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ABSTRACT	 Seismic	 random	 noise	 attenuation	 is	 a	 very	 important	 step	 in	 seismic	 processing,	
resulting	 in	 seismic	 interpretation	 enhancement.	 Decision-based	 median	 (DBM)	
filtering is proposed here for seismic random noise attenuation to improve the signal 
to noise ratio (S/N) and the quality of the seismic images. Unlike conventional 
median filtering, where both the signal and noise samples are affected, a DBM 
filter predominantly affects the noise samples using a selection criterion based on a 
threshold. In other words, using a DBM filter, noise samples are initially detected, 
and then the filtering operation is applied to them. When the DBM filter is applied 
to the synthetic and observed pre/post stack seismic data sets, its superiority over the 
conventional median filter in suppressing random noise and improving S/N of seismic 
data	is	demonstrated.	
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1. Introduction

Removing noise from seismic data is a challenging research field in seismic data processing. 
The quality of seismic images is improved by random noise attenuation; hence, interpretation of 
seismic events is greatly facilitated. Random noise filtering increases the general interpretability 
of seismic data and also improves the performance of automatic horizon picking. 

Various methods have been introduced over the years for suppressing the random noise in 
seismic data. For high noise levels, f-x deconvolution technique based on signal predictability 
(Canales, 1984) is an effective method (Spitz and Deschizeaux, 1994). Singular value 
decomposition (SVD) methods (Lu, 2006) decompose the signal and noise into different 
subspaces and can be used globally or locally (Bekara and Baan, 2007) to suppress random 
seismic noise. Wavelet (Donoho et al., 1996) and curvelet transforms (Starck et al., 2002) were 
also successfully employed for random noise attenuation. 

The median filter is a simple and robust filter which is widely used due to its good noise-
suppressing power and computational efficiency (Bednar, 1983). Different types of median 
filters have been developed, including stack filters, multistage median (Liu et al., 2006), relaxed 
median (Hamza and Krim, 2001), rank conditioned rank selection, and weighted median (Vijay 
Kumar et al., 2007). Liu et al. (2009) presented a 1-D time-varying median filter for spike-like 
noise	elimination	in	seismic	data.

In this paper, we propose to use a decision method to detect noise prior to application 
of the median filter. This method is able to diminish the random noise while preserving the 
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signal samples. DM is simple, effective, and could easily be implemented. In the following 
sections, the principles of the conventional median and decision-based median (DBM) filters 
are explained. Applying the suggested technique to the synthetic and observed pre/post stack 
seismic data, the technique’s performance for seismic random noise attenuation is discussed.

2. Methodology

2.1. Median filter 
Popular median filters were developed as a means of smoothing data (Tukey, 1977) in which 

the	signal	contains	abrupt	discontinuities.	The	term	“median”	is	used	here	in	its	correct	statistical	
sense and should not be confused with the terms mean, average value, or weighted mean. If N	
statistical data samples are arranged in ascending order of magnitude, then the median value is 
the	sample	 in	 the	 (N+1)/2 position of the sequence. When N	 is	odd,	 the	median	 is	 the	middle	
value of the ordered set of data. If N is even, the median is usually defined as the mean of the two 
middle terms of the monotonically increasing sequence. Despite changing some characteristics of 
an image or seismogram, noise will be significantly suppressed by median filtering.

Let	 X1, X2, X3, X4, X5 represent a sequence of statistical samples having variable 
magnitudes. Reordering these values so that they successively increase in magnitude will 
generally create a different sequence, which might for example be X3, X5, X2, X4, and X1.	The	
median value of this reordered sequence is X2. In this instance, the action of a median filter is 
represented	in	Fig.	1.

Fig. 1 - Action of the median filter.

This example illustrates the non-linear nature of the median filter (Arce, 1998). Significant 
developments of the median filter, such as the adaptive median filter (Lukac and Smolka, 2003), 
weighted median filter (Weng et al., 2007), and recursive weighted median filter (Arce, 2005) 
have	been	reported.	

When the noise level is high, the filter will smear the details and edges and may not remove 
noise. To cover this deficiency, noisy pixels (seismic samples) should first be recognized 
and then replaced by the filter operator, while other pixels are kept unchanged. Following 
this	 notion,	 noise-detection	 techniques	 such	 as	 decision-based	 method	 (Cai	 et al.,	 2010)	 and	
switching filter (Pandey, 2008) have been introduced. 

2.2. DBM Filter
To provide a trade-off between the identity filter and the median filter, the suggested method 

DBM is designed with a significantly simple noise - detecting method (DM). The idea behind 
the proposed filter algorithm is to design a filter in such a way that the identity operator acts on 
the noise-free samples, while the noisy pixels are affected by the filter operation (Arastehfar et 
al., 2013).
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To implement the DBM filter, an image [seismic data (I)]	is	supposed	as	a	vector	(V)	made	
by the rows of the image. In the vector scheme, a column vector V is built by the rows of matrix 
I as shown in Eqs. 1 and 2. It should be noted that the first row, the last row, the first column, 
and the last column are eliminated with this stratagem. So, an image In×m	of size n×m becomes a 
vector	VN×1	of size N×1 in the vector outline (Eq. 2), where N = (n-2) × (m-2).	

