
Bollettino di Geofisica Teorica ed Applicata  Vol. 54, n. 4, pp. 303-319; December 2013

DOI 10.4430/bgta0111

303

A least-squares collocation procedure to merge 
local geoids with the aid of satellite-only gravity models: 
the Italian/Swiss geoids case study

M. Gilardoni1, M. reGuzzoni2 and d. SaMpietro3

1 DICA, Politecnico di Milano, Polo Territoriale di Como, Italy
2 DICA, Politecnico di Milano, Milano, Italy
3 GReD s.r.l., Como, Italy

(Received: April 15, 2013; accepted: July 16, 2013)

ABSTRACT	 Neighbouring	countries	often	have	national	geoids	that	do	not	fit	to	each	other,	typically	
showing	a	discontinuity	along	the	border.	Among	other	effects,	 this	discontinuity	is	
mainly	due	to	the	different	height	datum,	producing	biased	local	geoids	which	can	also	
have	different	accuracies	and	spatial	resolutions.	In	some	applications,	for	instance	in	
case	of	 international	civil	engineering	works,	a	merging	between	 two	neighbouring	
geoids	can	be	necessary.	Obviously	this	procedure	cannot	be	done	by	simply	averaging	
overlapping	areas	completely	disregarding	biases.	This	paper	deals	with	this	problem	
in	 connection	 to	 the	 availability	of	 data	 from	 satellite	 gravity	missions.	 In	 contrast	
to	 terrestrial	 gravity	 anomalies,	 gravity	 and	 geoid	 models	 derived	 from	 satellite	
gravity	missions,	and	in	particular	from	GRACE	and	GOCE,	do	not	suffer	from	those	
inconsistencies.	These	models	in	fact	are	not	affected	by	local	biases	(local	reference	
systems)	since	they	do	not	make	use	of	any	ground	gravity	data	or	levelling.	Basically	
this	means	that	these	models	can	provide	the	long	wavelengths	of	the	resulting	merged	
geoid,	in	this	way	removing	national	biases	or	other	systematic	effects.	On	the	other	
hand,	the	short	wavelengths	will	directly	come	from	a	combination	of	the	available	
local	 geoids.	 This	 article	 proposes	 a	 least-squares	 collocation	 procedure	 to	 merge	
local	geoids	with	the	help	of	these	satellite-only	gravity	models.	Even	if	the	correct	
approach	to	produce	a	unique	unbiased	geoid	is	 to	start	from	the	original	terrestrial	
gravity	 data	 together	with	 satellite	 data,	 the	 presented	 procedure	 can	 be	 helpful	 to	
merge	already	available	local	models.	After	a	review	of	the	mathematical	formulation	
of	the	problem,	the	paper	illustrates	the	case	of	the	merging	of	the	Italian	and	Swiss	
geoids,	more	specifically	the	Swiss	CHGeo2004	and	the	Italian	ITALGEO2005	pure	
gravimetric	local	models.	A	constant	bias	with	respect	to	the	GOCE	reference	(WGS84	
ellipsoid)	of	about	100	cm	for	the	Italian	local	geoid	and	of	about	80	cm	for	the	Swiss	
one	have	been	estimated	and	 removed.	After	 that	 a	unique	geoid	with	 an	 accuracy	
of	few	centimetres	has	been	computed	by	collocation.	A	first	application	of	this	new	
geoid,	named	GISgeo2012	(GOCE,	Italian	and	Swiss	geoid)	will	be	within	the	interreg	
project	 Helidem	 (HELvetia-Italy	Digital	 Elevation	Model)	 to	 create	 a	 new	 unified	
digital	elevation	model	in	orthometric	height.
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1. Introduction

As	 it	 is	well	 known	 in	 literature,	 local	 geoid	models	 are	 generally	 affected	 by	 biases	
(Colombo,	1980;	Rummel	and	Teunissen,	1988;	Xu,	2007).	These	biases	are	mainly	due	to	the	
fact	that	each	national	or	regional	levelling	network	has	a	reference	point	defined	by	the	mean	
sea	level	observed	at	a	given	tide	gauge,	in	a	certain	period	of	time.	Since	the	sea	level	varies	
from	place	to	place,	up	to	2	m,	due	to	global	variations	in	the	mean	dynamic	topography	(see:	
Pugh,	2004),	there	can	be	jumps	between	national	height	systems.	This	is	usually	referred	as	the	
height	datum	problem.

The	biased	heights	enter	into	the	computation	of	terrestrial	gravity	anomalies	which	in	turn	
are	used	to	determine	the	geoid.	For	this	reason	a	national	geoid	can	be	inconsistent	with	the	one	
of	the	neighbouring	country	presenting	a	jump	along	the	border.	Note	that	these	inconsistencies	
can	have	very	complicated	features	determined	not	only	by	the	height	datum	problem	but	also	
by	 the	different	 data	manipulation	 and	methods	 (e.g.,	 Stokes	 solution	 rather	 than	 collocation)	
used	to	compute	the	geoids,	by	the	effect	of	a	different	local	reference	ellipsoid	and	by	border	
effects.	Obviously	 all	 these	 contributions	 should	be	 taken	 into	 account	 and	properly	 removed	
when	creating	a	unique	geoid	model	for	more	than	one	country.

