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ABSTRACT We propose a technique to improve the analysis of volcanic seismic data and highlight
possible dynamical or precursory regimes, by using an efficient class of artificial
neural network, the Self-Organizing Maps (SOMs). SOMs allow an automatic pattern
recognition, as independent as possible from any a priori knowledge. In the training
phase, volcanic tremor spectra are randomly presented to the network in a competitive
iterative process. Spectra are then projected, ordered by time, onto the map. Every
spectrum will take up a node on the map and their time evolution on the map can
highlight the existence of different regimes and the transitions between them. We show
a practical application on data recorded at Raoul Island during the period around the
March 2006 phreatic eruption which reveals both a diurnal anthropogenic signal and
the post-eruption system excitation.

Key words: Volcanic eruptions precursors, dynamical analysis, Self-Organizing Maps, spectral analysis,
2006 Raoul eruption.

1. Introduction

Since volcanoes can devastate and modify the scenery of wide areas, an eruption is likely to
have a significant impact on population and anthropic activities. Volcanoes can remain in a
quiescent state for a long period and the volcanic unrest is often prolonged over a period of
months to years making the identification of precursory patterns of the uttermost importance.

The core of the procedure is an efficient post-processing technique that uses a particular kind
of artificial neural network called Self-Organizing Maps [SOMs: see Kohonen (1982)]. A SOM
is composed of a single layer of neurons (arranged in the nodes of the grid). Using a competitive
learning algorithm, the data are mapped onto the 2-dimensional grid, trying to preserve
topological relations: patterns close in the n-dimensional input space should be mapped to nodes
close on the map output space and the results can be represented as 2-dimensional feature maps.
The SOM capability in data clustering allows the analysis of multidimensional, non-linear and
highly noisy geophysical data (Klose, 2006). SOM has been employed to improve the H/V
spectral ratio method [or HVSR technique or Nakamura’s method (Nakamura, 1989, 2000)] to
evaluate, in a cheap and relatively easy way, the fundamental frequency of a given site from its
frequency spectra (Carniel et al., 2009).

The basic idea is that if the volcanic system condition is related to some observed parametres
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Fig. 1 - Location map of Raoul Island, showing location of seismic station RAO and major volcanic features.

(e.g., the frequency content of the acquired seismic signal) and if the SOM process has trained a
well organized map (e.g., every possible cluster onto the map has at least one distinctive feature
with respect to the other clusters and clusters with similar features are topologically close on the
map), the projection of the data (e.g., frequency spectra) onto the map, ordered by time, could
detect possible modifications of the volcanic system condition.

Raoul Island (Fig. 1) provides a useful case study of this approach because volcanic activity
was monitored by a single seismic sensor and activity at the volcano includes a range of volcanic
activity including large magmatic eruptions (Healy et al, 1965; Lloyd and Nathan, 1981;
Worthington et al., 1999; Smith et al., 2010), and small phreatic events (Christenson ef al., 2007).
In addition, a small semi-permanent population of New Zealand Department of Conservation
(DoC) staff is present. Hence, improvements in near-real time event discrimination may have
positive benefits to the local population. On March 17, 2006 (08:21 NZST) [March 16, 2006
(20.21 UT)], a small phreatic eruption occurred. The event was preceded by a swarm of small
earthquakes located 10-20 km from the seismic sensor (Christenson ef al., 2007) on March 12,
decaying to background seismicity by March 16 NZST. The eruption seismic signal (Fig. 2) was
composed of several pulses and had a duration of 8 minutes (Christenson et al., 2007). The
spectrogram of the day is shown in Fig. 3. On March 16 (20.21 UT), the phreatic eruption was
recorded on the local seismograph. Unfortunately, the eruption took the life of DoC ranger Mark
Kearney, who was in the volcanic crater at the time of the eruption. The goal of this paper is to
examine retrospectively the activity of this event and determine if improvements in seismic data
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Fig. 2 - Original Helicorder recording acquired at seismic station RAO on Raoul Island, showing the pulsating eruption
seismic signal on March 16, 2006 UT. Each line represents 6 minutes of data. The earthquake seen at the very end of
the Helicorder recording is a tectonic event.
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Fig. 3 - Spectrogram of
the  seismic  data
recorded at seismic
station RAO on Raoul
Island on March 16,
2006 UT.

processing and interpretation can be made. In this paper, we propose a technique that focuses on
the volcanic tremor and background noise analysis without any a priori knowledge of the system.
However, the methodology is easily extendable to other kinds of datasets.

