	The	predictor	 is	 a	 linear	 combination	of	 the	
sample	values	at	location	xi (i = 1, . . ., n):

	 with	 (5)

The	 kriging	 weights	 wi	 are	 obtained	 by	 the	 solution	 of	 the	 following	 system	 of	 equations	
(Bourennane	and	King,	2003):

(6)

where	 n is	 the	 number	 of	 points	 in	 the	 search	 neighbourhood,	 Cov is	 the	 covariance	 of	 the	
residue,	and	μ1	and	μ2	are	the	Lagrange	multipliers	that	account	for	the	unbiasedness	constraints	
with	the	minimal	prediction	variance

.	 	 	 	 	 	 	 	 	 	 (7)

The	external	drift	method	 thus	consists	of	 incorporating	 into	 the	kriging	 system	additional	
universality	 conditions	 about	 one	 or	 several	 external	 drift	 variables,	 S(xi),	i=1,	2,	...,	M,	
measured	 exhaustively	 in	 the	 spatial	 domain.	 The	 function	 S(xi)	 needs	 to	 be	 known	 at	 all	
locations	 xi	  of	 the	 samples	 of	 Z(xi),	 as	 well	 as	 at	 nodes	 of	 the	 prediction	 grid	 (Bourennane	
et al.,	2000).	To	be	able	 to	use	 the	KED,	 it	 is	necessary	 to	calculate	 the	 residual	between	 the	
primary	 and	 secondary	 data	 in	 order	 to	 construct	 the	 variogram	 used	 in	 estimating	 the	 main	
variable.	 In	 other	 words,	 theoretically,	 the	 variogram	 for	 KED	 needs	 to	 be	 inferred	 from	 the	
residuals	Z(x)	 -	m(x),	where	m(x) is	 the	drift	 between	 the	primary	and	 secondary	variable	 (or	
the	local	smooth	variation	of	the	random	variable	Z(x) at	 the	scale	of	observation).	But	this	 is	
not	 simple,	because	neither	 the	 residuals	nor	 the	 trend	m(x) is	known	a priori.	A	 solution	 for	
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this	 problem	 can	 be	 obtained	 by	 inferring	 the	 residual	 component	 variogram	 (or	 covariance	
function)	from	pairs	 that	are	not	or	only	slightly	affected	by	the	 trend.	This	can	be	performed	
by	 computing	 the	 directional	 variograms	 and	 retaining	 only	 the	 directional	 variogram	 that	
shows	the	least	evidence	of	the	trend	(Goovaerts,	1999;	Boxter	and	Oliver,	2005;	Boezio	et al.,	
2006b;	Haberland,	2007).	Another	approach	involves	determining	the	experimental	residuals	by	
removing,	from	the	data	values,	 the	drift	determined	by	the	linear	regression	of	 the	secondary	
variable.	Then,	 simple	kriging	 is	 performed	on	 these	 residuals,	 and	 a	drift	 locally	determined	
through	the	KED	system	is	then	added	(Boezio	et al.,	2006b;	Haberland,	2007).	In	kriging	with	
external	drift,	the	secondary	variable	needs	to	be	known	at	all	points	as	colocalization	data.	So,	
the	secondary	parameters	were	estimated	by	ordinary	kriging,	before	the	kriging	with	external	
drift	for	the	primary	variable	was	applied.

2.3. COllocated CoKriging (COCK)
COCK	is	a	reduced	and	modified	form	of	cokriging,	in	which	the	secondary	variable	used	for	

estimation	is	reduced	so	as	to	retain	only	the	secondary	datum	in	the	location	where	the	primary	
variable	is	being	estimated.	

The	 COCK	 estimator	 is	 given	 by	 the	 following	 expression	 (Kay	 and	 Dimitrakopoulos,	
2000),

(8)

where	ai	and	b are	kriging	weights,	S is	the	value	of	the	secondary	data	set	at	the	location	where	
Z*	 is	 being	 estimated	 and	 Z–,	 S–	 are	 mean	 values	 of	 the	 primary	 and	 the	 secondary	 data.	The	
COCK	weights	ai and	b	are	obtained	by	solving	the	following	set	of	equations,

(9)

Here,	the	S*	(x0)	is	the	value	of	the	secondary	variable	at	the	location	where	Z*	(x0)	is	being	
estimated.	In	this	system	we	only	require	the	inference	of	Cov(Z,	Z),	as	Cov(S,	S)	is	not	required,	
and	Cov(Z,	S),	Cov(S,	Z)	can	be	evaluated	by,

(10)

where	Var(S),	Var(Z)	are	the	variances	of	the	S and	Z sets	of	data	and	ρZS is	the	linear	correlation	
coefficient	of	the	collocated	Z and	S data	sets	(Kay	and	Dimitrakopoulos,	2000).