In	 recent	 years,	 the	 need	 of	 a	worldwide	 reference	 system	 has	 brought	 the	 scientific	
community	to	study	the	various	aspects	of	the	establishment	of	a	common	reference	datum,	and	
consequently	a	common	reference	equipotential	 surface,	giving	particular	attention	 to	 the	 role	
played	by	 space	 techniques	 that	 are	now	 improving	 the	knowledge	of	 the	Earth	gravity	 field.	
Some	literature	about	this	item	is	reported	for	example	in	Sánchez	(2008).

In	 this	 framework	 an	 important	 contribution	 has	 been	 given	 by	 the	ESA	GOCE	 (Gravity	
field	 and	Ocean	Circulation	Explorer)	 satellite	mission.	 In	 fact	 its	 data	 are	 independent	 from	
local	 height	 reference	 systems	 (Rummel,	 2002;	Gerlach	 and	Rummel,	 2013)	 and	will	 allow	
to	estimate	the	geoid	with	an	accuracy	of	2	cm	at	100	km	space	resolution.	In	addition	GOCE	
provides	highly	accurate	geopotential	numbers	and	a	consistent	way	to	refer	to	the	same	datum	
all	the	relevant	gravimetric,	topographic	and	oceanographic	data	(Rummel	et al.,	2011).

Finally	GOCE	 observations	 are	 homogeneous,	 both	 for	 acquisition	method	 and	 spatial	
distribution,	 and	 give	 information	 also	 in	 regions	where	 ground	 gravity	 data	 are	 poor	 or	
unavailable	 [e.g.,	 part	 of	 South	America,	Africa	 and	 the	Himalayas	 (Bomfim	et al.,	 2013)].	
Apart	 from	satellite-only	models,	 a	 set	of	high	 resolution	global	 combined	models,	 computed	
from	ground,	shipborne	and	satellite	gravity	observations	are	available;	between	them	the	Earth	
Gravity	Model	 2008	 (EGM2008)	model	 (Pavlis	et al.,	 2012)	 is	 probably	 the	most	 important	
and	widely	 used.	However	 these	models	 containing	 biased	 ground-gravity	 data	 are	 certainly	
influenced	by	height	 system	 inconsistencies,	even	 if	only	above	a	certain	degree	 (Gatti	et al.,	
2013).

The	procedure	presented	here	faces	 the	problem	from	a	 local	point	of	view	using	a	GOCE	
satellite-only	gravity	model	 to	merge	 the	geoids	of	 two	neighbouring	countries.	 In	details	 the	
algorithm	 is	 based	on	 a	 least-squares	 estimation	of	 the	 biases	 affecting	 the	 local	models	 and	
their	removal,	followed	by	a	standard	collocation	to	merge	the	computed	unbiased	data	set	into	
a	 unique	geoid.	 In	 each	 step,	 particular	 attention	 is	 given	 to	 the	modelling	of	 the	 covariance	
matrices	 of	 the	 involved	 quantities.	The	 concept	 is	 the	 one	 of	 least-squares	 collocation	with	
parameters	 (Moritz,	 1989)	 and	 similar	 approaches	 are	 illustrated	 in	 literature,	 for	 instance	 in	
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Tscherning	(2001),	Fotopoulos	(2005),	and	in	particular	in	Pail	et al.	(2010).	At	the	base	of	the	
implemented	methodology	there	is	a	frequency	analysis	of	the	gravimetric	signal:	local	models,	
computed	on	the	basis	of	ground	and	shipborne	gravity	data,	contain	information	related	to	all	
the	frequency	spectrum	while	GOCE	models,	expressed	as	a	harmonic	development	 truncated	
at	 a	 certain	maximum	degree,	which	 is	 implicitly	 defined	 by	 the	 accuracy	 and	 the	 spatial	
distribution	 of	 the	 data	 used	 to	 build	 the	model	 itself,	 give	 accurate	 information	 just	 at	 low	
degrees.	It	should	be	underlined	that	the	cleanest	way	to	produce	a	unified	geoid,	also	including	
GOCE	data,	 is	definitely	 to	 start	 from	 the	original	ground	gravity	observations	 instead	of	 the	
local	 geoids	 that	 can	 contain	many	 additional	 systematic	 effects	 due	 to	 their	 computation.	
Nevertheless	it	should	be	stressed	that	the	full	data	set	of	the	ground	gravity	observations	that	
have	been	used	to	compute	the	local	geoids	is	in	general	not	accessible.	Therefore	the	proposed	
strategy,	though	sub-optimal,	is	a	practical	answer	to	the	problem	of	straightening	and	merging	
local	geoids	of	neighbouring	countries.