2. Materials and methods

A SOM is an artificial neural network that carries out unsupervised competitive learning.
Artificial neurons are arranged on a low-dimensional grid and each neuron is described by a
n-dimensional vector w; (called code vector), where » is the dimensionality of the input data
space. Each neuron is connected to the neighbouring neurons, determining usually a rectangular
or hexagonal organization of the map. Each neuron of the network is completely connected to all
the input space data and the network represents a feed-forward structure with only one
computational layer.

When an input vector (e.g., a frequency spectrum) is presented to the network, it causes a
localized region or “bubble” of activity. Position and nature of this region usually changes with
the input vector and during the learning process. All the neurons of the network should be
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exposed to a sufficient number of input vectors to ensure that the self-organization process is
suitable.

There are four essential processes involved in the formation of the SOM, listed below.

1. Initialization of code vectors. Since topology and dimensions of the map have been fixed,
it is necessary to initialize the values of the neurons. In the application described in this paper a
random initialization, choosing the code vectors among the available spectra, has been used.

2. Competition process. For each input vector, the neurons in the map compute their respective
value of a discriminant function. The single neuron with the largest value of the discriminant
function is declared the winner of the competition (also called best matching unit, BMU). Let n
denote the dimension of the input space and the generic input vector be denoted by x; = [x; ;, x;5,

, X;,,]. Let the code vector of neuron j be denoted by w; = [w; |, w;,, ..., w;,]" with /=1, 2, ... [,
where / is the total number of neurons in the map. To find the best match of the input vector x;
with the code vectors w, a criterion is used based on maximizing the dot product w;x;,
mathematically equivalent to minimizing the Euclidean distance between the vectors:

m=1

”Xi_w.iuz\/i[xi,m _Wj,m]z' (1)

If we call w,,, the BMU neuron for the input vector x;, the position in the map of the w,,
neuron determines the centre of the topological neighbourhood 7., .. It will be verified:

Ix, -

1

wc(x)

= min {Jx, ~w [}. @

The effect of the competition process is that the continuous input space X of activation
patterns is projected onto the discrete output space M. The Euclidean distance is not the only
possible similarity measure, we then carry out some experiments with the correlation
coefficients.

3. Cooperation process. The winning neuron w,,, determines the spatial location of a
topological neighbourhood of excited neurons on the map. The neighbourhood function
determines how strongly the neurons are connected to each other. It must be uni-modal with the
lateral distance d.., =||r.-7|| between the BMU neuron w,,, and the generic neuron w; (7, and r;
determine the position of the two neurons on the map). A typical choice of 4, ; is the Gaussian
function:

2

h, . (t)=exp —M . (3)
o 20(t)°

The neighbourhood function’s value also depends on discrete time # that identifies the iteration
number: at every step ¢ the whole dataset will be processed by the network examining each input
vector in random order. The parametre o(¢) defines the effective width of the neighbourhood
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function. During the learning process the neighbourhood radius o(f) must be reduced
monotonically with the regression step 7. A popular choice for the effective width of the
neighbourhood function is the exponential decay:

o(t)=0, exp(—%) 4)

where 0, is the value of o at the beginning of the SOM algorithm and 7 is a time constant.

4. Adaptive process. It enables modification of the code vectors of excited neurons to increase
the individual values of the discriminant function in relation to the input vector. The adjustment
takes place in a way that reinforces the answer of the BMU neuron for similar input patterns, that
allow the map training process and the partitioning of the map in clusters. By using discrete-time
formalism, the adaptive process usually takes place according to the following model:

w (t+D)=w ()+eun) by, (1) [Xi(t) - Wj(t)] )

where 0<o(?)<1 is the learning-rate factor, a monotonically function which decreases with the
regression step 7. Two suitable functions are indicated below:

a(t)=a, -exp(—g (6)
T
a(t)= o, m (7)

where ¢ is, as usual, the iteration number and 7 is a new time constant.

There are two control mechanisms on the unsupervised self-organization algorithm: the
adaptive learning-rate parameter o) and the neighbourhood function 4, (7). Since of?) is a
slowly decreasing function, the updating of the code vectors decreases with the regression step .
The second mechanism shrinks the kernel neighbourhood of each BMU neuron gradually over
time. A large neighbourhood will help to achieve a stable convergence of the map. Beginning
with a large neighbourhood and then gradually reducing it to a very small neighbourhood, the
SOM achieves both ordering and convergence properties. In this work the effective width of the
neighbourhood o(f) starts with a value equal to the dimension of the greater map side. Calling /
the total number of iterations, when #=//2 the value of o(¢) is null, so during the remaining //2
iterations, only the code vector of the BMU will be modified. The number of iterations / is fixed
a priori, at each iteration ¢ the network processes the whole dataset examining each input vector
in random order.
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3. Results

In this work the SOM algorithm has been applied to the eruption tremor frequency spectra at
Raoul Island (station RAO) located in the southern Pacific Kermadec Islands (Fig. 1). The
seismic data is sampled at 100 Hz, and has been split in time windows of 1024 points
(corresponding to a time window of 10.24 s). Time windows have a 50% of overlap. Fast Fourier
Transform (FFT) has been applied to each time window to calculate the corresponding spectrum
in a frequency range from 0.1 to 20 Hz.

