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ABSTRACT	 This	study	aims	to	discuss	and	quantify	the	response	and	the	decaying	oscillations	of	
a	seismograph.	The	assumption	is	that	instrument	recording	of	the	signal	is	governed	
by	a	second	order	differential	equation	including	a	memory	formalism.	We	see	that,	in	
general,	the	response	after	an	impulse	is	formed	by	a	decaying	step	variation	followed	
by	oscillations	with	decreasing	amplitude.	 In	 fact,	 the	 singularities	of	 the	 solutions	
of	the	equation	in	the	Laplace	transform	domain	imply	the	periodic	part	of	the	Green	
function	and	 the	decay.	We	show	how	 the	memory	stabilizes	 the	 system.	 It	 is	 seen	
theoretically	 that	 the	 classic	 mathematical	 model	 of	 the	 seismometer	 is	 not	 very	
suitable	to	model	the	modern	version	of	the	seismometer	and	that	the	memory	model	
is	possibly	more	appropriate.
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1. Introduction

The	 knowledge	 of earthquakes and of the interior of the �arth is mostly based on theof	 earthquakes	 and of the interior of the �arth is mostly based on theand	 of	 the	 interior	 of	 the �arth is mostly based on thethe	 �arth is mostly based on the	 is	 mostly	 based	 on	 the	
instruments	 called	 seismometers	 which	 record	 the	 ground	 motions	 due	 to	 earthquakes	 or	 the	
explosions	made	 to	generate	 the	elastic	waves	which	explore	 the	 interior	of	 the	�arth.	For	an	
early	history	of	these	instruments	see	e.g.,	Giugliano	(1983).

We	 have	 two	 basically	 different	 instruments	 to	 record	 the	 ground	 motions.	The	 first	 is	
based	 on	 the	 principle	 of	 inertia,	 such	 as	 the	 pendulums	 of	 different	 types,	 called	 pendulum	
seismometers,	 the	 others	 are	 the	 instruments	 monitoring	 the	 variations	 of	 length	 of	 a	 very	
limited	portion	of	the	surface	of	the �arth called strain�meters. In both cases, instruments coverthe	�arth called strain�meters. In both cases, instruments cover	called	strain�meters.	In	both	cases,	instruments	cover	
a	very	large	frequency	band	ranging	from	those	of	the	free	modes	of	oscillation	of	the �arth tothe	�arth to	to	
frequencies	of	100	Hz;	in	this	note	we	are	concerned	with	the	pendulum	seismometers.

The	concept	on	which	those	instruments	are	based	is	generally	that	of	the	harmonic	oscillator	
appropriately	damped	and,	since	the	instruments	are	generally	located	on	the	rotating	�arth, the�arth, the,	the	
reference	frame	is	not	inertial.

In	 recent	 decades,	 we	 have	 seen	 a	 marvelous	 evolution	 of	 those	 instruments	 which	 have	
reached	a	great	sensitivity	in	monitoring	the	motions	of	the	�arth surface at locations carefully�arth surface at locations carefully	surface	at	locations	carefully	
selected	in	order	to	avoid	civilization	noise	or	that	caused	by	other	natural	phenomena	such	as	
sea	waves	or	winds.

In	 most	 books	 the	 damped	 harmonic	 oscillator	 is	 mathematically	 modeled	 with	 a	
simple	 second	 order	 differential	 equation	 with	 the	 concrete	 advantage	 that	 the	 quantitative	
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characteristics	of	the	instrument	are	described	by	the	values	of	very	few	parameters	which	allow	
a	direct,	and	without	intermediary,	quantitative	comparison	with	the	properties	of	other	similar	
instruments.

Since	 the	 time	of	 the	 first	 seismograph,	many	 important	 changes	have	been	applied	 to	 the	
instrument;	 the	 changes	 are	 of	 mechanic	 and/or	 electronic	 type	 in	 order	 to	 obtain	 a	 response	
curve	 as	 flat	 as	 possible.	These	 changes,	 especially	 those	 of	 general	 hysteretic	 type,	 are	 not	
accommodated	 in	 the	 classic	 linear	 second	 order	 differential	 equation	 assumed	 to	 model	 the	
seismographs.

