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ABSTRACT	 The	 most	 advanced	 global	 gravity	 model,	 EGM2008,	 is	 nowadays	 competing	 with	
local models in terms of resolution and accuracy in the definition of the Earth gravity 
field. This global model, complete to spherical harmonic degree and order 2159, is 
however	affected	by	several	biases	mainly	due	to	datum	inconsistencies	and	variability	
of the input observations density and accuracy. This article addresses the problem 
of	 improving	 the	 EGM2008	 model	 exploiting	 a	 satellite-only	 model	 based	 on	 the	
Gravity and steady state Ocean Circulation Explorer (GOCE) mission. The GOCE 
model,	 apart	 from	 being	 more	 accurate	 in	 the	 medium	 frequencies,	 is	 not	 affected	
by	 local	biases	 since	 it	 is	obtained	by	a	global	homogeneous	data	 set	 referred	 to	 a	
unique	geocentric	ellipsoid:	so	both	effects	of	different	data	sources	and	inconsistent	
height datums are not present. The resulting combination can vary depending on the 
weighting of the two global models. A first simple solution is to average spherical 
harmonic coefficients of the same degree and order by computing the weights as the 
inverse of their error variance. Another attempt is to consider for the GOCE model 
also the error correlations of the coefficients that are available through an order-wise 
covariance matrix. The paper shows also a way to integrate the two available, but not 
fully consistent, sources of information about the EGM2008 error, i.e., the spherical 
harmonic coefficient variances and a geographical estimate of the geoid variance. 
The	study	has	been	performed	on	the	Mediterranean	area	because	it	was	required	for	
the	GOCE-Italy	project	and	because	 in	 this	area	 the	obtained	merged	geoid	can	be	
validated, e.g., by using available drifter data. The main conclusion is that there is no a 
general	criterion	to	chose	which	is	the	optimal	way	to	merge	the	EGM2008	and	GOCE	
models. This is because the full stochastic structure of EGM2008 is not available and 
only approximations can be used. This means that each case study has to be dealt 
with separately. In particular for the Mediterranean area the differences between the 
proposed combinations are here presented.
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1. Introduction

The	problem	of	combining	different	types	of	information	to	derive	the	“best”	model	of	the	
Earth gravity field is a crucial item, keeping geodesists busy in the last decades. This is indeed 
shared by all other geophysical disciplines.
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Up	to	now	different	methods	have	been	developed	to	produce	global	gravity	models	[see	for	
example	Lerch	et al. (1972), Rapp (1975, 1984), Balmino et al. (1976), Wenzel (1985), Lemoine 
et al. (1998), Tscherning (2001), Reigber et al. (2005), Bruinsma et al. (2010), Pavlis et al. 
(2012)] and, somewhat separately, local gravity models. In the latter case, the hope has always 
been	that	numerous,	detailed	and	accurate	local	observations	on	the	gravity	field	could	be	used	
to	improve	the	global	representation	which	is	by	force	restricted	in	terms	of	resolution,	because	
of inhomogeneities of the data and computing limitations. Several solutions to this problem are 
known in geodetic literature such as the ‘‘localization’’ of Molodensky’s theory (Molodensky 
et al., 1962), the taylorizing of global models to local data (e.g., Wenzel, 1982; Kearsley and 
Forsberg, 1990; Reguzzoni et al., 2011), the Stokes-Helmert approach (Stokes, 1849) and its 
variants [between the others: Vaníček and Sjöberg (1991), Martinec and Vaníček (1994), Heck 
(2003), Novak (2007)], the collocation approach (Moritz, 1980; Sansò, 1986; Tscherning, 1994; 
Krarup, 2006) with its particular form of remove-restore principle (Forsberg, 1994) or more 
recently a method based on radial basis functions (Klees et al., 2008).

