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ABSTRACT In this paper we illustrate the applications of three algorithms of multicomponent
seismic data processing, velocity analysis, deconvolution, and seismic wavefield
separation, that we implemented by means of quaternion algebra. After a brief
introduction on quaternions and a review of these methods, we focus our description
on the applications to actual multicomponent seismic data sets. Quaternion velocity
analysis results in an improved resolution and distinction of the velocity trends
associated with the various wave phases, while the extension of the classical Wiener
deconvolution demonstrates the better performance of the quaternion filter on the
multicomponent traces compared to the scalar filters. Wavefield separation by means
of quaternion SVD makes it possible to discern body waves from surface waves based
on their different polarization characteristics and eventually leads to their effective
separation.

Key words: seismic data processing, velocity analysis, deconvolution, seismic wavefield separation.

1. Introduction 

With the advent of multicomponent seismology the volume of data to be processed increases,
thus causing a proportional increase in the effort needed to perform the different processing steps.
Even if multicomponent data carry a vectorial information, they are often processed component
wise, i.e., each component per time. We propose, instead, a multicomponent approach which
considers the vectorial nature of the wavefield, by introducing a quaternion algebra analysis.

Quaternions constitute an extension of the complex numbers to the hypercomplex domain.
They were first introduced by Hamilton (1844) and they have an important role in physics, in
which hypercomplex algebra is used for fundamental formulations of quantum mechanics (Adler,
1995). In the applied sciences, quaternions are used to compactly represent spatial rotations and,
for this reason, they find application in computer graphics, robotics, control theory and aerospace
problems.

In the field of signal processing, there are several quaternion applications: in image
processing, pure quaternions are used to describe the colour components of RGB images
(Sangwine, 1996). Furthermore, quaternion algebra is used to determine the direction of arrival
(DOA) of polarized waves recorded by a vector-sensor array (Miron et al., 2006); in seismology,

Bollettino di Geofisica Teorica ed Applicata Vol. 53, n. 4, pp. 523-537; December 2012

DOI 10.4330/bgta0060

© 2012 – OGS



524

Boll. Geof. Teor. Appl., 53, 523-537 Mazzotti et al.

due to its capability to compactly describe a multicomponent acquisition, quaternion algebra is
employed to derive a sub-space method for the wavefield separation over a 3C vector-sensor array
(Le Bihan and Mars, 2004).

In this paper we focus on the applications of hypercomplex algebra to exploration seismology,
where quaternions can be used to concisely handle multicomponent data. In particular, we make
a synthesis of the application results shown in Grandi et al. (2007), Sajeva et al. (2011), Menanno
and Mazzotti (2012) for multicomponent (MC) velocity analysis, MC deconvolution and MC
wavefields separation respectively. Theoretical developments and demostrations, which can be
found in such papers, are not discussed here.

2. Brief introduction to quaternions

Quaternions are hypercomplex numbers, i.e., numbers with three imaginary components.
They can be written as:

(1)

where a, b, c, d are real numbers, and i, j, and k are imaginary units. The imaginary units satisfy
the multiplication rules:

(2)

It follows that quaternion multiplication is not commutative. The hypercomplex conjugate and
the quaternion norm can be defined analogously to the complex domain:

(3)

(4)

More exhaustive description of the mathematical properties of quaternions can be found in
Sudbery (1979) and Zhang (1997).

Quaternions can be conveniently used in seismic multicomponent data analysis, in fact, due
to their hypercomplex formulation, they are especially apt to represent up to four data
components. An example of four component acquisition is a 4C-OBC (4 Component Ocean
Bottom Cable) survey, in which each receiver station is constituted by a hydrophone and a triaxial
geophone, placed on the sea floor. In a quaternion representation, the hydrophone recording is
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associated with the real part of the quaternion, while the geophone recordings with the imaginary
parts. 3C land acquisitions can be represented as well by means of quaternions, simply neglecting
the real part of the quaternion signal, i.e., by putting a=0 in Eq. (1).