The	developed	procedure	 has	 been	 applied	 to	merge	 the	 Italian	 and	 the	Swiss	 gravimetric	
local	geoids.	The	prediction	is	made	on	the	overlapping	area	between	the	Italian	and	the	Swiss	
geoids.	The	limits	of	the	considered	area	are:	6.5°	E,	11.0°	E,	44.5°	N	and	47.0°	N.	The	choice	
of	this	area	is	based	on	the	fact	that	it	is	where	a	merged	geoid	was	requested	within	the	interreg	
Helidem	 (HELvetia	 Italy	Digital	Elevation	Model)	 project	which	 is	 somehow	 related	 to	 this	
research.

2. Mathematical formulation of the problem

The	methodology	 presented	 in	 this	work	 is	 divided	 into	 two	 steps:	 the	 first	 one	 consists	
in	 a	 least-squares	 adjustment	 for	 biases	 estimation,	 the	 second	 one	 is	 a	 standard	 collocation	
procedure	to	merge	local	geoids.	Note	that	 this	 is	equivalent	 to	apply	a	kriging	solution	being	
the	variance-covariance	matrices	used	in	the	two	steps	always	the	same	(Sansò	and	Tscherning,	
1980).

The	 proposed	 procedure	 is	 based	 on	 the	 use	 of	 a	 global	 satellite-only	 gravity	model,	
expressed	 as	 a	 truncated	 series	 of	 spherical	 harmonic	 coefficients,	 to	merge	 local	 grids	 of	
geoid	 undulation.	 First	 of	 all,	 the	 anomalous	 potential	 spherical	 harmonic	 coefficient	 vector	
T,	which	is	in	principle	infinite	dimensional,	can	be	split	into	two	parts:	TL,	containing	the	low	
frequencies	up	to	a	maximum	degree	L	(that	can	be	retrieved	by	the	satellite-only	global	model)	
and	the	remaining	high	frequencies	TH:

	 .	 (1)

The	following	system	can	be	built:	

(2)
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where	 Y 0	 is	 the	 observation	 vector,	 in	 this	 study	 geoid	 undulations,	 subscripts	 1	 and	 2	 refer	
to	the	first	and	to	the	second	local	model	respectively,	x	 is	 the	coordinate	vector	collecting	all	
the	observation	points,	generally	with	x1	different	from	x2.	A	 is	 the	 linear	operator	going	from	
spherical	 harmonic	 coefficients	 to	 geoid	 undulation	 (i.e.,	 harmonic	 synthesis),	B	 is	 the	 bias	
deterministic	model	as	a	function	of	the	parameter	vector	t	and	ν	is	the	observation	error	of	the	
local	data	set.	Finally	e	is	the	estimated	error	of	the	satellite-only	spherical	harmonic	coefficients	
T 0L	with	covariance	matrix	Cee.

The	contribution	of	the	low	frequency	signal	given	by	the	global	model	is	removed	from	the	
observations	obtaining:

(3)

where,	 analogously	 to	Eq.	 (1),	AL	 and	 AH	 represent	 a	 splitting	 of	 the	 linear	 operator	A	 with	
respect	to	the	low	and	high	frequency	part.

Calling	s	the	high	frequency	signal	component	and	ξ	the	difference	between	ν,	for	the	sake	
of	simplicity	assumed	to	be	white	noise,	and	the	global	model	low	frequency	propagated	error,	
the	term	AL	(x)	e,	Eq.	(3)	can	be	rewritten	as:

	 .	 (4)

Eq.	(4)	represents	the	least-squares	model	that	is	used	to	estimate	the	biases	of	local	models,	
namely	the	parameter	vectors	t1	and	t2.	In	matrix	notation	it	can	be	written	as:

	 .	 (5)

The	bias	can	be	modelled	in	various	forms,	e.g.,	as	a	constant	value	or	better	as	a	constant	
plus	a	component	that	depends	on	the	position	of	the	point	(see:	Heiskanen	and	Moritz,	1967).	
In	 this	study	we	have	chosen	 the	former	solution,	 therefore	 the	matrices	B1	and	B2	are	simply	
vectors	of	ones	with	dimension	n1 and	n2,	where	n1	and	n2	are	the	number	of	observations	of	the	
first	and	the	second	data	set	respectively.

The	cofactor	matrix	Q	of	this	least-squares	model	is	equal	to:

(6)

where	the	first	term	is	the	covariance	matrix	of	the	high	frequency	signal,	while	the	second	one	
is	the	sum	of	two	contributions:	the	covariance	of	the	low	frequency	error,	computed	from	the	
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provided	 coefficient	 covariance	 of	 the	 global	model,	 plus	 the	 covariance	matrix	 of	 the	 local	
geoid	which	is	assumed	to	be	diagonal;	as	we	said	before,	the	error	of	the	local	model	is	in	fact	
assumed	to	be	a	white	noise	in	lack	of	a	more	precise	information.	Of	course	more	general,	and	
more	realistic,	matrices	could	be	taken	into	account.	Therefore	we	have:

(7)

and

(8)

with	Cν1ν1
	=	σ21	I	and	Cν2ν2

	=	σ22	I.	It	 is	important	to	underline	that	this	is	a	strong	approximation	
because	 a	 lot	 of	 correlations	 are	 introduced	 in	 computing	 local	 geoids	with	 the	 standard	
techniques	of	physical	geodesy	(Albertella	et al., 1994).