However at the present level the most advanced global gravity field model, Earth GravityEarth	Gravity	
Model 2008 (EGM2008) (PavlisEGM2008) (Pavlis et al., 2012), is in part competing with local models in terms 
of resolution and accuracy (Pacino and Tocho, 2009; Hirt et al., 2011). This means that the 
finite	 space	 in	which	EGM2008	 is	computed,	basically	 solid	 spherical	harmonics	complete	 to	
degree and order 2159, is large enough to leave out an omission error that is really so small to 
be negligible in most areas of the world (Pavlis et al., 2012), especially those where a good data 
coverage is provided. This is not the case in other areas like Africa, South America or Antarctica 
(Bomfim et al., 2013). Let us specify here that in this work the focus is on the combination 
of global models for the prediction of the geoid. When other functional of the gravitational 
potential (e.g., higher derivatives) are considered the omission error of high and very high 
frequencies can become significant as explained for instance in Hirt (2010).

So two questions seem to be critical nowadays:
a)	 to	 improve	 EGM2008	 because	 of	 several	 biases,	 still	 present	 in	 the	 low-medium	

frequency band (below degree 240), due to datum inconsistency, variability of the 
measurement	density	and	accuracy	and	differences	in	the	reduction	of	the	available	data	
set;

b) to improve local solutions by means of new local data.
The	present	paper	is	working	on	item	a)	exploring	a	few	solutions	that	have	been	developed	

within the GOCE-Italy project. The item b) although object of proposals (Pail et al., 2010), is 
certainly	difficult	since,	in	the	opinion	of	the	authors,	it	requires	developing	a	new	theory	and	
algorithms allowing a non-homogeneous, non-isotropic representation of the local gravity field.

Also on the item a) proposals and experiments are present in literature [see: Schuh (1996), 
Koch and Kusche (2002), Reguzzoni and Sansò (2012), Gatti et al. (2013)]. Yet the lack of 
a	 rigorous	 error	 covariance	 information	 requires	 a	 certain	 degree	 of	 empirical	 and	 numerical	
experimentation, the results of which represent the main objective of the article. In this 
respect	 the	 authors	 are	 aware	 that	 the	 problem	 of	 EGM2008	 biases	 is	 not	 directly	 addressed	
in this work, however the low harmonic degrees (≤ 70) are not significantly affected by these 
systematic errors being estimated by CHAMP and GRACE satellite missions mainly. At medium 
wavelengths	(where	 the	biases	effect	 is	bigger)	 the	combination	 is	dominated	by	 the	unbiased	
GOCE model (see error variances in Fig. 2) so also the biases effect, even if not directly faced, 
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is reduced. Finally at higher frequencies the residual biases effect is probably negligible [in the 
order of 1 cm as has been verified for the height datum problem in Gatti et al. (2013)].

2. Available stochastic information of EGM2008 and GOCE-based GGMs

The model EGM2008 extends to spherical harmonic degree 2190 (selected orders only) as 
a result of transforming an ellipsoidal model of degree/order 2159 to a spherical one (Jekeli, 
1988). The model is computed as a solution of the Molodensky problem from a global set of 
area-mean free-air gravity anomalies. In particular, it implies to transform geoid undulation 
from	 altimetry	 in	 free	 air	 gravity	 anomalies	 offshore	 and	 to	 downward	 continue	 gravity	
anomalies from the Earth surface to the ellipsoid in continental area. This last step is performed 
via a smoothing through a residual terrain correction and a least squares collocation. Once the 
ellipsoid	has	been	covered	by	a	regular	grid	of	mean	gravity	anomalies	∆g	values,	the	spherical	
harmonic	coefficients	are	obtained	via	 least	 squares	up	 to	 some	harmonic	degree	and	 then	by	
integration. Lower degrees (below degree 70) are then integrated with the direct information 
coming from the satellite-to-satellite tracking of the GRACE mission (Mayer-Gürr, 2006). More 
details with a thorough discussion of data and methods can be found in Pavlis et al. (2012).