As an example, let us consider a shot gather. If we denote pi(t) the time series representing the
pressure recorded on the i-th hydrophone and xi(t), yi(t), and zi(t) respectively the three time series
representing the x, y, and z components of the signal on the i-th geophone, then we can define a
quaternion time series, such as:

(5)

Similarly we can define a pure quaternion time series:

(6)

in case that the hydrophone recording is not of interest or not available.
The set of quaternion time series for each recording station constitutes a quaternion matrix

which represents the entire input dataset.

3. Application to real data

We focus on the applications of quaternion analysis to exploration seismology, where many of
the processing steps can be extended to quaternions in order to concisely handle multicomponent
data. In the following, three examples are explained in some details.

4. Quaternion velocity analysis

Grandi et al. (2004, 2005) proposed a method for velocity analysis applicable to 2C data: they
added in quadrature vertical and horizontal components, and they computed complex coherency
functionals along given traveltime curves on the data trace gathers. These functionals are based
on the decomposition into eigenstructures of the spatial covariance matrix (Key and Smithson,
1990), and on the approximate a priori knowledge of the propagating wavelet (Spagnolini et al.,
1993; Grion et al., 1998). By means of this procedure  velocity trends related to different wave
types in a single velocity panel can be built.

However, this approach considers only two displacement components and discards the
information that the hydrophone can bring in, when dealing with ocean bottom cable (OBC) data.
To overcome this limitation, Grandi et al. (2007) proposed the introduction of quaternion algebra
in the velocity analysis phase. In this paper, we investigate the quaternion implementation of one
of the simplest coherency functionals, namely the semblance (Neidell and Taner, 1971), applied
to the triaxial recording of a 2D multicomponent OBC acquisition. The data are at an early step
of processing, with few operations applied, such as first-break muting, band-pass filtering and
notch filtering. No attempts to match the frequency content of the various components have been
tried and only a simple automatic amplitude gain has been applied to the data. Torsional modes
and mud rolls have been partly attenuated by the notch filter.

q t ix t jy t kz ti i i j( ) = ( ) + ( ) + ( )
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Figs. 1, 2, and 3 show respectively the x, y, and z components of the CDP used for the velocity
analysis. Note that the data quality is rather different among the three components: events on the
x gather are more continuous than on the other gathers. Random and coherent noise contaminate
all components and shear energy is dominant in geophone recordings. In the z gather (Fig. 3), it
is possible to identify some P-wave reflections, such as the event at 1.85 s annotated with yellow
arrows, and traces of C-wave reflections, indicated by red arrows. Differently, both x and y
gathers (Figs. 1 and 2) are strongly affected by shear energy, which hides possible  P reflections.

Fig. 4 shows the results of both single component and quaternion velocity analysis. The
analysis carried out separately on each component produces unfocused results and evidences
single velocity trends, that is, converted wave trends on x and y gathers and P-wave trend on z
gather. The quaternion analysis, instead, simultaneously gives the velocity trends of the various
wave phases and produces a better focused velocity panel.

5. Quaternion deconvolution

Few attempts at vectorial multicomponent deconvolution exist. For instance, the design of
multichannel deconvolution (Treitel, 1970) can be extended to the multicomponent case, as
indicated by Claerbout (1985); in this approach, the multichannel filtering operation is
represented as a linear system. A similar solution consists in concatenating each component time
series into a long vector and then to process the resulting record as a single component. Anderson
and Nehorai (1996), and Menanno and Le Bihan (2010) applied this procedure to vector-sensor
acquisitions. 

A quaternion formulation of deconvolution has been proposed for the first time by Menanno
and Mazzotti (2012). They compare scalar and quaternion deconvolution in synthetic and real
data examples, and they show that quaternion deconvolution provides a better wavelet estimation
and thus an improved deconvolution performance. 

In this paper, we consider the application of quaternion spiking deconvolution to a real
common receiver gather pertaining to an OBC multicomponent acquisition. A portion of the
multi-component gather before the application of spiking deconvolution is shown in Fig. 5; the
x, y, and z components are shown respectively in the (a), (b), and (c) panels. The data have
undergone a limited pre-processing that consists of 3-C amplitude balancing, first-break muting
and band-pass filtering to attenuate the torsional modes that affect all the recordings.