The	covariance	matrix	of	the	high	frequency	signal	Css	can	be	estimated	empirically	starting	
for	 the	 residuals	 r	 as	 explained	 in	details	 in	Section	2.1.	Note	 that	being	Q	 a	 full	matrix,	 the	
estimates	of	the	two	bias	parameter	vectors	are	correlated.

Applying	the	least-squares	adjustment,	the	estimated	parameters	are	given	by:

 t̂1	 	 r1t̂	=		[	 	 ]	=	(DT Q–1D)–1	DT Q–1	[	 	 ]	 (9)
 t̂2	 	 r2

with	

	 .	 (10)

Once	the	biases	are	estimated,	they	can	be	subtracted	from	the	residuals	of	Eq.	(5)	to	obtain	
“unbiased”	residuals:

rU
1	(x1)	=	r1	(x1)	–	B1	t̂1

(11)
rU
2	(x2)	=	r2	(x2)	–	B2	t̂2

that	will	 be	 the	 observations	 of	 the	 subsequent	 collocation	 approach,	 as	 explained	 in	 the	
following,	used	to	estimate	a	merged	unbiased	geoid	here	represented	by	the	vector	Y3.

Considering	 that	 the	 functional	 relation	 between	Y3	 and	 the	 vector	 of	 spherical	 harmonic	
coefficients	T	can	be	written	as:	
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(12)

one	gets	the	collocation	prediction	in	the	form	(Pail	et al.,	2010):

(13)

where	

(14)

and	 Cr1U r2U
	 is	 the	 same	of	Eq.	 (6).	The	variance	 covariance	matrix	 of	 the	 predicted	geoid	 error	

Cεε	with	ε	=	Ŷ3(x3)	–	Y3(x3),	where	Y3(x3)	is	the	true	value	of	the	merged	geoid	computed	in	the	
position	vector	x3,	is	given	by:

   A3
L	(x3)	Cee	(AL	(x3))T 0	 	 	 	 	

–1 Cεε	=	[	 	 	 	]	–	CY3 rU	Cr1U r2U
	CrU Y3	

(15)
	 	 	 0	 AH	(x3)	Cee	(AH	(x3))T

2.1. Remarks on the estimation of the high frequency signal covariance matrix function
The	 covariance	 function	 of	 the	 high	 frequency	 signal,	Css,	 is	 derived	 from	 the	 empirical	

variogram	 of	 the	 residuals	 r1,	 r2	 under	 the	 assumption	 that	 the	 field	 has	 isotropic	 and	
homogeneous	increments.	This	assumption	practically	means	that	the	value	of	the	variogram	Γ	
depends	only	on	spherical	distances	(ψ)	between	observation	points.

The	 covariance	 function	 is	 determined	 from	 the	 variogram	 (Wackernagel,	 2003)	 and	 not	
directly	 estimated	because	 the	 variogram	 is	 independent	 from	constant	 biases	 and	permits	 to	
estimate	 a	 unique	model	 for	 the	 two	geoids.	 In	 fact	 in	 the	 overlapping	 area	 the	 variogram	 is	
expected	to	have	the	same	shape	if	computed	by	using	r1	or	r2	but	with	different	nugget	effects.	
This	is	because	the	nugget	represents	an	estimate	of	the	local	geoid	error	variances	(σ2ν1	or	σ2ν2)	
that	can	be	different	in	the	two	models.

Summarizing,	the	procedure	is	the	following:	firstly,	two	empirical	variograms	are	estimated	
considering	the	available	data	sets	separately,	thus	computing	two	different	nugget	effects	that	
are	removed	from	the	empirical	variogram	values.	Secondly,	the	resulting	empirical	variogram	
clouds	 are	merged	 and	 used	 to	 estimate	 a	 unique	 variogram	model	 [for	 further	 details	 see:	
Wackernagel	(2003)].	Subsequently	the	covariance	function	is	computed	using	the	relation:

C	(ψ)	=	C	(0)	–	Γ	(ψ).	 (16)

AL	(x3)	Cee	(AL	(x1))T	+	AH	(x3)	CT H T H	(AH	(x1))T	[	 ]	AL	(x3)	Cee	(AL	(x2))T	+	AH	(x3)	CT H T H	(AH	(x2))T	
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The	 obtained	 covariance	 function	 is	 the	 sum	 of	 two	 contributions	 [see:	 Eq.	 (6)]:	 the	
covariance	 due	 to	 the	 high	 frequency	 signal	Css	 and	 the	 covariance	 of	 global	model	 low	
frequency	error	AL Cee A

L,	assuming	these	two	contributions	as	uncorrelated.	To	evaluate	the	latter	
term,	a	homogeneous	and	isotropic	approximation	of	the	global	model	error	covariance	function	
has	to	be	considered.	More	precisely,	first	the	covariance	of	GOCE	error	is	computed	in	the	area	
of	interest	with	an	order-wise	block	diagonal	modelling:

	 GM
Cee (ϑ,	ϑʹ,	Δλ)	=	(	––––	)2	Σm	Σl,k

	σlk,m	–Plm	(ϑ)	
–PKm	(ϑʹ)	cos	(mΔλ),	 (17)

	 R

where	the	constants	G,	M	and	R	can	be	found	in	the	GOCE	standards	document	and	–Plm	are	the	
fully	normalized	Legendre	functions	of	degree	 l	and	order	m.	After	 that	 the	covariance	model	
based	on	degree	variances	that	best	fits	the	previously	determined	model	is	estimated	via	least-
squares	adjustment	and	becomes:

	 GM
C̃ee (ψ)	≅	(	––––	)2	Σ	σ̃2l  Pl	(cos	ψ)	 (18)
	 R
  l

where	Pl	are	the	Legendre	polinomials	of	degree	l,

(19)

and	σ2l  =	Σm	σ2lm .	The	 constant	A
2	 represents	 the	mean	 variance	 of	 the	model	 in	 Eq.	 (17),	

computed	over	he	local	area	under	study.	In	other	words	the	covariance	model	based	on	degree	
variances	in	Eq.	(18)	is	locally	adapted.

Finally	the	covariance	function	due	to	the	high	frequency	signal	can	be	computed	removing	
this	 contribution,	 properly	 propagated	 through	 the	 linear	 functional	A,	 from	C (ψ).	Once	 the	
theoretical	covariance	functions	are	known,	the	covariance	matrices	can	be	easily	calculated.

2.2. Remarks on the estimation of the biases
As	explained	before,	the	bias	estimation	is	performed	by	a	least-squares	solution	where	the	

observations	are	the	residuals	of	Eq.	(5).	They	are	obtained	removing	from	the	local	geoid	the	
contribution	of	the	low	frequency	signal	of	the	satellite-only	global	model.	Particular	attention	
should	be	paid	when	computing	this	subtraction	since	local	models	are	usually	given	in	terms	
of	 geoid	 undulation	 N,	while	 from	global	models	 quasi-geoid	ζ	 is	 usually	 synthesized.	The	
topographic	 correction,	 needed	 to	 go	 from	ζ	 to	 N,	 can	 be	 evaluated	 by	 using	 the	 following	
simple	approximated	formula	(Moritz,	1989):

	 2	π	ρ	G
N	=	ζ	–		––––––	H2	 (20)
	 γ
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where	 ρ	 is	 the	mass	 density,	G	 is	 the	 universal	 constant,	γ	 the	 normal	 gravity	 and	H	 the	
orthometric	height	(m).

If	the	geoid	undulation	N	is	considered,	residuals	can	be	computed	as:

(21)

where	N	 is	 the	geoid	value	and	N LGOCE	 the	geoid	computed	making	the	synthesis	of	 the	GOCE	
model,	both	quantities	evaluated	at	point	x.	There	are	two	considerations	that	should	be	done	to	
properly	estimate	the	biases	using	the	presented	procedure.	The	first	is	that	the	reasoning	holds	
when	 the	area	of	 interest	 is	sufficiently	 large,	 in	 fact	 the	signal	s	of	Eq.	 (5)	 is	supposed	 to	be	
of	zero	mean	and	 this	 is	verified	when	 the	considered	region	 is	 larger	 than	a	certain	area	 that	
depends	on	 the	maximum	degree	L	of	 the	removed	global	model	 (e.g.,	 if	L	 is	180,	 the	region	
should	be	greater	than	1º	×	1º).	The	second	is	that	if	the	variability	of	the	remaining	signal	is	too	
high,	 as	 in	 the	 case	of	 the	bordering	area	between	 Italy	 and	Switzerland,	due	 to	 the	presence	
of	the	Alps,	the	biases	cannot	be	estimated	with	a	sufficient	level	of	accuracy	because	they	are	
hidden	by	the	variability	of	the	signal	itself.

To	overcome	both	problems,	a	possible	solution	is	to	subtract	from	the	local	geoid	data	also	
the	contribution	of	the	high	frequency	signal	that	can	be	taken	for	example	from	the	EGM2008	
global	model.	 Even	 if	 EGM2008	 is	 not	 an	 unbiased	model	 it	 can	 be	 assumed	 that	 the	 bias	
contribution	at	high	frequency,	from	degree	201	on,	is	globally	of	the	order	of	0.5	cm	(Gatti	et 
al.,	2013)	and	therefore	can	be	reasonably	neglected.	In	this	way	the	variability	of	the	residual	
signal	decreases	significantly	(e.g.,	in	the	considered	area	from	a	standard	deviation	of	0.88	to	
0.27	m	and	from	1.57	to	0.02	m,	for	the	Italian	and	Swiss	case	respectively)	and	the	biases	can	
be	estimated	with	a	proper	level	of	accuracy.

To	clarify	the	above	approach,	a	numerical	simulation	has	been	performed	in	the	area	shown	
in	Fig.	1.