The	point	 however	 here	 is	 that	 in	 order	 to	 get	 a	 feasible	 least	 squares	 solution	one	has	 to	
assume	 that	 the	 noise	 variance	 in	∆g is only latitude dependent, i.e., constant along parallel 
stripes on the ellipsoid. This in fact brings the shape of the normal matrix to a block diagonal 
form, which is then numerically manageable (Colombo, 1981; Sansò and Tscherning, 2003; 
Reguzzoni et al., 2011). In Reguzzoni and Sansò (2012), it is clearly shown, by means of 
a	 numerical	 example,	 that	 this	 non-optimal	 block	 diagonal	 solution,	 as	 well	 as	 a	 numerical	
integration solution, does provide estimates very close to the optimal ones. This is also 
confirmed	by	the	excellent	performances	of	EGM2008	reported	for	instance	by	the	EGM2008	
evaluation team in Newton’s Bulletin (EGM2008 evaluation team, 2009).

Nevertheless	this	leaves	us	with	a	poor	information	on	the	error	propagation	to	the	estimated	
spherical harmonic coefficients. In fact the inverse of the blocks are not representative of 
the	 true	 estimation	 error	 covariance,	 because	 the	 actual	 covariances	 of	 the	 observations	 have	
not been used in building the normal matrix. As a matter of fact, stripes passing through the 
Himalayas or the Andes etc., have a strong variation in error variance of ∆g	 due	 to	 both	 the	
intrinsic	 geographic	 variability	 and	 the	 kind	 of	 preprocessing	 used	 to	 reduce	 the	 data	 on	 the	
ellipsoid. Moreover the quadrature formulas allow to compute an approximate error propagation 
(Pavlis and Saleh, 2005) but a full covariance propagation becomes numerically unfeasible.

Monte	 Carlo	 approach	 will	 be	 probably	 able	 to	 improve	 our	 knowledge	 of	 the	 actual	
covariance	of	 the	EGM2008	 model	 (Gundlich	 et al., 2003; Koch, 2005; Alkhatib and Schuh, 
2007), however the current situation is that the available information on the error structure 
of	 the	 coefficients	 of	 EGM2008	 is	 only	 in	 terms	 of	 error	 variances	σ2

nm	 of	 the	 individual	
coefficients	of	degree	n	and	order	m. This is certainly a valuable information, especially when 
global	 combinations	 at	 the	 level	 of	 coefficients	 have	 to	 be	 performed,	 but	 it	 is	 not	 a	 reliable	
representation of the geographical distribution of the error. In fact, note that a diagonal structure 
of	the	variance-covariance	matrix	of	the	error,	when	the	further	symmetry:
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σ2	(Tnm)	=	σ2
nm	 	 	 σ2

n,–m	=	σ2
n,m (1)

is	assumed	for	the	coefficients	Tnm,	produces	a	geographical	error	in	the	geoid	undulation	N	that	
is constant along parallels. In fact being the relation between N	and	 the	disturbing	potential	T	
given by (Heiskanen and Moritz, 1967):

 TN	=	––	 (2)	 γ

where	γ	 is	 the	 normal	 gravity,	 it	 follows	 that	 the	 error	 covariance	 between	 two	 points	
N1	=	N(ϑ1,λ1)	and	N2	=	N	(ϑ2,λ2) is (Reguzzoni and Sansò, 2012)::

(3)

.

Obviously	in	the	case	of	variance,	it	comes	out:

 . (4)

Actually, even if Eq. (1) is not strictly respected in EGM2008, the resulting variability of	
σ2	(N) along a parallel is not realistic. This is shown in Fig. 1 where σ2	(N)	 as	 a	 function	 of	
longitude	λ	is	displayed	along	the	equator:	as	one	can	easily	see	not	even	the	change	land-ocean	
has a correlation with the plotted variance.

Conscious	of	 this	drawback,	 the	 authors	of	EGM2008	have	 computed	by	a	patient	 ad	hoc	
work,	 using	 independent	 data,	 a	 geographically	 meaningful	 estimate	 of	σ2	(N),	 that	 from	 now	
on	we	will	denote	as	σ2

N	(ϑ,λ). This is available at the EGM2008 website (http://earth-info.nga.
mil/GandG/wgs84/gravitymod/egm2008). We underline that this is a precious source of error 
information,	which	is	not	contained	into	σ2	(Tnm).