In the frame of the z component (Fig. 5c), a compressional event is clearly visible at
approximately 1.9 s, and it is marked with a red arrow; its pegleg, which is pointed to by a second
red arrow, follows with a delay of ≈ 0.15 s. Note that these events are also visible with lower
amplitudes on the horizontal components. Furthermore a residual coherent noise, due to torsional
modes, affects all the gathers, particularly at near offset. On the horizontal gathers this noise is
stronger than the compressional event, while it is weaker on the vertical one.

The results of scalar and quaternion deconvolutions are shown in Figs. 6a, 6b, and 6c and Figs.
7a, 7b, and 7c. For both deconvolutions the operator parameters are: filter length = 80 ms,
prewhitening = 0.1%, and both operators are computed on a 1s long time window, which mainly
contains compressional energy. In figures, the red arrows point to the compressional event, and
the blue arrows indicates the coherent noise, which still affects the horizontal components after



527

Application of quaternion algorithms for multicomponent data analysis: a review  Boll. Geof. Teor. Appl., 53, 523-537

Fig. 1 - CDP x component of the data from an OBC acquisition.

Fig. 2 - CDP y component of the data from an OBC acquisition.
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Fig. 4 - Semblance velocity panels: single component semblance for the x, y, and z components, and quaternion
semblance.

Fig. 3 - CDP z component of the data from an OBC acquisition.
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deconvolution.
The quaternion deconvolution, recognizing the vectorial nature of the signal, emphasizes the

compressional event in the quaternion space. This is apparent on the horizontal projections of the
quaternion output (Figs. 7a and 7b) where the compressional event stands out more clearly with
respect to the standard deconvolution outputs (Figs. 6a and 6b). Finally, the quaternion
deconvolution seems also to perform better in the attenuation of the torsional modes, the
hyperbolic-like coherent noise pointed to by the blue arrows and evident at short offsets.

6. Quaternion seismic wavefield separation

Another important topic in seismology is the separation of surface and body wavefields. In
particular, we consider the extraction of a single Rayleigh wave mode from a multicomponent
land data set, leaving as a residual the body wavefield, other surface waves, and noise. In the
following, we show and discuss the results of the application of the procedure described in
(Sajeva et al., 2011).

The data are shown in Fig. 8 in three different domains: (a) offset-time, (b) inverse ellipticity-
offset, and (c) frequency-ray parameter (f-p domain), and, on each panel, the Rayleigh wave mode
is labeled with RW letters. Both (a) and (c) show the z component only (the behavior of the x
component is analogous to the z compoment, while the y component is negligible), and (b) is
computed on the x-z plane.

In the time offset domain (Fig. 8a) the Rayleigh wave mode consists in the slowest wave train,
and it has a reverse funnel shape caused by frequency dispersion. In the inverse ellipticity-offset
map (Fig. 8b) the z component has been 90 degree phase shifted before the computation of the
inverse ellipticity. This permits to collapse circular polarization and elliptic polarization with any
eccentricity to linear polarization. In fact, recalling that the inverse ellipticity map plots the ratio
of the first two eigenvalues (σ2/σ1) computed on portions of the data (containing the x component
and the 90 degree phase shifted z component in this case), the Rayleigh wave has σ2=0 (linear
polarization), and inverse ellipticity (σ2/σ1=0). At the opposite, incoherent noise is not affected
by the phase shift, then σ1=σ2 and its inverse ellipticity equals one. This trick allows us to visually
distinguish incoherent noise from elliptically polarized signals (Rayleigh waves). In this domain,
the Rayleigh wave mode corresponds to a blue zone (zero), which is indeed clearly visible in the
map (Fig. 8b). In the f-p domain (Fig. 8c), we identify the mode with the broken curve composed
by three branches with values ranging from 3.5 to 5.8 ms/m pointed by the arrow in the figure.
The curve has the ray parameter varying with frequency, i.e., it is a frequency dispersive signal. 