The	 present	 note	 is	 a	 simple	 contribution	 to	 the	 previous	 theoretical	 work	 consisting	 in	
the	 introduction	 of	 the	 mathematical	 memory	 operator,	 represented	 by	 the	 fractional	 order	
derivative,	 in	 the	 classic	 oscillator	 equation	 in	 order	 to	 model	 realistically	 different	 types	
of	 instruments.	The	 equation	 used	 here	 to	 model	 the	 seismometer	 may	 be	 rightly	 defined	 as	
phenomenological.	The	same	equation	has	been	successfully	used	also	 to	model	 the	cycles	of	
markets	and	population	(Caputo,	2013).

The	reputation	of	this	type	of	equations,	as	stated	in	recent	motivations	for	assigning	Nobel	
prizes	for	physics,	has	been	rehabilitated	for	their	important	contribution	given	in	various	forms	
to	the	rapid	developments	of	the	studies	on	the	superconductive	materials.

The	 applications	 of	 mathematical	 memory	 formalism	 is	 spread	 in	 many	 disciplines	 which	
directly	concern	our	society	and,	to	my	knowledge,	I	cautiously	say	that,	in	most	cases,	in	recent	
studies	the	tool	of	the	mathematical	memory	formalism	called	fractional	derivative	was	used.

There	is	some	similarity	between	memory	formalisms	and	hysteresis.	However,	the	latter	is	a	
typical	phenomenon	of	materials	with	different	origin	in	different	materials	and	also	with	effects	
on	 the	material	depending	on	 the	cause	generating	 it.	The	word	hysteresis	 is	 also	accepted	 in	
fields which would be difficult to accept as materials such as economy, finance, social studies, 
psychology.

The	 mathematical	 memory	 formalism	 instead	 is	 an	 abstract	 tool	 which	 may	 be	 used	 to	
model	many	different	phenomena	in	which	the	status	of	the	system	depends	on	its	past.	In	the	
present note we replace the first order derivative of the equation of the classic seismometer with 
the	 mathematical	 memory	 operator	 represented	 by	 the	 fractional	 order	 derivative,	 in	 order	 to	
realistically	represent	the	response	curve	of	more	complex	instruments.

A	study	of	the	memory�damped	harmonic	oscillator	may	be	done	also	substituting	the	classic	
first	order	derivative	damping	term	with	a	fractional	derivative	of	distributed	order	introduced	
by	 Caputo	 (1967).	 The	 simpler	 derivative	 of	 fractional	 order	 used	 here	 instead	 of	 that	 of	
distributed	order,	is	less	comprehensive	but	simpler	and	may	allow	a	more	direct	a	connection	
with	the	parameters	used	to	describe	the	mechanical	properties	of	the	instrument.	The	damping	
of	 a	 mechanical	 system	 has	 been	 discussed	 also	 by	 Gaul	 et al.	 (1989)	 who	 used	 Fourier	
Transform	(FT)	to	find	the	impulse	response.

2. The memory equation

Let	us	consider the	classic	second	order	differential	equation	of	the	damped	oscillator:

y’’(t) + dy’(t) + gy(t) = f(t) y(0) = 0,   y’(0) = 0	 (1)
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where	f(t) is	a	forcing	function,	the	term	dy’(t) represents	a	damping	or	the	damping	is	proportional	
to the first order derivative, g	approximates	the	square	of	the	frequency	of	free	oscillation	of	the	
instrument	and	h	=	d / 2√

–
g	is	the	damping	constant.

If	one	wants	to	generalize	�q.	(1)	in	order	to	represent	the	response	curve	and	the	damping	of	
more complex instrument, a possibility is to substitute the first order derivative of Eq. (1) with the 
memory	formalism	of	the	derivative	of	real	order.

In	order	to	introduce	the	memory,	the	classic	model	�q.	(1) is replaced with:(1)	is	replaced	with:

y’’(t) �� ���� �����(v)y(t) �� ���� ����y(t) + r+ r(t) == 0 (2)
	

where	v	=	m/n (0	<	m < n),	r(t) represents	the	perturbation	and	�(v)	is	the	operator:

�(v) f (t) = {1/[Γ(1 – ν)]}	
t
�
0	
[df	(τ)	/	dτ]	dτ	/	(t	–	τ)	(v)	 (3)

representing	 the	 damping.	 The	 operator	 �(v)	 (Caputo,	 1967)	 is	 called,	 perhaps	 improperly,	
fractional	derivative	of	order	v ∈	 [0,1];	 it	has	been	 thoroughly	studied	by	many	authors	 (e.g.,	
Kiryakova,	 1994;	 Podlubny,	 1999;	 Kilbas and �arzan, 2006; KilbasKilbas	 and	 �arzan,	 2006; Kilbas2006;	 Kilbas	 et al.,	 2006;	 Diethelm,	
2010;	 �ainardi,	 2011).	 Jiao	 et al.	 (2012)	 made	 extensive	 and	 interesting	 applications	 of	 the	
fractional	derivative	of	distributed	order	introduced	by	Caputo	(1967).