Coming now to the GOCE gravity model, we first of all underline that the ESA-GOCE 
mission has not yet concluded its operational phase, so that the final result is not yet available. 
However partial results are already excellent and we can say that the GOCE model will improve 
on	 EGM2008,	 at	 least	 in	 the	 medium-low	 frequencies:	 improvements	 up	 to	 degree	 and	 order	
240 are expected in region with poor ground data coverage, e.g., Himalaya, South America and 
Africa [Pail et al. (2011) or Rummel et al. (2011)], while in area with high dense data coverage 
the expected improvement will be focused on lower degrees [Hirt et al. (2011) or Šprlák et al. 
(2011)]. As it is well known there are different solutions of the gravity model from the GOCE 
gradiometer (Pail et al., 2011). In particular, the space-wise solution (Migliaccio et al., 2004; 
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Reguzzoni and Tselfes, 2009) is available to the authors with its full covariance matrix. To be 
precise	the	second	release	of	the	space-wise	solution	is	considered	in	this	study	(Migliaccio	et 
al., 2011). This is only an approximate, but we deem quite reliable, error information achieved 
by	a	Monte	Carlo	technique	(Migliaccio	et al., 2009).

The	 GOCE	 error	 covariance	 matrix	 C
–TT,	 with	 –T	 the	 vector	 of	 the	 anomalous	 potential	

coefficients	sorted	by	increasing	order	m,	all	degrees	n  ≥  m,	has	been	studied	and	proved	to	be	
well approximated by a block-diagonal form [see: Pertusini et al. (2010)] which is much more 
manageable for our purposes.

So, concluding the section, we could say that our information coming from the GOCE 
mission	 is	a	set	of	Tnm coefficients complete to order and degree 240 and of the relative error 
covariance matrix approximated in a block-diagonal form.

Would EGM2008 have an analogous covariance information to GOCE, one could apply the 
model combination discussed for example in Reguzzoni and Sansò (2012), but since this is not 
the case we have to resort to empirical solutions.

3. The direct computation of combined coefficients

To summarize the discussion of Section 2, we could say that the information available is:

(5)

(6)

(7)

(8)

Fig. 1 - Variability of geoid error 
standard	 deviation	 along	 the	
equator	 considering	 different	
accuracy	for	the	sine	and	the	cosine	
coefficients (dashed grey line) and 
orthometric	 heights	 (solid	 black	
line).



where	T Enm	are	the	coefficients	of	T	in	EGM2008,	ε	Enm	their	stochastic	errors,	if	we	assume	that	
T Enm are bias free; T Gnm	are	the	coefficients	derived	from	GOCE	data	and	ε	Gnm	their errors.

Note that, if we vectorize {Tnm}	into	a	vector	–T and correspondingly the {ε	Enm} and {ε	Gnm},	we	
can	claim	that	whatever is the order chosen:whatever	is	the	order	chosen:

 (9)

where	�E	is	the	known	diagonal	of	the	covariance	matrix,	while	R	is	the	unknown	off-diagonal	
part:

 (10)

If for the first 240 degrees we choose a progression of Tnm by orders, i.e., m	=	0,	m = ± 1, ..., ± 
240, CG	is	block-diagonal,	namely:

(11)

where	B Gnj,m	is	the	full	covariance	matrix	and	δ is the Dirac function. This is the information, so 
to say, at the level of coefficients. On the other hand we have also available, for a given grid of 
geoid	values,	N (ϑ, λ),	the	variances	σ2 (ϑ, λ)	==	σ2	[N (ϑ,λ)].