The extraction method has been implemented both on the x, y, z components separately and
with a quaternion representation, the results (the extracted modes) are shown in Figs. 9 and 10.
Comparing the original data with the extracted modes, we expect them to be approximately equal
where the mode is dominating, and to differ elsewhere. 

Using the single component implementation (Fig. 9): in the offset time domain (Fig. 9a), the
faster signals (body waves, other surface waves) are correctly attenuated, however, also part of the
Rayleigh wave mode is attenuated; in the inverse ellipticity-offset domain (Fig. 9b), the Rayleigh
wave zone has values ranging from 1 to 0, and a clear elliptic zone (blue) cannot be recognized;
in the f-p domain (Fig. 9c), the dispersion curve of the mode is affected by the same attenuation
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Fig. 5 - A portion of the gather: x component (a); y component (b); z component (c). Red arrows point to  the
compressional events, which are clearly visible on the z component and barely visible on the x and y components.

a

b

c
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Fig. 6 - The portion of the gather after single component spiking deconvolution: x component (a); y component (b); z
component (c). Red arrows point to the compressional events, and blue arrows indicate the torsional mode coherent
noise.

a

b

c
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Fig. 7 - The portion of the gather after quaternion spiking deconvolution: x component (a); y component (b); z
component (c). Red arrows point to the compressional events, and blue arrows indicate the torsional mode coherent
noise.

a

b

c
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Fig. 8 - The original dataset: the z component in the offset-time domain (a); the inverse ellipticity-offset map in the x-
z plane after a 90 degree phase shift of the z component (b); the z component in the frequency-ray parameter domain
(c). In the graphs, the RW label points out the Rayleigh Wave mode to be extracted.

a

b

c
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Fig. 9 - The Rayleigh wave extracted with the single component method: the z component in the offset-time domain (a);
the inverse ellipticity-offset map in the x-z plane after a 90 degree phase shift of the z component (b); the z component in
the frequency-ray parameter domain (c). In the graphs, the RW label points out the extracted Rayleigh Wave mode.

a

b

c
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Fig. 10 - The Rayleigh wave extracted with the quaternion method: the z component in the offset-time domain (a); the
inverse ellipticity-offset map in the x-z plane after a 90 degree phase shift of the z component (b); the z component in
the frequency-ray parameter domain (c). In the graphs, the RW label points out the extracted Rayleigh Wave mode.

a

b

c
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present in (Fig. 9a).
Using the quaternion implementation (Fig. 10): in the offset time domain (Fig. 10a) the energy

of the mode is better preserved along the offset; in the polarization map (Fig. 10b) a blue zone is
present in the offset range 0-200 m, instead for longer offsets inverse ellipticity assumes values
mainly in the range 0-0.6 and, as previously, a clear elliptic zone cannot be recognized; in the f-
p domain (Fig. 10c), the dispersion curve of the mode is visible and most part of its energy is
preserved.

In conclusion, the quaternion implementation shows an improvement with respect to the
single component implementation on each of the three different domains: offset-time, inverse
ellipticity-offset, and f-p domains. 

7. Conclusions

The very nature of quaternions, hypercomplex numbers, makes them perfectly suited to treat
multicomponent seismic data and to honour the vectorial nature of the incoming wave fields. In
particular, quaternion velocity analysis simultaneously evidences velocity trends pertaining to
different wave modes, and it helps the interpreter to estimate interval Vp and Vs by means of event
correlation, and to correlate information between VSP and well logs. Moreover, it  speeds up the
velocity picking, which can be performed in a single pass on a multicomponent velocity panel,
rather than once for each single velocity panel. 

Analogously, quaternion deconvolution performs superiorly than single component
deconvolution, taking advantage of the signal that is simultaneously present in all the
components. 

Finally, the results of the quaternion extraction of Rayleigh waves show a better performance
with respect to single component algorithms for both polarization and lateral continuity
properties; this is explained by the ability of quaternions to compactly represent elliptically
polarized signals.

This overview of recently achieved research results, which have been separately published,
suggests the chance of extending the quaternion approach to other steps of seismic processing,
and eventually to perform a complete quaternion processing sequence for multicomponent data. 
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