In	the	classic	case,	represented	by	�q.	(1),	in	order	to	obtain	decaying	exponential	solutions	
one	selects	the	parameters	�	and �	with	the	conditions	� < 0 ,	�2	<	4�.	In	our	case,	the	classic	
equation	 is	 generalized	 also	 in	 the	 sense	 that	 we	 consider	 �	 and	 �	 generic	 parameters	 only	
indirectly	 related	 to	 properties	 of	 the	 instrument.	The	 relation	 to	 the	 instrumental	 properties,	
such	as	the	proper	period,	are	actually	found	in	the	poles	of	the	solutions	of	the	equation	which,	
in	 turn,	depends	on	the	parameters	�, �,	and	v.	 In	other	words,	�q.	(2)	 is	a	phenomenological	
equation	and	the	instrument	represented	should	be	more	appropriately	called	pseudo�oscillator.

The	fractional	derivative	is	a	frequently	used	tool	 in	applied	science	and	has	been	applied	in	
many	field	such	as	theoretical	physics	(Naber,	2004),	mathematics	(Kilbas	and	�arzan,	2006)	and	
biology	(Caputo	and	Cametti,	2004);	for	a	tentative	list	of	these	fields	see	e.g.,	Caputo	(2013).

3. The stabilizing effect of the memory

In	order	to	solve	�q.	(3)	we	take	its	Laplace	Transform	(LT)	with	p	LT	variable	and	assume	
that:

y(0) = 0,			y’(0) = y0

p2Y – y0 �� ����pvY �� �Y �����Y ����Y ����[r(t)] = 0	 (4)

Y = {- ��[r(t)] + y0} / (p2 �� ����pv �� ��).	

The	 case	 when	 the	 perturbation	 is	 represented	 by	 a	 power	 law	 is	 of	 interest	 to	 study	 the	
stabilizing	effect	of	the	memory.	We	then	assume	that	r(t) = g t= g tw and find:



��[r(t)]	=	R(p)	=	g[Γ(1 + w)]p�w�1.	 (5)

Substituting in Eq. (4) we find:

Y	=	{�g[Γ(1 + w)]p�w�1	+ y0}	/	(p2 + � �v + �).	 (6)

The	asymptotic	value	of	y(t) is	then	readily	found	with	the	use	of	the	�xtreme	Value	Theorem	
(�VT)	(e.g.,	�cCollum	and	Brown,	1965):

lim	pY(p)	=	lim	[–	gΓ(1 + w)	p–w)]	/	� = ∞, when w	>	0
 p→0	 	 	 	 	 	 			p→0		

lim	pY(p)	=	lim	[–	gΓ(1 + w)	p–w)]	/	�	=	–	g /	�,	when	w	=	0	 (7)
 p→0	 	 	 	 	 	 			p→0		

lim	pY(p)	=	lim	[–	gΓ(1 + w)	p–w)]	/	�	=	0,	when	w	<	0.
 p→0	 	 	 	 	 	 			p→0		

Which	imply	that	the	memory	has	a	stabilizing	effect	if	the	exponent	of	the	power	law	is	nil,	
implying	a	constant	perturbation,	or	when	w < 0,	implying	a	perturbation	monotonically	decreasing	
to	zero.	In	both	cases	the	effect	of	the	memory	will	eventually	absorb	the	perturbation.	In	the	case	
when	the	perturbation	is	increasing	(w > 0)	the	system	will	lead	to	an	extreme	condition.