	

(1)

(2)

Wq(p) is defined as a two-dimensional processing window of size q×q, where q	 is	 an	odd	
integer	and	p is the central pixel within the window (Rutuja Kulkarni and Bhaskar, 2013). For 
example, W3 is a filtering window with size 3×3, containing 9 pixels:

(3)

In the DM technique, noisy pixels are detected by comparing each pixel in the image with 
its surrounding pixels. The difference between two successive pixels in V is compared with a 

.
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threshold	d. The value of threshold d is not fixed and can be changed according to the noise 
level of data and the ‘Step’	parameter.	The	parameter	‘Step’ is a predefined value, added to d	
depending	on	the	condition	|vi-1-vi|>d, where |·| indicates the absolute operator and vi	denotes	the	
ith component of V.	

➣	 Threshold	=	d	

➣ If |vi-1-vi|>d	{vi	=	median	(W3(vi)),	d	=	d	+	Step}	

➣ Else {d	=	Threshold}	

When the noise level is low, the possibility of detecting a noisy pixel is very low. Then, 
providing that a pixel is detected as a noisy pixel, the condition for detecting the next pixel as a 
noisy	one	gets	harder	by	increasing	d. Otherwise, the parameter d is changed to the pre-defined 
value of threshold. The parameter ‘Step’ has a very important role in accurate identification of 
noisy pixels (samples) and in preserving edges. 

Thus, this is an adaptive median filter that determines which pixels in an image have been 
affected by noise. According to this algorithm, if the difference between two successive pixels 

Fig. 2 - a) Noise-free synthetic data. b) Noisy synthetic data with S/N of 2, reflection events are affected by random 
noise. c) Denoised synthetic data using DBM filter. d) Denoised synthetic data using conventional median filter. It is 
clear that the DBM filter is more successful in removing random noise and increasing S/N compared to the conventional 
median filter.
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Fig. 3 - The trace number 35 selected from Fig. 2: a) noise free trace; b) noisy trace; c) denoised trace using DBM filter; 
d) denoised trace using conventional median filter. Comparing Figs. 3c and 3d shows the higher power of the DBM 
filter in comparison to the conventional median filter for random noise attenuation.

is	greater	than	the	threshold	d, the pixel is noisy and the median operation must be applied. It 
means that the noisy pixel will be replaced by the median value of the pixels in its neighborhood 
while leaving all the other pixels unchanged. If the condition |vi-1-vi|>d is not satisfied, the pixel 
is not noisy and the identity filter will be applied.

3. Examples

3.1. Synthetic data
To prepare the synthetic model, a 30-Hz Ricker wavelet and sampling interval of 4 ms 

were used. The created noise-free data consists of three reflectors with t0 200, 450, 800 ms and 
velocity 1000, 2200, 2500 m/s, respectively (Fig. 2a). The synthetic data include 82 traces with 
284 samples per trace. Noisy data with S/N of 2 is created by adding Gaussian noise to noise-
free data (Fig. 2b). From Fig. 2b, it is clear that reflection events are affected by random noise 
and the S/N is reduced. To implement the DBM filter, the window size is fixed at 3×3. The 
threshold	d is set to 95 and the parameter ‘Step’ is set to 5 as the optimum values. The denoised 
data after DBM filtering is shown in Fig. 2c. For comparison, the result of conventional median 
filtering is shown in Fig. 2d. Figs. 2c and 2d indicate that the DBM filter is more successful in 
removing random noise and increasing S/N compared to the conventional median filter.
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The trace number 35 from noise-free data, noisy data, and denoised data using DBM filter 
and conventional median filter are shown in Fig. 3, where the noise level of denoised trace 
using DBM filtering is decreased more than with conventional median filtering. These results 
demonstrate the power of the DBM filter for random noise attenuation. 

To better check the performance of this technique, the residual noise is calculated. The 
residual noise is determined by computing the difference between noise-free traces and denoised 
traces. Fig. 4 indicates the residual noise in frequency domain (amplitude spectrum). It is 
clear that the amplitude spectrum related to DBM filtering is close to zero in all frequencies, 
demonstrating that random noise is greatly suppressed, while the frequency range of information 
(lower frequencies) is not affected considerably. However, a high level of noise still remains 
after the application of the conventional median filter. Spectral analysis of the residual noise 
confirms, therefore, the higher performance of the DBM filter in noise attenuation compared to 
the conventional median filter.