The	 first	 idea	 to	 combine	 the	 two	 models	 then	 could	 be	 to	 use	 the	 lowest	 level	 of	
information	 we	 have,	 namely	 the	 individual	 variances	�	Enm =	σ2 (ε	Enm)	 and	 B Gnn,m =	σ2 (ε	Gnm); with 
this	information	only,	the	minimum	variance	linear	estimation	is	just	the	weighted	mean	of	the	
two	data,	namely:

(12)

Such an estimate has the well-known variance:

(13)

We notice that since each Tnm	 comes	 only	 from	 the	 two	 corresponding	 coefficients	 in	
EGM2008	and	GOCE,	the	combined	model	will	completely	agree	with	EGM2008	above	degree	
240, without any modification of higher degree coefficients, as it happens on the contrary if 
EGM2008 would have a known block-diagonal covariance [see: Reguzzoni and Sansò (2012)].

The result of Eq. (13) globally gives rise to Fig. 2 in terms of geoid error degree variances. It 
can	be	clearly	seen	that	within	this	solution	EGM2008	model	is	influenced	by	GOCE	solution	
only in the range of harmonic degrees between 40 and 180. Outside this range the model is 
completely unchanged.

The	 second	 attempt	 one	 can	 think	 of,	 could	 be	 to	 use	 at	 least	 that	 part	 of	 the	 stochastic	
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information that is contained into Eq. (11), i.e., all the matrix CG. This means considering the 
error	of	the	vector	–T

G	correctly	correlated,	but	the	error	of	–T
E	only	diagonal,	in	lack	of	a	better	

information. In this case the newly estimated coefficients by the least squares principle are 
given	by	a	combination,	weighted	by	the	covariance	matrices	order	by	order	up	to	nG = 240, the 
maximum degree present in the GOCE solution. So if we put:So if we put:

–T Gm = {T Gnm; m ≤ n ≤ nG} (14)

B Gm	=	covariance	of	the	error	of	–T Gm  (15)

˜
–T Em	≡ {T Enm; m ≤ n ≤ nG} (16)

�̃	Em	≡ diagonal	part	of	the	covariance	of	the	error	of		˜–T Em (17)

we	get	the	estimators:

(18)

The	covariance	matrices	of		
�

–Tm	would	be	given	by:

(19)

if the stochastic model leading to Eq. (18) would have been correct; but this is not the case. 

Fig. 2 - Geoid error degree variances 
[cm2] for EGM2008 (dashed line), 
GOCE	 (solid	 line)	 and	 the	merged	
model (dotted line).
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So, the true covariance of  
�

–Tm can only be obtained by covariance propagation. If we denote as	
�̃	Em	+	Rm [recall Eq. (9)] the covariance of the error of  ˜–T Em,	then	one	gets:

(20)

After some elementary manipulations, Eq. (20) can be cast into a more interesting form, 
namely:

(21)

Since the matrices Rm	 are	 not	 definite	 (neither	 positive	 nor	 negative),	 as	 they	 have	 all	 0	
entries in the main diagonal, implying that the sum of their eigenvalues has to be zero too, one 
cannot	a-priori	conclude	that		

�

–Tm	is	better	than	the	simple		–̃Tm derived from Eq. (12).
Remark: in order to come to a clearer statement on the above question, we have been able to 

construct	a	counterexample	where	it	 is	shown	that	if	we	have	two	positive	definite	covariance	
matrices	K,	C	 and	we	combine	 two	“observations”	of	 the	same	vector	–x	by	using	only	C	 and	
the	diagonal	part	of	K, as in Eq. (17), there are cases when the components of the combined 
estimate have a variance larger than those obtained by a simple weighted average, like in Eq. 
(13). The proof can be found in the Appendix.

This	says	that	one	has	to	be	very	careful	(and	maybe	conservative)	when	combining	data	of	
an uncertain stochastic structure.

4. On the “local” combination of global models 

In	 an	 attempt	 to	 improve	 the	 solution	 proposed	 in	 the	 previous	 section,	 the	 authors	 have	
sought	 a	 procedure	 capable	 of	 including	 the	 “local”	 information	 provided	 by	 the	 point-wise	
geoid	error	σN (ϑ,	λ) (see: Section 2).