It	is	necessary	to	model	the	covariance	function	for	the	primary	variable,	and	when	there	is	
low	correlation	between	the	secondary	and	primary	data,	the	resulting	Z	will	not	be	compelled	
to	 be	 similar	 to	 the	 secondary	 S	 variable	 map.	A	 significant	 disadvantage	 of	 the	 mentioned	
algorithm	 is	 that	all	noncollocated	secondary	data	are	 ignored	when	estimating	 the	Z	variable	
at	 a	 given	 location	 (Kay	 and	 Dimitrakopoulos,	 2000).	When	 performing	 ordinary	 collocated	
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cokriging	 in	 attendance	 of	 non-stationarity,	 the	 trend	 can	 be	 considered	 constant	 within	 a	
limitary	local	neighbourhood.

3. Background geology

The	study	area	is	part	of	the	Urumieh-Dokhtar	(Sahand-Bazman)	magmatic	arc	assemblage	
that	runs	from	NW	to	SE	of	Iran.	This	belt	is	classified	as	an	Andean	type	magmatic	arc	shown	
in	Fig.	1	(Alavi,	1980;	Berberian	et al.,	1982;	John	et al.,	2010).	The	north-western	part	of	the	
Urumieh-Dokhtar	 magmatic	 arc	 is	 the	 product	 of	Tethys	 oceanic	 plate	 subducted	 under	 the	
Iranian	 microplate	 followed	 by	 continent-to-continent	 collision	 of	 the	Arabian	 and	 Eurasian	
plates	 (Regard	 et al.,	 2004;	 John	 et al.,	 2010).	 Seridune	 porphyry	 copper	 deposit	 is	 in	 a	
granodiorite-quartz	monzonite	pluton.	Two	large	deposits	belonged	to	this	area	are	Sarcheshmeh	
and	Darrehzar	(Abedi	et al.,	2013).

The	 detailed	 lithological	 map	 of	 the	 Seridune	 prospect	 is	 shown	 in	 Fig.	 2a.	This	 deposit	
consists	of	Eocene	andesite	and	trachyandesite	intruded	by	upper	Miocene	granodiorite,	which	

Fig.	1	-	Location	map	of	the	study	area	in	Iran	(a),	the	
general geological map (b) of the Seridune area (modified 
from	Huber,	1969;	John	et al.,	2010;	Abedi	et al.,	2013).	

is	cut	by	quartz	monzonite	and	granodiorite	porphyry	dikes	(Barzegar,	2007;	John	et al.,	2010).	
Post	 mineralization	 Pliocene	 dacite	 and	 Quaternary	 gravels	 cover	 parts	 of	 the	 andesite	 and	
intrusive	 rocks.	The	 granodiorites,	 monzonites,	 and	 andesites	 adjacent	 to	 the	 intrusive	 rocks	

a

b
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contain	complexly	intermixed	argillic	and	sericitic	alteration	zones	and	an	area	of	propylitically	
altered	rocks	in	the	south-eastern	part	of	the	prospect.	North-trending	silica	lithocaps	cut	argillic,	
sericitic,	and	propylitic	alteration	zones.	A	zone	of	advanced	argillic-altered	rocks	borders	 the	
lithocaps,	and	quartz	stockwork	veins	are	in	the	central	part	of	the	prospect,	Fig.	2b	(Barzegar,	
2007;	John	et al.,	2010;	Abedi	et al.,	2013).	

4. Case study

Previous	 studies	 show	 that	 the	 Seridune	 copper	 deposit	 located	 in	 the	 Kerman	 province	
of	 Iran	 has	 high	 potential	 of	 copper	 occurrences.	A	 fuzzy	 knowledge-based	 method	 which	
integrated	various	geophysical	data	 in	order	 to	prepare	a	mineral	prospectivity	map	generated	
a	map	 in	which	high-potential	 zones	correspond	 to	higher	 fuzzy	values.	To	prepare	 this	map,	
shown	 in	 Fig.	 3,	 different	 geophysical	 layers	 which	 derived	 from	 magnetic	 and	 electrical	

Fig.	2	-	a)	Detailed	lithological	map	of	the	Seridune	prospect;	b)	hydrothermal	alteration	map	of	the	Seridune	prospect	
(reproduced	from	Barzegar,	2007;	John	et al.,	2010;	Kazemi	Mehrnia	et al.,	2011).	