The	residuals	r1	(x1)	and	r2	(x2)	have	been	simulated	according	to	the	following	equation:

(22)

where												is	the	high	frequency	signal	of	EGM2008	model	(practically	the	omission	error	of	
this	model	after	degree	2159	is	negligible	for	the	purpose	of	this	simulation),										is	the	error	of	
the	GOCE	contribution	 at	 low	 frequencies,	ν	 is	 the	geoid	 error	 (modelled	 as	white	noise)	 and	
t1	and	t2	are	the	scalar	biases.	In	the	simulation	t1	is	set	to	zero	and	t2	to	7	cm.	Such	values	have	
been	 chosen	 looking	 at	 the	European	Unified	Vertical	Network	 (EUVN)	website	 that	 shows	a	
relative	 jump	of	 7	 cm	between	 Italy	 and	Switzerland	 (http://www.bkg.bund.de).	Two	 samples	
of	GOCE	errors,	consistent	with										stochastic	characteristics,	and	geoid	white	noises	have	been	
randomly	drawn.	Note	 that	 the	GOCE	error	 samples	 are	 correlated	 even	 if	 they	 are	 related	 to	
different	areas	(see	Fig.	2)	and	therefore	 they	are	drawn	as	a	single	sample.	More	precisely,	 the	
sample	of											has	been	created	by	applying	the	Cholesky	decomposition	of	the	matrix	Cee:
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Fig.	1	-	Areas	considered	for	the	simulation.	In	red	stars	and	in	blue	points,	the	position	of	the	residuals	for	the	Swiss	
and	the	Italian	local	geoid	respectively.

Cee	=	LT L,	 (23)

being	L	a	triangular	matrix.	Then	we	have:

										=	LT ν (24)

with	ν	 a	white	noise	of	unit	variance.	 In	 this	way	 the	variance-covariance	matrix	of	 	 	 	 	 	 	 	 	 is	
exactly	 the	 one	 provided	 by	 the	 global	model	 considering	 an	 order-wise	 block-diagonal	
covariance	 approximation	without	 introducing	 any	 further	 simplification	 as	 it	was	 done	 in	
Section	2.1.	The	error	sample	of	 the	high	frequency	EGM2008	model	 	 	 	 	 	 	 	 	 	 	 is	drawn	again	
applying	the	Cholesky	decomposition	(see	Fig.	2),	but	since	in	this	case	a	detailed	description	of	
the	stochastic	structure	of	the	coefficients	error	is	not	available,	the	variance-covariance	matrix	
is	 obtained	 using	 the	 coefficient	 variances	 and	 therefore	 it	 is	 a	 diagonal	matrix.	 Finally	 the	
EGM2008	error	covariance	matrix	has	been	locally	adapted	by	rescaling	the	variances	according	
to	the	EGM2008	geoid	error	map	(see:	Gilardoni	et al.,	2013).

The	algorithm	described	in	Section	2	has	been	used	to	estimate	the	biases	which	are	-34.69	
and	11.91	cm	for	the	Italian	and	the	Swiss	regions	respectively	with	a	standard	deviation	in	both	
cases	of	the	order	of	260	cm.	This	high	value	makes	the	estimate	not	significant.	In	other	words	
the	 biases	 cannot	 be	 reliably	 estimated	because	 the	 variability	 of	 the	 remaining	 signal	 is	 too	
high,	in	this	way	“hiding”	the	different	biases.	To	numerically	prove	this	concept,	we	removed	
from	 the	 simulated	 residuals	 also	 the	 high	 frequency	 component	 obtaining	 the	 following	
observation	equation:
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	 r̃1	(x1)	=	e 201,2159		(x1)	+	e	0,200		(x1)	+	ν1	(x1)	+	t1
	{		 (25)
	 r̃2	(x2)	=	e 201,2159		(x2)	+	e	0,200		(x2)	+	ν2	(x2)	+	t2	

.

In	 this	 case	 all	 the	 quantities	 of	Eq.	 (25)	 are	 the	 same	 of	Eq.	 (22)	 except	 for	 the	 signal	
of	 EGM2008	 from	 degree	 201	 to	 2159	 that	 is	 substituted	 by	 its	 error.	Now	 the	 biases	 are	
estimated	with	much	better	 accuracy,	 obtaining	 biases	 of	 0.99	 and	 7.04	 cm,	with	 a	 standard	
deviation	of	1.58	and	1.51	cm,	for	the	Italian	and	Swiss	regions	respectively.	Of	course	one	has	
to	never	forget	that	this	estimation	could	absorb	(hopefully	in	a	negligible	way)	the	bias	of	the	
EGM2008	global	model.

3. Case study

The	developed	procedure	 has	 been	 applied	 to	merge	 the	 Italian	 and	 the	Swiss	 gravimetric	
local	geoid.	 It	has	been	decided	not	 to	use	 the	official	models,	 fitted	with	GPS-levelling	data,	
but	 the	pure	gravimetric	models	 to	avoid	 that	differences	 in	 the	orthometric	corrections	could	
add	further	and	unmodelled	discrepancies	between	the	two	geoids.	