To	 arrive	 at	 a	 feasible	 computation	 we	 were	 forced	 to	 work	 at	 a	 local	 level,	 what	 we	 did	
for the test area of the Mediterranean Sea. The idea is as follows: let us choose a particular 
functional	of	T (P), that we want to know at best in a given local area. In our case, to fix the 
ideas,	 we	 choose	 the	 geoid	 undulation	 N (ϑ,	λ) as defined in Eq. (2). With the GOCE model 
global	coefficients,	–T

G,	we	can	compute	NG	at	the	nodes	of	a	regular	grid,	namely,	with	obvious	
notation:

	
(22)
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where	Ynm are the spherical harmonic functions. Eq. (22) can be put in vector form as:

–N
G	=	AG	–T

G,	 (23)

and,	knowing	 the	error	covariance	of	–T
G,	 the	 full	 error	covariance	of	–N

G	 can	be	computed	by	
covariance propagation, i.e.:

C GNN	=	C (–N
G,	–N

G)	=	AG C (–T
G,	–T

G)	(AG)T. (24)

The	 idea	now	would	be	 to	do	 the	 same	with	 the	EGM2008	coefficients	 solution,	however	
we	do	not	have	a	correct	information	on	C (–T

E,	–T
E)	=	CE. Furthermore, the error descriptions we 

have are contradictory to one another. In fact if we take �E	(only	diagonal)	as	covariances	of	the	
errors	of	TE,	we	can	compute	the	variances	of	NE	(ϑi,	λj) by propagation (Fig. 3) and realize that 
they	are	quite	different	from	the	local	covariances	σ2

N	(ϑi,	λj)	taken	from	the	EGM2008	website	
(http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008) and shown in Fig. 4.

One	 idea	 then	 could	 be	 to	 try	 to	 keep	 the	 correlation	 structure	 of	 –N
E,	 as	 derived	 from	 the	

variances	of	 the	 individual	 coefficients	–T
E
nm

 ,	 but	 to	 impose	 to	 the	variances	of	NE	(ϑi,	λj)	 to	be	
equal	to	the	local	variances	σ2

N	(ϑi,	λj). In principle this computation is done by the formula:

(25)

that	provides	the	covariance	matrix:

Fig. 3 - Geoid error standard deviation in the Mediterranean area computed from EGM2008 global model coefficients 
variances, till degree 2159.

[cm]
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C ENN	=	C	(–N
E,	–N

E). (26)

Now	let	DE	be	a	diagonal	matrix	such	that:

(DE)2		=	diagonal	C ENN; (27)

then	of	course:

RE	=	(DE)–1	C ENN (DE)–1	 (28)
	

is	 the	 correlation	 matrix	 relative	 to	 the	 covariance	 C ENN. In order to come to a “localized” 
covariance	of	–N

E	one	can	take	a	diagonal	matrix	SE	such	that	the	elements	of	its	diagonal	are	just	
the	standard	deviations	σN	(ϑi,	λj). Therefore the new matrix:

L ENN	=	SE	(DE)–1	C ENN (DE)–1	SE (29)

is the sought “localized” covariance of	–T
E.	

Finally we have to observe that the computation of Eq. (26) for the full EGM2008 model is 
not a simple task; however we have to correct –T

E		by	means	of	–T
G		only	below	degree	nG = 240,  

where	 –T
G  is really providing new information. Therefore we could say that from –T

E	 	 we	 can	
extract only the {2 ≤ n ≤ 240, |m| ≤ n} part, namely the vector that in Section 3 we denoted  –̃T

E	
and	 consequently	 compute	 NE	 and	 its	 covariance	 	C̃ ENN. The diagonal part  –̃D

E	 then	 follows	 at	
once. A little more ambiguous is how to choose the diagonal elements of SE,	taking	into	account	
that	they	have	to	express	the	local	standard	deviations		 	̃σN	(ϑi,	λj),	reduced	to	the	error	of	the	first	
240 degree only. In this respect the only reasonable solution we found has been to scale the local 

Fig. 4 - Geoid error standard deviation in the Mediterranean area taken from the map delivered from the author of the 
EGM2008 model. It refers to full resolution, i.e., degree 2159.
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errors	σN	(ϑi,	λj)	by	a	factor	ρ,	which	is	just	the	ratio	of	the	commission	error	of	EGM2008	up	to	
degree 240 with respect to the commission error of the complete model. This is computed from 
the � Enm variances, associated to each coefficient. In other words we have put:

	 	̃σN	=	ρ σN	 (30)

 (31)(31)

	
in the Mediterranean area. Once the error covariance matrices have been properly settled, the 
combined geoid can be computed by means of standard collocation (Pail et al., 2010).