(a) (b)
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surveys	were	used	 to	evaluate	 the	Seridune	copper	deposit	 (Abedi	et al.,	2013).	Based	on	 the	
mineral	 potential	 map,	 a	 sparse	 pattern	 of	 drilling	 was	 recommended.	 In	 the	 following,	 since	
multivariate	kriging	of	a	 sparse	pattern	of	drilling	yields	 lower	uncertainty	 in	mineral	deposit	
modelling,	 a	 model	 of	 geo-electrical	 property	 (i.e.,	 the	 sulphide	 factor)	 as	 a	 second	 variable	
which	has	an	acceptable	level	of	correlation	with	the	first	variable,	Cu,	is	used	to	make	a	model	
of	Cu	grade.	

Fig.	 3	 -	 Mineral	 prospectivity	 map	 generated	 by	 fuzzy	
knowledge-based	method,	which	indicates	high-potential	
zones	of	mineral	occurrences	with	higher	 fuzzy	values.	
Drilled	 boreholes	 are	 shown	 by	 symbols	 on	 the	 map	
(Abedi	et al.,	2013).	

4.1. Data and methods
The	primary	data	used	in	this	study	was	Cu	grade	of	boreholes	and	sulphide	factor	used	as	

the	 secondary	 variable.	The	 most	 common	 geophysical	 methods	 for	 exploration	 of	 sulphide	
deposits	 are	 electrical	 techniques.	 In	 this	 study,	 first	 Induced	 polarization	 (IP)	 “chargeability	
map”	and	 resistivity	 (RS)	 surveys	with	 rectangle	 array	 and	 two	pole-dipole	 electrical	profiles	
were	 implemented,	 and	 then	 with	 available	 resistivity	 and	 chargeability	 data,	 sulphide	 factor	
could	be	approximated	by	(Loke,	2010):

	 ,	 (11)

where	M	is	chargeability,	ρa	is	electrical	resistivity,	and	SF	is	sulphide	factor.	The	chargeability	
and resistivity are in terms of ms and Ω·m. Here, the 2D electrical data are inverted using 
RES2DINV	 Software	 as	 in	 Loke	 (2010).	 Fig.	 4	 shows	 the	 sulphide	 factor	 maps	 of	 rectangle	
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(a)

(b)

(c)

Fig. 4 - Sulphide factor maps of: a) rectangle array; b) and c) two pole-dipole profiles.

array	 and	 two	 pole-dipole	 profiles.	 Here	 a	 rectangular	 array	 with	 1200-m	 space	 as	 current	
electrode	 was	 used	 such	 that	 distances	 between	 profiles	 and	 stations	 were	 100	 and	 20	 m.	
Electrode	spacing	for	both	pole-dipole	profiles	is	40	m.	

In	this	survey,	Cu	data	were	composited	from	the	sparse	drilled	boreholes	which	are	shown	
in	Fig.	5.	The	length	of	the	composited	boreholes	is	5	m	at	three	dimentions	x,	y,	and	z.	A	grid	
with	specific	dimensions	has	been	designed	to	interpolate	Cu	grade	for	an	undersampled	pattern	
of	boreholes.	This	grid	contains	all	primary	and	secondary	data	(Fig.	5).	Since	the	semi-detailed	
exploration	 drilling	 has	 been	 done	 in	 this	 study,	 the	 drilling	 grid	 is	 sparse	 and	 undersampled	
to	create	a	3D	model	of	Cu	grade	in	the	desired	area.	The	length	of	the	boreholes	varies	from	
250	up	to	360	m	for	9	drilled	boreholes,	which	certainly	yields	high	uncertainty	when	applying	
kriging.	Therefore,	 incorporating	 a	 secondary	 variable	 can	 decrease	 the	 uncertainty	 of	 the	
constructed	 Cu	 grade	 model.	The	 point	 should	 be	 noted	 that	 a	 high	 correlation	 between	 the	
primary	variable	(Cu	grade)	and	the	secondary	one	(SF)	should	exist	to	allow	the	application	of	
a	multivariate	geostatistical	approach	like	 the	COCK	and	KED.	The	estimation	of	 the	SF	was	
performed	by	ordinary	kriging.	SF	at	 the	 locations	of	measured	Cu	was	also	determined.	This	
collocated	 data	 configuration	 allows	 verification	 of	 the	 correlation	 and	 the	 linear	 relationship	
between	 the	 primary	 and	 the	 secondary	 variables.	The	 scatter	 plot	 shows	 that	 the	 correlation	
coefficient	 exceeds	 0.466	 (Fig.	 6).	 Since	 the	 correlation	 coefficient	 is	 a	 bit	 low,	 we	 used	 the	
collocated	values	of	SF	rather	than	using	all	data.	One	of	the	main	advantages	of	this	technique	
is	the	reduction	of	the	effect	of	the	secondary	variable	when	this	correlation	is	low	(Abedi	et al.,	
2015).