Each spectrum is an input vector for the SOM analysis, the process is split in two phases: the
training phase and the data projection phase. During the training phase a large part of the whole
data set is presented to the network a certain number of times. Excluded from the training data
set are the spectra corresponding to the volcanic eruptive events, because the SOM trained map
must be able to recognize both the hypothetical dynamical regimes as well as every singular event
such as a volcanic explosion. During the training phase the whole training data set, composed of
about ten thousand spectra, is presented to the network 100 times. At each iteration ¢, the network
processes the training data set examining each input vector in random order. As the number of
iterations ¢ increases, the map topological order is improved. Obviously, this is a finite process
and a large number of iterations causes an increase in the computation time, so, after many tests,
a good compromise value for 7 has been found at 100 iterations. Two opposed needs compete to
choose the map dimensions: a larger map increases the number of clusters that could arise;
moreover a larger number of neurons generally increases the separation between these clusters
and so the final resolution of the map. On the other hand, a too large map decreases the SOM
capability to provide an overview of the data set structure.

At the end of the training phase the results of SOM analysis are shown using the U-matrix
[(Ultsch, 2003), Fig. 4]: map nodes correspond to white cells, each node contains one neuron, the
number and the circle dimension in the cell indicates how many input vectors have been mapped
into the node. Cells which do not contain a number use a gray scale to show the similarity of the
nearby neurons code vectors: light gray indicates a strong similarity and vice versa. In this way
the light areas on the map indicate possible clusters consisting of more than one node.

The data projection phase is conceived to analyse the temporal evolution of the volcanic
system condition, monitoring the frequency content by the SOM pattern recognition capability.
Each spectrum will take up a position on the map related with its frequency content and map
topology. Since the code vectors are not modified, the map does not change its topology during
the projection phase.

At each step, a group of spectra, equivalent to a fixed time length window of the acquired
signal, gets projected onto the map. In order to keep the map unchanged during the projection
phase, the neighbourhood function value 4., ; (r) and/or the learning-rate factor of7) have to be
fixed at the null value. In this work the length of the time windows is fixed at about 10 minutes.

For each group of spectra projected onto the trained map, the Euclidean distance between each
input vector and the correspondent BMU code vector has been measured. If this error is low for
each input vector of the whole data set, then the map is well organized, and it is possible to
explore the whole input space. Moreover, the input vectors with a larger error value could be
singular data, potentially related to unusual conditions of the volcanic system, which cannot find
a suitable strong similarity to a code vector on the map.
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Fig. 4 - The SOM obtained at the end of a training
phase using the Raoul seismic data (a). The graph (b)
shows, for each iteration ¢ of the SOM process, the
mean error calculated as the mean Euclidean
distance between input vector and the corresponding
0 20 40 60 80 160 BMU code vector. The dashed line shows the
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One of the greatest issues of this in-time analysis is the large number of maps that have to be
analysed and the consequent difficulty to have an overall view of the data set. This is achieved by
summarising three key variables over time. These are, for each group of spectra projected: the
position of the centre of the distribution, the position of the neuron with the largest number of
input vectors and the moment of inertia of the distribution. The moment of inertia can be
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calculated as:

M=%§Naﬂ%—%f%%—hf ®)

where N is the total number of input vectors projected onto the map at the iteration #, N, is the
number of input vectors projected onto the cell i of the map (with coordinates x,, and y,_;) and the
coordinates x;, and y,, define the position of the centre of the distribution. The moment of inertia
assumes higher values when the vector projections fall farther from the centre of the distribution.
On the contrary, a low value of the moment of inertia indicates a set of vectors very concentrated
close to the centre of the distribution. This is physically analogous to the difference between an
object whose mass is spread across a wide volume and one where the mass is mostly concentrated
close to the baricentre.