4. The effect of the perturbation

The	LT	of	the	effect	of	the	perturbation	r(t) assuming	y(0) = y’= y’(0) == 0	is:

Yr(p) = [- ��r(t)]] / (p2 �� ����pv �� ��).	 (8)

In order to find the effect Yr(t)	of	the	perturbation	we	begin	setting:

G(t) =��-1 [1 / (p2 �� ��v �� �)]	 (9)

and	write:

Yr(t) = -[r(t)]*G(t).	 (10)

The	LT	of	�q.	(9)	is	obtained	by	means	of	integration	on	the	Bromwich�Hankel	path	of	the	
complex plane finding:

G(t)	=	[��	(sin	π	v)	/	π]

∞
�

				0	
[exp(–ut)]uv du	/	[(u2 + �)2 + 2�uv (u2 + �)	cos	(πν) + �2 u2v] + (11)

+ exp(at)	/	(2a + v� av�1) + exp(bt)	/	(2b + v� bv�1))
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where	a	and	b	are	the	poles	of	�q.	(9)	and	the	last	line	of	�q.	(11)	is	the	sum	of	the	residues	of	�q.	
(9)	computed	with	the	classic	method.	In	other	words,	G(s)	represents	the	response	to	an	impulse.

We	note	that,	the	poles	of	�q.	(9)	are	complex	conjugate,	the	residues	are	also	complex	conjugate	
and	their	sum	is	real	formed	by	the	product	of	a	sinusoidal	wave	with	an	exponential	which	has	a	
negative	exponent	since �, �	and	v	are	generally	selected	to	that	purpose;	moreover,	the	integral	
appearing	in	�q.	(11)	is	a	monotonically	decaying	function	of	t which	we	call	transient.	The	�q.	
(11)	is	then	formed	by	the	sum	of	two	decaying	terms	as	in	the	classic	case.

With	 the	assumption	 that	{- ��[r(t)]} has no poles which, unless specifically expressed, is 
verified in all the cases examined here, taking into account Eq. (10), we finally obtain:

Yr(t) =	[�(sin	π ν)	/	π]	
∞
�

				0	
[–	r(t)]*[exp(–ut)]	uν du	/

[(u2 + �)2 + 2�uν (u2 + �)	cos(π ν) + �2u2ν] + (12)

–	[r(t)]*[exp(at)	/	(2a + ν� aν�1) + exp(bt)	/	(2b + ν� bν�1))].

We	note	in	the	Fig.	1	the	large	(by	a	factor	less	that	0.01)	reduction	of	the	response	output	at	1	
s.	Also	is	clear	that	the	transient	is	smaller	for	smaller	values	of	v.

5. The effect of perturbations acting for a time bounded interval

In	the	applications,	is	of	interest	the	case	of	a	perturbation	bounded	in	amplitude	and	duration	
to	see	that	the	memory	will	stabilize	the	system.

Let	the	perturbation	be:

[1-H(t-d)] r(t) (13)

where	r(t) is bounded and defined in the interval [0, d]	and	H(t-d) is	the	unit	step	function	and	
t = d.	The	LT	of	the	�q.	(13)	is:

�� [1-H(t-d)] r(t)	= 

where	Rd(p) is	bounded. Substituting in Eq. (10) we find:

Yr(p) = - Rd(p)	/ (p2 �� ��v �� �)

and,	with	the	�VT,	we	obtain:

lim	[pYr(p)]	=	lim	pRp	(p)	/	(p2 + � �ν + �)	=	r (∞) lim 1 / (p2 + � �ν + �)	=	0
 p→0	 	 	 	 	 	 	 								p→0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 			p→0 

(14)

which	 shows	 that	 the	 effect	 of	 a	 perturbation	 bounded	 in	 amplitude	 and	 duration	 will	 be	
asymptotically	 nil.	 We	 note	 that	 this	 property	 is	 independent	 from	 the	 order	 of	 fractional	
differentiation	including	the	case	of	the	classic	model.
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6. The response to persistent perturbations

In	the	applications,	is	of	interest	the	response	of	the	system	to	a	step	function.	In	this	case	of	
a	constant	perturbation	[w =	0	in	�q.	(5)]	of	amplitude	h,	the	�q.	(8)	has	an	additional	pole	in	the	
origin	p = 0 and we find:

Yh = h / p(p2 �� ��v �� �)	 (15)

Integrating	�q.	(15)	around	the	Bromwich�Hankel	path	of	the	complex	plane,	excluding	the	
portion	around	the	origin	p =	0.	Taking	into	account	that	there	is	a	pole	in p = 0 we find:

[h�(sinπv)	/	π]	�
∞

0

	[exp(�ut)]uv�1du	/

[(u2 �� �)2 + 2�uv (u2 �� �)cos(πv) + �2	u2v] + h	/	� ��  (16)
+ h exp(at)	/	a(2a + �vav�1) + h exp(bt)	/	b(2b + �vbv�1)

where:

h /	� + h exp(at)	/	a(2a + �vav�1) + h exp(bt)	/	b(2b + �vbv�1)

is	the	sum	of	the	residues	of	the	poles	in	p	=	0,	p = a and p = b	found	with	the	classic	method.
The	 poles	 a	 and	 b	 are	 complex	 conjugate,	 e.ge.g., a = m + if, b = m - if a = m + if, b = m - if,	 obtained	 solving	

the	equation	p2 �� ��v �� � = 0.	For	stability	we	accept	only	values	which	generate	converging	
solutions;	then	m	must	be	negative.

Fig.	1	 �	The	 transient	of	 the	memory	seismograph	with	�	=	2π	and	�	=	 (2π)2	 for	orders	of	differentiation:	v	=	0.8	
(triangles),	v	=	0.5	(squares),	v	=	0.2	(diamonds).	In	the	abscissa	is	the	log	of	time	(seconds).
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It	is	also	seen	that,	since	the	contributions	of	the	residues	resulting	from	the	poles	in	a	and b	is	
asymptotically	nil,	follows	form	�q.	(16)	that	the	initial	position	of	the	sensor	is	asymptotically	
displaced	by	�(∞) = h/�.

The	integral	in	�q.	(16),	generally	decreasing	more	rapidly	than	the	residues,	represents	what	
we	call	here	the	transient part	of	the	response	of	the	instrument.

Is	of	interest	in	applications	the	response	to	a	periodic	perturbation r(t) = sin wt= sin wt;	it	is	obtained	
from	�q.	(12)	by	direct	substitution:

Yr(t)	=	�	[�(sinπv)	/	π]	�
∞

0

		{(sin	wt)*[exp(�ut)]}uv du	/

[(u2 �� �)2 + 2�uv (u2 �� �)	cos	πv + �2	u2v] +  (17)
- sin	wt*[exp(at)	/	(2a + v� av�1)) + exp(bt)	/	(2b + v�bv�1))]

or	more	explicitly:

Yr(t)	=	�	[�(sinπv)	/	π]	�
∞

0

		�	{[(�u sin	wt �	wcos wt) + w exp(�ut)]	/	(w2 + u2)}	uv du	/

[(u2 �� �)2 + 2�uv (u2 �� �)	cos(πv) + �2	u2v] +  (18)
- [(a sin	wt	�	w cos	wt) + w	exp(at)]	/	(w2 + a2)	(2a + v�av�1)) +
�[(b	sin	wt	�	w	cos	wt) + f	exp(bt)]	/	(w2 + b2)	(2b + v�bv�1)).

It	 is	readily	seen	that	 the	response	consists	of	a	 transient	 resulting	from	the	integral	plus	a	
wave	decaying	at	an	exponential	rate	given	by	the	real	part	m of	the	poles	a = m + if, b = m - if	of	
�q.	(9)	and	also	the	persisting	wave,	with	frequency	w, modified in amplitude and phase.

Fig.	2	�	The	response	curves	of	the	memory	seismograph	with	�	=	2π	and	�	=	(2π)2	for	orders	of	differentiation:	v	=	0.8	
(triangles),	v	=	0.5	(squares),	v	=	0.2	(diamonds).	In	the	abscissa	is	the	frequency	in	Hz.



There	 are	 similarities	 with	 the	 classic	 model.	 Also	 in	 the classic equation modelling thethe	 classic	 equation	 modelling	 the	
seismometer	the	damping	affects	the	free	modes	of	the	instrument	and	causes	a	constant	change	
in	the	phase	and	the	amplitude	of	the	incoming	sinusoidal	wave.	A	difference	is	the	presence	of	
the	transient	represented	by	the	rapidly	decaying	integral	in	the	memory	model.

The more important difference, however, is that the dynamic of the classic model is defined 
by two parameters: one representing the modes of the instrument, the other defining the damping. 
The	dynamic	of	the	memory	model,	particularly	the	damping,	is	concurrently	represented	by	the	
three	parameters	�, �	and	v defining the poles and the residues, which in turn allow modelling a 
broad	variety	of	complex	instruments	implying	their	dynamics.