Note	 that	 the	 Mediterranean	 area	 has	 been	 selected	 because	 this	 was	 one	 of	 the	 aims	 of	
the	 GOCE-Italy	 project,	 but	 also	 because	 in	 this	 area	 there	 is	 a	 data	 set	 of	 mean	 sea	 surface	
velocities derived from a completely independent source of data, namely the drifter data. As we 
know	the	mean	dynamic	topography	(η),	equal	to	the	difference	between	the	mean	sea	surface	
(MSS) and the geoid (N),	 and	 the	 water	 velocities	 under	 a	 geostrophic	 hypothesis	 (VG),	 are	
linked	by	the	relation:

k	×	f VG	=	–g				η	 (32)(32)

where	g	 is	 the	 acceleration	 due	 to	 gravity,	 f	 the	 Coriolis	 parameter,	 k	 the	 vertical	 unit	 vector	
(Maximenko	et al., 2009). Given a MSS model, a discretized form of Eq. (32) can be used to 
test	 an	 N geoid model. The interested reader can find the comparison between the different 
combinations	presented	in	this	work	and	drifter	data	in	the	Mediterranean	area	in	another	paper	
of this volume.

5. Results and conclusions

In	this	section	we	will	present	some	numerical	results	obtained	by	applying	the	combination	
procedures described before. The area of interest extends around the Mediterranean Sea, 
including also surrounding countries and in particular northern Africa where significant 
corrections to the EGM2008 model are expected due to lack of data. The Alpine area is also 
considered since it is of interest for the GOCE-Italy project. To be more precise the study area is 
defined	by	these	limits:	from	23° N to 52° N in latitude and from 14° W to 42° E in longitude.

Fig. 5 shows the geoid obtained by synthesizing the EGM2008 global gravity model up to 
the maximum degree available for the space-wise GOCE model, which is 240. It is clear that 
the	geoid	undulation	is	smoother	than	the	one	obtainable	by	exploiting	the	full	EGM2008	model	
that goes till degree 2159. We have decided to show just the low frequency component of the 
model (till degree 240) because this is where GOCE contributes to improve EGM2008.

The	difference	between	the	geoid	computed	with	GOCE	and	EGM2008	in	the	Mediterranean	
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area is illustrated in Fig. 6. They are of the order of 0.29 m in terms of standard deviation, 
with	 the	highest	 differences	 concentrated	 in	 the	Middle	East	 area,	where	probably	EGM2008	
information is weaker. To evaluate the impact of the GOCE model on EGM2008, the statistics 
related to the different combination procedures are reported in Table 1. The combination based 
on	error	coefficient	variances	is	called	EGM08_GOCE_CV,	the	one	based	on	GOCE	error	block	
covariances is called EGM08_GOCE_BC, while the solution locally adapted to the EGM2008 
point-wise geoid error variances is named EGM08_GOCE_BC_MED.

Table 1 - Statistics of the differences between the GOCE based solutions and the EGM2008 geoid up to degree 240, 
in metres.