In order to carry out the SOM training process, the seismic tremor acquired during the March
16, 17, 18 and 19 (UT time) by the seismometre positioned on Raoul Island has been split in
windows of 1024 points, for each window the frequency spectra has been calculated and then fed
to the SOM. The dimensions of the map have been fixed at 20"15 (equivalent to a map with 300
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neurons).

At each step of the projection phase, a group of 120 spectra (corresponding to a window
length of about 13 minutes) is projected onto the map. Each point (or pair of points) in Figs. 5,
6, 7, and 8 show the position of the centre of mass, the position of the neuron with the largest
number of input vectors and the value of the moment of inertia for one group of spectra. It is
important to underline that the seismic tremor data acquired during March 16 has not been used
in order to train the map.

It has been verified that the error defined as the Euclidean distance between each input vector
and its BMU onto the map always stays low, this assures that the SOM training produced a well
organized map, able to explore the input space data used during the training as well the data that
did not aid the map topology organization. Only after the explosion at the Green Lake the mean
error shows a slight increase that lasts about one hour and a half (Fig. 5).

Considering the graphs of the day of the explosion and the three days after (Figs. 5, 6, 7, and
8), it can be noticed that the trend on the position of the centre of mass, the position of the greatest
node and the value of the moment of inertia for the groups from approximately the 20th to the
40th is considerably different to the mean trend. This means that the spectra of those groups have
been projected into a restricted (looking at the moment of inertia graph) area onto the map,
implying a strong coherency of such spectra, which show almost the same shape within each of
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those groups. Moreover, the area of the map involved is different from the “usual” areas, due to
a different mean frequency content. This excursion occurred each day analysed and at the same
time of the day, hence we interpret the excursion as resulting from an anthropogenic source. We
note however that the island was evacuated on the day following the eruption. We surmise that
the diurnal cycle for groups 20-40 represents some relict cultural noise effect, such as an
automated scheduled activity, that persisted even after the human population departed. A natural
source for the diurnal cycle is considered unlikely. Moreover, during the one hour and half after
the explosion the data has been arranged into an area of the map that was previously unfilled. We
interpret this transition as a result of the explosion and post explosion system excitation.

4. Discussion

The time evolution of summary parametres of the SOM analysis, such as the centre of mass,
the position of the neuron with the largest number of input vectors and the moment of inertia of
the data distribution can provide information about the existence of relatively stable regimes and
about the transitions between them by either slow or abrupt volcanic processes as expressed by
transitions through the clusters on the map.
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Similar volcanic regime changes have been noticed for Ambrym Volcano (Vanuatu Islands)
(Carniel ef al., 2003). In the seismic tremor acquired there during a one month period, two
regimes were observed, characterized by durations of a few days, that differ in terms of frequency
content and more generally in terms of volcanic activity with different levels of tremor energy,
degassing processes and small explosions at the lava lake (Carniel et al., 2003). A similar
alternation of two main regimes has been observed at the Stromboli Volcano (Sicily, Italy) with
time scales going from minutes to weeks (Carniel and Iacop, 1996; Ripepe ef al., 2002). The Erta
Ale lava lake (Ethiopia, Africa) also showed a similar alternation of volcanic activity regimes
(Harris et al., 2005; Jones et al., 2006).

At Raoul Island, we observe a transition in spectral characteristics at the onset of the eruptive
activity into a spectral regime that lasted for approximately 1.5 hours. Christenson et al. (2007)
surmised that the proximal cause of the eruption was due to the failure of a shallow hydrothermal
seal which became pressurised by gas released from a deeper magmatic carapace. The carapace
itself is surmised to have failed due to a swarm of hybrid and volcano-tectonic earthquakes (Lahr
et al., 1994) occurring on March 12, which released gas from magma and caused pressurisation
beneath the hydrothermal seal. If this model is correct, then the failure of the hydrothermal seal
was instantaneous and included no precursors seen in either the observed spectra or the SOM
analysis. However, the SOM highlights the post-failure system excitation which is possibly due
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to the re-equilibration of the hydrothermal system.

5. Conclusions

The SOM method provides a new capability to explore the input data space applying an
unsupervised pattern recognition algorithm, and allows us to recognize outliers as samples that
have been projected onto unusual areas of the map. The analysis of the time evolution of a
volcanic system through the SOM methodology offers then the possibility to highlight data
patterns possibly related to a precursory activity of an upcoming volcanic crisis. At Raoul Island,
the SOM method allows recognition of diurnal pattern in seismic data that may be anthropogenic
in nature, and are not readily apparent in visual spectrogram analysis. The SOM did not reveal
precursors to the eruption in Raoul Island seismicity, but it highlighted the post-failure system
excitation.
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