7. The quality factor 1/Q

The mathematical	expression	of	1/Q	is	readily	obtained	from	the	real	part	m	of	the	poles	of	
�q.	(4).

To	this	purpose,	as	we	noted	already,	the	sinusoidal	term	of	the	response	is	given	by	the	sum	of	
the	residues	of	the	complex	conjugate	poles	of	�q.	(9)	whose	amplitude	is	governed	by	a	negative	
exponential	as	in	the	classic	model.	If	m	<	0	is	the	real	part	of	the	poles	the	1/Q	is:

1	/	Q	=	[1	�	exp	(4mπ / f)]	/	2π (19)

where	f is frequency	and m <	0.	If	�	=	0	we	obtain	m	=	0	and	we	have	the	case	of	the	harmonic	
oscillator	without	damping,	if	v	=	1	we	have	the	case	of	the	classic	damped	oscillator	with	m	=	
�	�/2.	With	the	values	of	�	and	�	used	for	the	Figs.	1,	2	and	3	it	is	readily	seen	that	the	values	of	
1/Q	are	decreasing	with	increasing	v.
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Fig.	3	�	The	response	curves	of	the	memory	seismograph	with	�	=	2π	and	�	=	(2π)2	for	orders	of	differentiation:	v	=	0.8	
(diamonds),	v	=	0.9	(squares),	v	=	1	(triangles).	In	the	abscissa	is	the	frequency	in	Hz.
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8. The response curve of the memory model

The	response	curve	of	the	memory	model	is	obtained	from	the	LT	of	�q.	(9)	with	the	substitution	
� = iω,	it	is:

1	/	[(�ω2 + �ωv	cos	π v + �)2 + (�ωv	sin	π v)2]0.5.	 (20)

The	response	of	the	memory	model	represented	in	Figs.	2	and	3	for	different	values	of	order	of	
fractional	differentiation	shows	that	the	peaks	of	the	curves	have	a	larger	value	for	v =	1	and	that	
the	frequency	of	the	maxima	of	the	curves	decreases	with	decreasing	order	of	differentiation.	In	
Fig.	3	it	appears	also	that	the	curve	with	broader	range	of	almost	constant	response	would	be	that	
with	order	of	differentiation	v	=	0.5	whose	peak	is	10	time	smaller	than	that	for	v =	1.

Fig.	3	shows	the	confrontation	of	the	response	curves	for	relatively	larger	order	of	fractional	
differentiation	including	that	of	order	v =	1	(the	classic	model	of	the	seismograph)	and	those	with	
order	near	1:	v =	0.8	(diamonds),	v	=	0.9	(squares),	v	=	1	(triangles).	One	may	note	that	the	curve	
of	 the	classic	model	of	 the	seismograph	has	a	much	larger	peak	with	steeper	variation	around	
its	maximum	while	the	curves	with	smaller	order	of	fractional	differentiation	have	a	smoother	
variation	and,	most	important,	a	smaller	peak	amplitude.

9. Discussion and conclusions

It is generally assumed that the introduction of the first order derivative in the equation of a 
harmonic	oscillator	be	 an	appropriate	 form	 to	 represent	 the	damping	properties	of	oscillators.	
However,	one	must	consider	that	in	many	instruments,	such	as	the	seismometers,	the	damping	
is	caused	by	a	combination	of	mechanical	and	electric	components.	The	damping	is	then	due	to	
electrical	and	mechanical	causes.

Cole	 and	 Cole	 (1940)	 have	 shown	 experimentally	 that	 the	 complex	 dielectric	 constant	 is	
expressed	by	the	formula:

d	=	{[εs + ε∞	(iωτ)v] / [1 + (iωτ)v]}	e (21)

where	e	and	d are the LT of the applied filed and of the displacement respectively, τ is	a	relaxation	
time,	ω	frequency, εs	and	ε∞ are the static and infinite frequency dielectric constants and v	is	a	
real	number.	Using	the	LT	theorem	of	the	fractional	derivatives	with	0	<	v <	1	(e.g,	Caputo,	1967;	
Podlubny,	1999):

���(v) f (t)	=	sv F	(s)	�	sv�1 f (0)	 (22)

where	 s	 is	 the	LT	variable,	 is	 readily	 seen	 that	 the	 time	domain	 form	of	 the	 relation	between	
applied the electric field and the displacement is expressed by means of derivatives of fractional 
order	v.