The	 Italian	 gravimetric	 geoid	 ITALGEO2005	 (Barzaghi	 et al.,	 2007)	 has	 a	 resolution	 of	
3’	×	3’.	It	is	considered	within	an	area	with	geographic	limits:	6.0º	E,	11.0º	E,	44.5º	N	and	47.0º	
N	as	displayed	in	Fig.	3.

The	 Swiss	 gravimetric	 geoid	CHGeo2004	 (Marti,	 2007)	 originally	 has	 a	 resolution	 of	
0.5’	×	0.5’	 and	 it	 is	 shown	 in	Fig.	 4.	 It	 has	been	under	 sampled	 to	have	 a	 resolution	of	 3’	×	3’	
(same	as	the	Italian	geoid)	and	the	geographic	limits	of	the	considered	area	are:	5.90º	E,	10.50º	
E,	45.75º	N	and	47.80º	N.

The	satellite-only	global	model	used	in	this	work	to	correct	biases	and	to	merge	the	Italian	
and	 the	 Swiss	 local	 geoids	 is	 the	GOCE	SPW	R2	model	 (Migliaccio	 et al.,	 2011);	more	
precisely	it	is	a	model	obtained	applying	the	space-wise	approach	to	the	GOCE	gravity	gradients	
observations	(Migliaccio	et al.,	2004;	Reguzzoni	and	Tselfes,	2009).	The	GOCE	geoid	is	shown	
in	Fig.	5.	The	smoother	behaviour	with	respect	to	the	local	geoids	is	evident.

Fig.	2	-	The	GOCE	geoid	error	sample,	in	metres,	from	degree	0	to	degree	200	(left	image).	The	EGM2008	geoid	error	
sample,	in	metres,	from	degree	201	to	degree	2159	(right	image).

EGM2008 GOCE

EGM2008 GOCE
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Fig.	3	-	The	Italian	ITALGEO2005	pure	gravimetric	geoid	undulation	(in	metres).

Fig.	4	-	The	Swiss	CHGeo2004	pure	gravimetric	geoid	undulation	(in	metres).
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For	 the	biases	estimation	 two	cases	were	considered.	In	 the	first	case	 the	biases	have	been	
estimated	 considering	 200	 points	 for	 the	 Italian	 geoid	 and	 200	 points	 for	 the	 Swiss	 geoid	
randomly	distributed	within	each	national	border.	 In	 the	 second	case	 two	data	 sets	of	gridded	
data	have	been	used	(see	Fig.	6).	More	precisely	a	grid	of	26	×	117	points	for	the	Italian	geoid	
and	a	grid	of	29	×	78	points	for	the	Swiss	one,	both	with	a	resolution	of	2’	×	2’.

Since	the	quality	of	each	geoid	rapidly	decreases	out	of	its	national	border,	each	geoid	does	
not	 extend	 in	 the	 other	 country.	According	 to	 the	 simulation	 described	 above,	 residuals	 have	
been	computed	as:

Fig.	5	-	The	GOCE	space-wise	R2	gravimetric	geoid	undulation	synthesized	from	degree	0	to	240	(in	metres).

Fig.	6	-	Position	of	the	200	sparse	points	(left	image)	and	of	the	gridded	data	(right	image)	of	the	Italian	(blue	dots)	and	
Swiss	gravimetric	(red	stars)	geoids	considered	to	estimate	the	biases.
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EGM2008 GOCE

EGM2008 GOCE

	 r̃1	(x1)	=	N1	(x1)	–	N 201,2159		(x1)	–	N	0,200		(x1)
	{		 (26)
	 r̃2	(x2)	=	N2	(x2)	–	N 201,2159		(x2)	–	N	0,200		(x2)

and	their	values	are	displayed	in	Fig.	7	for	the	two	cases	under	study.
The	 estimated	 biases	 are	 reported	 in	Table	 1:	 it	 can	 be	 noted	 that	 the	 two	methodologies	

bring	to	the	same	results	(taking	into	account	their	error	standard	deviations),	 thus	confirming	
the	robustness	of	the	solution.

Fig.	 7	 -	 Residuals	 values,	 in	metres,	 in	 correspondence	 to	 the	 selected	 sparse	 points	 (left	 image)	 and	 grids	 (right	
image).

Table	1	-	Biases	computed	using	the	sparse	point	data	set	and	the	grid	data	set	(in	cm).