Two	compulsory	assumptions	of	stationarity	and	isotropy	are	required	to	apply	any	kriging	
methods.	 Here,	 to	 demonstrate	 that	 the	 data	 satisfy	 the	 “isotropy	 assumptions”,	 Fig.	 7	 is	
provided,	 showing	 the	 regional	 variable	 (SF)	 has	 isotropic	 behaviour	 in	 different	 directions	
(variograms	 are	 provided	 for	 four	 0,	 45,	 90,	 135	 azimuths).	As	 illustrated,	 the	 variograms	 in	
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different	azimuths	have	approximately	the	same	ranges	and	sills.	It	is	worth	mentioning	that	in	
comparison	with	anisotropy	in	layered	deposits,	it	can	be	ignored.		

To	 address	 the	 stationarity	 of	 the	 data,	 scatter	 plots	 of	 the	 SF	 variable	 are	 plotted	 versus	
coordinates	of	X	 and	Y,	 respectively.	Fig.	8	 indicates	 that	 there	 is	not	any	significant	 trend	 in	
either	X	or	Y	directions.	Therefore,	it	can	be	assumed	that	there	is	no	meaningful	trend	in	any	
direction,	indicating	stationarity	of	the	studied	domain.

To	 apply	 three	 methods,	 i.e.,	 COCK,	 KED,	 and	 OK,	 we	 need	 to	 have	 information	 about	
semi-variogram	 models	 of	 both	 the	 primary	 and	 the	 secondary	 variable.	The	 Experimental	

Fig.	5	-	Grid	for	estimation	of	Cu	grade	based	on	the	primary	variable	derived	from	composited	drilled	boreholes	and	
the	sulphide	factor	as	a	correlated	secondary	variable.

Fig.	6	-	Scatter	plot	of	Cu	and	SF	variables,	which	
shows	 linear	 correlation	 between	 the	 composited	
Cu	 grade	 data	 and	 the	 SF.	 Here,	 the	 correlation	
coefficient is equal to 0.466.
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Fig.	 7	 -	 Similar	 variogram	
curves	of	secondary	variable	
SF	 for	 four	 azimuths	 of	 0,	
45,	 90,	 and	 135,	 showing	
the	 isotropic	 behaviour	 of	
the	studied	domain.	

Fig.	8	-	Scatter	plot	of	SF	versus	coordinates	of	X (a),	and	Y (b),	showing	the	stationarity	behaviour	of	 the	studied	
domain.		

(a)

(b)
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omni-directional	semi-variograms	models	for	both	the	composited	Cu	grade	data	and	the	SF	are	
shown	in	Figs.	9a	and	9b,	respectively.	Since	the	kriging	set	of	equations	should	be	applied	to	a	
variable	with	normalized	distribution,	the	normalized	transform	was	applied	for	both	variables.	
The	ranges	of	the	semi-variogram	models	for	the	composited	Cu	grade	and	the	SF	are	300	and	
200	 m,	 respectively.	The	 experimental	 semi-variogram	 of	 the	 composited	 Cu	 grade	 has	 been	
modelled	with	a	spherical	variogram	which	has	a	nugget	and	sill	values	equal	to	0.37	and	0.63,	
respectively.	The	 spherical	 model	 has	 also	 been	 used	 to	 fit	 a	 model	 which	 has	 a	 nugget	 and	
sill	values	equal	to	0.3	and	0.7,	respectively,	for	the	SF	data.	Here,	we	have	used	the	Stanford	
Geostatistical	Modeling	Software	(SGeMS),	which	is	free	for	all	users.	

At	first	the	KED	and	the	COCK	were	carried	out	to	estimate	distribution	of	Cu	grade.	The	
kriging	maps	are	presented	in	Figs.	10b	and	10c.	To	compare,	the	Cu	grades	were	also	estimated	

(a)

(b)

Fig.	9	-	Experimental	omni-directional	semi-variograms	and	the	models	of:	a)	the	composited	Cu	grade	data;	b)	the	SF.	
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by	OK	(Fig.	10a).	The	obtained	maps	of	 the	Cu	grades	show	the	difference	between	the	three	
estimators,	 but	 it	 is	 clear	 that	 estimates	 by	 the	 COCK	 and	 the	 KED	 are	 less	 influenced	 by	
boreholes	 than	ordinary	kriging.	The	maps	obtained	using	 the	COCK	(Fig.	10c)	and	 the	KED	
(Fig.	 10b)	 reveal	 a	 greater	 influence	 of	 the	 sulphide	 factor	 compared	 with	 the	 excessively	
smooth	OK	estimates.	