3.2. The real data
A real shot gather and a seismic section are also selected to further study the performance 

of the proposed method. The shot gather with a trace spacing of 25 m and a sample rate of 4 
ms after suppressing ground roll is shown in Fig. 5a. Random noise is evident in most parts 
of the shot gather. In this case, for implementation of the DBM filter, the window size is 
fixed at 5×5. The threshold d is set to 80 and the parameter ‘Step’	is	set	to	10	as	the	optimum	
values. Comparing the application of DBM and conventional median filtering in Figs. 5b and 
5c, it is observed that random noise is suppressed significantly by the DBM filter, while the 
conventional median filter is not as effective.

Fig. 4 - Amplitude spectrum of residual noise related to DBM (shown in red) and conventional median filtering (blue). 
Amplitude spectrum related to DBM filtering is close to zero in all frequencies and demonstrates that random noise is 
greatly suppressed. A high level of noise still remains after the application of conventional median filtering (blue).
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Fig. 5 - a) A shot gather with a trace spacing of 25 m and a sample rate of 4 ms. After suppressing the ground roll, the 
random noise is observable in most parts the data. b) The shot gather after denoising using DBM filter, random noise 
is suppressed significantly. c) The shot gather after denoising using conventional median filter. Results show that DBM 
filtering is more powerful for random noise attenuation.

Fig. 6 - a) A zoom of a part of the shot gather in Fig. 5 (red box) before denoising. b) A selected part of the shot gather 
after denoising using DBM filter. c) Selected part of the shot gather after denoising using conventional median filter. 
From Figs. 6b and 6c, the DBM filter has effectively succeeded at eliminating the random noise.
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Fig. 7 - a) Trace number 50 before denoising. b) Trace number 50 after denoising using DBM filter. c) Trace number 50 
after denoising using conventional median filter. Random noise is well attenuated using DBM filter, while conventional 
median filtering is not successful.

Fig. 8 - a) Amplitude spectrum of trace number 50 before and after denoising using DBM filter. b) Amplitude spectrum 
of trace number 50 before and after denoising using conventional median filter. 
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The shot gather within the red box before and after denoising using DBM and conventional 
median filter is shown in Fig. 6. According to Fig. 6, the random noise is attenuated and the S/N 
is improved greatly using the DBM filter in comparison to a conventional median filter (Figs. 6b 
and	6c).

To evaluate the results better, trace number 50 is selected from the shot gather in Fig. 5. 
This trace, before and after denoising using DBM filtering and conventional median filtering, 
is plotted in Fig. 7. Fig. 7b shows that the random noise is well attenuated and S/N is improved 
using DBM filtering, while conventional median filtering is not successful (Fig. 7c).

The amplitude spectrum of trace number 50 before and after denoising using DBM and 
conventional median filters is calculated and put together in Fig. 8. Comparing plots in Fig. 8a 

Fig. 9 - a) A noisy seismic section with 2 ms sampling interval and trace spacing of 50 m, different horizons are 
affected by random noise, in shallow parts particularly. b) Denoised seismic section using DBM filter, random noise is 
attenuated	and	the	S/N	is	improved.
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indicates that DBM filtering is able to significantly attenuate high-frequency components that 
are due, generally, to random noise, while the frequency range of information is not affected 
considerably. Instead, Fig. 8b indicates that the frequency range of information is affected 
during denoising by conventional median filtering, which is an enormous deficiency.

Another data set is a seismic section with 2 ms sampling interval and trace spacing of 50 
m where horizons particularly in shallow intervals are masked and affected by random noise 
(see Fig. 9a). The denoised seismic section using the DBM filter is shown in Fig. 9b. To better 
demonstrate the results, a close-up of a part of the section (red box) before and after denoising is 
shown in Fig. 10. According to Fig. 10, the random noise is attenuated and the S/N is improved. 
Also, the lateral continuity of events is increased, and hence the interpretability of data is 
enhanced	considerably.

Fig. 10 - a) A zoom of a part of the section in Fig. 9 (red box) before denoising. b) A selected part of the section after 
denoising using DBM filter. The lateral continuity of events is increased greatly, and hence the interpretability of data 
is	enhanced	considerably.

4. Conclusion 

Here, a novel method, called the DBM filter, was proposed for random noise attenuation 
in seismic data. This method is an adaptive filter that applies the median operation to noisy 
pixels and leaves healthy pixels unchanged. The results of DBM filtering on different types of 
seismic data (synthetic data, a shot gather, and a seismic section) proved that it is an effective 
method for removing random noise. The S/N of different types of seismic data was improved 
significantly by using this filter. After suppressing random noise from the seismic section, the 
lateral continuity of seismic events was improved, and hence the interpretability of data was 
enhanced.	

Also, it should be noted that DBM filtering is able to attenuate random noise, while the 
frequency range of information is not affected considerably. In other words, by using the DBM 
filter, we are able to attenuate random noise without affecting the seismic information that 
can be useful in seismic interpretation. Indeed, the DBM filter could strike a balance between 
eliminating random noise and protecting useful information. These advantages of the DBM 
filter confirm its robustness for seismic random noise attenuation.
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