Recent	studies	of	the	anelastic	materials	have	shown	that	(Caputo,	1967;	Bagley	and	Torvik,	
1985)	a	more	appropriate	mean	to	represent	the	properties	of	anelastic	materials	is	to	introduce	



the	derivative	of	fractional	order	in	the	stress	strain	relations.
Since	 the	 damping	 of	 modern	 seismometers	 is	 based	 on	 anelastic	 and	 dielectric	 material,	

it	 seems	reasonable	 to	 represent	 their	damping	properties	by	means	of	 fractional	derivative	of	
appropriate	order	as	is	done	in	�q.	(2).	The	response	curve	of	the	seismograph	is	then	governed	
by	2	parameters:	the	order	of	the	fractional	derivative	and	the	factor	in	front	of	it.

It	is	seen	in	this	note	that,	in	the	case	of	the	model	with	the	fractional	derivative,	the	response	
to	an	impulse	is	formed	by	a	rapidly	decreasing	transient	and	an	exponentially	decaying	sinusoid.	
The	type	of	transient	represents	the	most	apparent	difference	with	the	classic	model.	However,	
the most significant difference is in the response curve which may be designed to have a smooth 
variation	around	its	peak.	Both	models	have	the	same	type	of	response	to	a	periodic	signal	which	
in	both	cases	is	made	of	a	non�decaying	term	and	an	exponentially	decaying	periodic	output	with	
modified phases and amplitudes.

The	quality	factor	of	the	response	curve	of	the	memory	model	seismograph	considered	here	
depends	on	more	than	one	parameter	and,	in	some	cases,	could	be	close	to	frequency	independence,	
for	instance	when	the	order	of	fractional	differentiation	is	near	0.5,	which	of	interest	in	the	frequent	
case	of	broad	band	instruments.
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Appendix A. The LT-1 G(p)

In order to find the LT�1	G(p) defined by Eq. (4) we set:

� = rex�(ìφ)	 (A1)

and integrate on the Bromwich-Hankel path in the complex plane finding:finding:

[1/(2π i)]	�
∞

0

		[exp(–ut)]	du	{1/[u2 + � uν exp	(–iπ ν) + �]	–	1/[u2 + � uν exp	(iπ ν) + �]}	=

=	[�(sin	π ν)	/	π]	�
∞

0

		[exp	(–ut)]	uν du /

[u4	+ � u2+ν  exp	(–iπ ν) + u2	� + � u2+ν  exp	(iπ ν) + �2 u2ν + ��uν exp	(iπ ν) +

+ �u2 + ��uν exp	(–iπ ν) + �2]

and finally:

G(t)	=	[�� (sin	π ν)	/	π]	�
∞

0

		[exp	(–ut)]	uν du /	[(u2	+ �)2	+ 
(A2)

+ 2�uν  (u2	+ �)	cos	(π ν) + �2	u2ν].

Appendix B. The LT-1 Yr(p)

In order to find the LT�1	of	Yr(p) defined by Eq. (1�), that is, when the input is a step function,�q. (15), that is, when the input is a step function,	(15),	that	is,	when	the	input	is	a	step	function,	
we	set:

� = rex�(ìφ)	 (B1)

and,	as	it	was	done	in	Appendix	A,	we	integrate	on	the	Bromwich�Hankel	path	in	the	complex	
plane	taking	into	account	that	there	is	a	pole	in p	=	0,	which	implies	that	the	path	must	go	around	
the origin. We find:find:

[1	/	(2π i)]	�
∞

0

		[exp	(–ut)]	(du /	u)	{1	/	[u2	+ �uν exp	(–iπ ν) + �] +
(B2)

–	1	/	[u2	+ �uν exp	(iπ ν) + �]} + h	/	�

or:

[h� (sin	π ν)	/	π]	�
∞

0

		[exp	(–ut)]uν–1 du /
(B3)

[(u2	+ �)2 + 2�uν  (u2	+ �)	cos	(π ν) + �2	u2ν] + h	/	�

where	h	/	�	is	the	contribution	of	the	integration	around p	=	0.
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