 Model Min (m) Max (m) Mean (m) Std (m)

 GOCE-only -1.733 1.661 -0.0007 0.287

 EGM08_GOCE_CV -0.913 0.856 0.0002 0.107

 EGM08_GOCE_BC -0.930 0.888 0.0004 0.114

 EGM08_GOCE_BC_MED -1.541 0.807 -0.0002 0.096

The	 difference	 between	 the	 use	 of	 the	 simple	 coefficient	 variances	 or	 the	 more	 complete	
order-wise block covariances for the GOCE error is small (of the order of 0.074 m in standard 
deviation), as can be also seen in Fig. 7. Comparing the solutions both using block covariances 
from	GOCE,	but	introducing	or	not	the	local	adaptation	to	the	EGM2008	geoid	error	variances,	
see Fig. 8, one can see that the differences are larger where EGM2008 error is expected to be 
higher (see also Fig. 4). This is exactly the purpose of this further step of local adaptation.

Fig. 5 - Geoid model obtained with a synthesis of the EGM2008 global model till degree 240.
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Before concluding some general considerations are worth. First of all it is not possible to a 
priori say which of the different solutions is the best. The knowledge of the error covariance 
structure	of	EGM2008	spherical	harmonic	coefficients	is	in	fact	not	complete	(neither	spectrally	
nor	geographically)	and,	since	an	approximation	has	to	be	set	up,	we	can	never	state	that	a	more	
complicated approach necessarily brings to a better result. Therefore the selection of the best 

Fig. 6 - Difference between the geoid obtained synthetizing the GOCE and the EGM2008 model till degree 240.

Fig. 7 - Difference between the geoid obtained synthesizing the merged model with block covariances (EGM08_
GOCE_BC) and the one obtained considering coefficient variances (EGM08_GOCE_CV).



298

Boll. Geof. Teor. Appl., 54, 285-302 Gilardoni et al.

merged model has to be based on an independent data set and can vary from area to area. In 
other words, a solution can be better than another over the Mediterranean Sea, but this does not 
imply that it is the best one in any region of the world. In particular, according to the available 
drifter data, it comes out that for the Mediterranean Sea the best solution is EGM08_GOCE_BC 
(see	Menna	et al., 2012).

Note	 that,	 if	 one	 starts	 the	 combination	 from	 the	 original	 EGM2008	 observations	 and	 not	
from	the	spherical	harmonic	coefficients,	then	the	assumption	of	knowing	the	error	covariance	
of	 these	observations	 is	more	 reasonable	and	 therefore	 the	quality	of	 the	 results	can	be	better	
controlled. As a matter of fact, the closer we are to the original observations the better is the 
description of their covariance structure.

Acknowledgements. The authors would like to thank A. Gatti for the development of the software used for 
synthesizing of the geoid undulations from a given global gravity model up to a very high maximum degree. 
This software, that is able to compute many functionals of the gravity field in a very efficient way, is freely 
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Fig. 8 - Difference between the geoid obtained synthesizing the locally adapted merged model (EGM08_GOCE_BC_
MED) and the one obtained using block covariances (EGM08_GOCE_BC).
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Appendix

We want to prove the statement of the Remark of Section 3.

So we assume we have a 2D vector                  , and two observations:

(A1)

such	that:

(A2)

(A3)

We note that:

(A4)

so	that	the	weighted	average	estimator	of	x1	(which	does	not	imply	any	knowledge	of	ρ)	is:

(A5)

Its	variance	is	given	by:

(A6)

We also note that σ2	( 	̃x1) < 1 always, and if we let λ	➝ ∞, we find σ2	( 	̃x1)	➝ 1 as it should be.
Now	we	 try	 to	estimate	�	–x	 by	 ignoring	 that	Cεε	=	 I	+	R,	 knowing	only	 the	diagonal	of	Cεε,	

namely	I. In this case the combined solution reads:

[  ]
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(A7)

we	observe	that	indeed	�	–x	is	an	unbiased	estimator	of	–x	as	far	as	E {–ε}	=	E {–ν} = 0. Now we use 
Eq. (22) to find the true covariance of �	–x,	namely:

(A8)

A direct computation shows that for the first component of �	–x,	one	has:

(A9)

Now	we	see	that:

 . (A10)

It	 follows	 that	 there	are	 large	positive	values	of	λ	and	negative	values	of	ρ values to –1 such 
that:

(A11)

Our statement is proven.
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