Table	1	-	Statistical	parameters	for	the	methods	applied	in	this	study.

  COCK KED OK

 Standard deviation of the estimates  0.035 0.148 0.166

 Mean Cu 0.05 0.059 0.062

 Standard deviation of Cu 0.045 0.046 0.052

 Minimum 0.001 0.001 0.001

 Maximum 0.542 0.45 0.35

 Range 0.541 0.449 0.349

Fig.	10	-	3D	interpolation	of	Cu	grade	using:	a)	OK;	b)	KED;	
c)	COCK.

(a) (b)

(c)

Table	 1	 summarizes	 the	 statistical	 parameters	 for	 methods	 that	 were	 used	 in	 this	 study.	
Standard	deviation	of	the	estimates	with	the	minimum	and	maximum	interpolated	values	of	Cu	
and	standard	deviation	of	Cu	with	a	 range	of	 interpolated	values	of	Cu	are	shown	in	Table	1.	
The	histograms	of	the	estimates	are	presented	in	Fig.	11.	The	range	of	changes	for	Cu	in	COCK	
and	KED	is	greater	than	with	OK.	It	shows	that	these	methods	can	estimate	low/high	values	of	
Cu	grades	better	 than	the	OK.	But	the	OK	shows	greater	dispersion	in	the	distribution	around	
the	mean	value.
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4.2. Validation
A	 survey	 validation	 was	 performed	 by	 leaving	 out	 20%	 of	 the	 samples	 that	 were	 selected	

randomly	 from	 the	 data	 set	 and	 then	 estimated	 using	 the	 remaining	 data	 and	 methods.	 Using	
the	 real	 data	value	 and	 the	 estimated	value,	 based	on	mean	absolute	 error	 (MAE),	 root	mean	
square	error	(RMSE),	and	the	correlation	coefficient	of	real	and	estimated	values	(R),	validation	
was	 performed.	 Scatter	 plots	 of	 real	 and	 estimated	 values	 of	 all	 methods	 that	 were	 used	 are	
presented	in	Fig.	10.	The	comparison	of	the	results	shows	that	the	COCK	and	the	KED	methods	
by	incorporating	the	secondary	variable,	i.e.,	SF,	have	better	results.	Results	for	validations	are	
presented	in	Table	2.

(a)

Fig.	11	-	Histograms	of	the	estimated	Cu	grade	obtained	
by:	a)	OK;	b)	KED;	c)	COCK.

(b)

(c)

Table	2	-	Validation	results	for	the	methods	applied	in	this	study.

  MAE RMSE R

 OK 0.0309 0.00488 0.8025

 KED 0.02806 0.00439 0.84897

 COCK 0.03218 0.00470 0.82116
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5. Conclusions

This	paper	described	the	application	of	three	well-known	geostatistical	approaches	known	as	
ordinary	kriging,	collocated	cokriging,	and	kriging	with	an	external	drift	in	order	to	estimate	Cu	
grade	distribution.	To	reduce	the	uncertainty	arising	from	a	sparse	pattern	of	drilled	boreholes	
in	 a	 studied	 area,	 sulphide	 factor	 (SF)	 as	 a	 correlated	 auxiliary	 geophysical	 variable	 was	
incorporated	 in	 Cu	 grade	 estimation,	 showing	 its	 effectiveness	 when	 information	 is	 lacking.	
Collocated	 cokriging	 and	 kriging	 with	 an	 external	 drift	 that	 incorporate	 a	 secondary	 variable	
based	on	SF	lead	to	better	results	than	ordinary	kriging	that	does	not	incorporate	SF	data.	The	
resultant	maps	of	the	Cu	grades	show	that	estimates	by	the	collocated	cokriging	and	the	kriging	
with	external	drift	are	less	influenced	by	drilled	boreholes	than	ordinary	kriging.	Based	on	the	
statistical	 values	 of	 the	 mean	 absolute	 error,	 the	 root	 mean	 square	 error,	 and	 the	 correlation	
coefficient	 of	 the	 real	 and	 the	 estimated	 values	 acquired	 from	 the	 leave-out-samples,	 two	
multivariate	geostatistical	methods	could	 substantially	outperform	Cu	estimates	 in	 the	 studied	
porphyry	deposit	located	in	Iran.		

(a)

Fig.	12	-	Scatter	plots	of	Cu	estimates	versus	real	values:	
a)	OK;	b)	KED;	c)	KED.

(b)

(c)
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