   Sparse point Grid data

  bias IT -109.54 -110.89

  std bias IT 4.57 5.45

 bias CH -82.98 -85.19

 std bias CH 4.19 5.79

As	 a	 final	 step	 a	merged	 geoid,	 named	GISgeo2012,	with	 its	 corresponding	 accuracy	 is	
computed	by	collocation.	The	estimated	biases	have	been	subtracted	 to	 the	residuals	 to	obtain	
r U1	and	r U2	according	to	Eq.	(11).	It	is	important	to	remind	that	these	residuals	contain	the	high	
frequency	signal	 (from	degree	240	 to	2159)	because	 the	merging	 is	applied	without	removing	
the	 EGM2008	 contribution.	 The	 unbiased	 residuals	 within	 the	 national	 borders	 used	 as	
observations	for	the	collocation	procedure	are	displayed	in	Fig.	8.	The	prediction	is	made	on	the	
overlapping	area	between	the	Italian	and	the	Swiss	geoid	on	a	grid	of	3’	×	3’	resolution	as	shown	
in	Fig.	9	(limit	of	the	area:	9.0º	E,	11.0º	E,	44.5º	N	and	47.0º	N).	Fig.	10	illustrates	the	results.
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Fig.	9	-	Area	covered	by	the	Italian	geoid	(blue	rectangle),	the	Swiss	geoid	(red	rectangle)	and	the	prediction	area	(green	
rectangle).

Fig.	8	-	Observations	used	for	the	collocation	procedure.	They	are	the	unbiased	residuals	(in	metres)	obtained	as	the	
local	geoid	minus	the	low	frequency	signal	given	by	GOCE	minus	the	estimated	bias.

4. Validation

The	quality	 of	 the	 unified	 geoid	GISgeo2012	 could	 be	 validated	with	 the	 available	GPS-
leveling	 data	 in	Switzerland,	 kindly	 provided	by	Urs	Marti	 (Marti,	 2007)	 and	 represented	 in	
Fig.	11	 left	 image.	First	of	 all	 a	value	of	geoid	undulation	has	been	directly	derived	 for	 each	
GPS-leveling	point,	then	the	gravimetric	CHGeo2004	and	the	GISgeo2012	geoid	models	have	
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been	interpolated	on	the	GPS-levelling	points.	To	compare	the	data	sets	the	differences	of	geoid	
undulation	values	between	couples	of	points	have	been	considered.	In	particular	for	any	couple	
of	points	P	and	Q	(according	to	a	starlike	network	structure,	shown	in	Fig.	11,	right	image),	a	
difference	Δ	has	been	computed	between	the	geoid	variations	obtained	from	the	GPS-leveling	
and	from	the	local	geoid	model:

Δ	=	[NGPS	(P)	–	NGPS	(Q)]	–	[Nmodel	(P)	–	Nmodel	(Q)].	 (27)

In	 this	way	 the	 possible	 presence	 of	 constant	 biases	 in	 the	models	 does	 not	 affect	 the	
statistics.	Table	2	reports	the	results	of	this	comparison	showing	that	the	unbiased	GISgeo2012	
geoid	slightly	improves	the	accuracy	of	the	original	gravimetric	geoid.

Fig.	10	-	GISgeo2012	geoid	estimated	making	a	merging	of	 the	Italian	and	Swiss	geoid	on	 the	borders.	The	geoid	
undulation	 is	 given	 in	metres	 (left	 image).	Accuracy,	 in	metres,	 of	 the	 predicted	merged	geoid	GISgeo2012	 (right	
image).

Fig.	11	-	The	Swiss	GPS-leveling	network	used	for	the	validation	(left	image).	GPS-leveling	data	used	for	the	validation;	
the	red	rhombus	indicates	the	pivot-point	of	the	star	network	(right	image).
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5. Remarks and conclusions

This	 study	 is	 a	 first	 investigation	 on	 the	way	 different	 local	 geoids	 can	 be	merged	 using	
GOCE	data.	Even	 if	 the	 cleanest	way	 to	produce	 an	unbiased	 local	geoid	 is	 to	merge	GOCE	
gravity	gradients	with	 terrestrial	gravity	measurements,	 the	explained	procedure	can	be	useful	
to	merge	already	available	local	geoids	without	repeating	all	the	computations	from	the	original	
observations	that,	by	the	way,	are	not	always	of	public	domain.	The	numerical	simulation	and	
the	case	study	with	real	data	have	shown	good	results	in	particular	leading	to	estimates	of	the	
biases	with	an	accuracy	of	the	order	of	few	centimetres	(4.6	and	4.2	for	the	Italian	and	the	Swiss	
region	respectively)	and	a	unified	unbiased	geoid	with	an	accuracy	comparable	with	the	one	of	
the	original	gravimetric	models.	In	other	words	the	height	datum	problem	at	the	local	level	has	
been	solved.

Some	simplifications	have	been	applied	in	the	present	study.	For	example,	the	bias	model	is	
assumed	to	be	a	constant	while	it	is	clear	that	it	should	have	a	more	complicated	shape.	Further	
generalizations	have	to	be	considered	in	further	studies.

Finally	it	has	to	be	stressed	that	the	dimension	of	the	area	considered	is	an	important	factor	
in	the	estimate	of	the	bias.	When	the	area	is	large	enough	it	is	probably	not	necessary	to	subtract	
the	high	frequency	signal	contribution	of	EGM2008,	but	it	is	sufficient	to	subtract	a	GOCE-only	
geoid.	This	at	least	seems	to	result	from	a	preliminary	analysis	that	will	be	the	object	of	future	
researches.
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