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ABSTRACT Non-negative Matrix Factorization (NMF) is an emerging new technique in the blind
separation of signals recorded in a variety of different fields. The application of these
techniques to the analysis of volcanic signals is new to date. Volcanic tremor, the
continuous seismic signal recorded close to a volcano, often consists of a mixture of
signals having different and independent sources, both volcanic and non-volcanic,
possibly including anthropogenic ones. In this paper we show that NMF is a suitable
technique to separate such a mixture of foreground / interesting / target ”signals” from
background / interference / undesired ”noise”. The encouraging results obtained with
this methodology in the presented case study, separating high convection foreground
signal from low convection background noise at Erta ’Ale lava lake, support its wider
applicability in volcanic signals separation.

Keyword: Non-negative Matrix Factorization, volcanic tremor, lava lake convection regimes, volcanic
signal separation.

1. Introduction

Volcanic tremor, recorded at or near an active volcano, often consists of a mixture of signals
in a wide, usually overlapping, range of frequency bands. In this paper we discuss the possibility
of application of blind techniques to the problem of separating the sources of such signals
composing the recorded tremor. This approach is based on the Non-negative Matrix Factorization
(NMF) and can be applied to a single-sensor dataset. As an illustrative case study, we analyze data
recorded at Erta ’Ale volcano, where NMF is applied in order to separate a relatively transient
”high lava lake convection phase” signal from an underlying, relatively continuous, ”low lava lake
convection phase” signal.

2. Volcanic tremor time series

Studies of volcanic tremor time series have become very common over the last several
decades, because of tremor’s potential value for better understanding the physical processes that
occur inside active volcanoes, and therefore possibly for forecasting eruptions (Lovallo et al.,
2010). Moreover, the tools developed to analyze volcanic tremor can be applied identically to
other kinds of tremor, such as tremor associated with hydrocarbon reservoirs (Dangel et al.,
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2003), a subject of great recent research interest, whose detection remains an open problem (Ali
et al., 2010). Other commonly studied sources of nonvolcanic tremor include geothermal activity
(Carniel et al., 2010) and plate subduction (Rogers and Dragert, 2003). However, the analysis of
volcanic (and non-volcanic) tremor signals and the understanding of the physical mechanisms
underlying their generation is a very difficult task.

The term “volcanic tremor”, as formally defined by Konstantinou and Schlindwein (2002),
refers to a persistent seismic signal observed only near active volcanoes, lasting from several
minutes to months or more, preceding or accompanying most volcanic eruptions. At some
volcanoes, such as Stromboli (Italy) and Yasur (Vanuatu), tremor has been observed continuously
since seismic monitoring began. An entire terminology has been created to characterize the
appearance of tremor signals in the time or frequency domain, such as monotonic (or harmonic)
or non-monotonic (or non-harmonic) vibrations; Konstantinou and Schlindwein (2002) proposed
the terms defined in Table 1.

To investigate the nature of volcanic tremor signals, the amplitude spectrum and spectrogram
are fundamental analysis tools. But we have to take into account some important characteristics
of tremor signals: 
- tremor can persist for long periods of time, resulting in the accumulation of large amounts of

data that have to be analyzed;
- they may exhibit strong temporal variations in amplitude and/or frequency content that should

be monitored, because of their importance for source modeling and eruption forecasting;
- the calculated spectrum may have multiple sharp peaks around narrow frequency bands (i.e.,

in monochromatic tremor), in which case a high degree of resolution is required in order to
resolve the individual frequencies;

- they often exhibit non volcanic signal contamination, usually dominated by ocean
microseisms (Kadota and Labianca, 1981) in the frequency bands 0.1-0.3 Hz and local noise
of anthropogenic origin (e.g., industrial activities and human activity in general) in
frequencies higher then 1 Hz (Carniel et al., 2008).
Removing microseismic or other types of interference is an important stage in processing

Table 1 - Terms that characterize volcanic tremor in the time or frequency domain (after Konstantinou and Schlindwein,
2002).

Term Domain Description Example

Harmonic Frequency/Time
Multiple peaks in the spectrum with a fundamen-
tal frequency and its harmonics

Mt. Semeru

Monochromatic Frequency/Time
Spectrum consisting of only one sharp peak
extending over a narrow frequency band

Ruapehu

Banded Time
Tremor bursts separated by periods of quies-
cence, that resemble stripes or bands on a seis-
mogram

Miyakejima, Etna

Spasmodic Time 
Continuous tremor with large amplitude varia-
tions, that probably depend on magma flow or
lava fountaining

Krafla

Tremor storm Time
Small duration tremor bursts superposed on the
background earthquake activity

Etna
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volcanic tremor signals and, as pointed out by recent field experiments by Ali et al. (2010),
similar problems make the detectability of hydrocarbon tremor comparably challenging. In
Cabras et al. (2008, 2010c), we proposed a methodology based on Blind Source Separation
techniques to isolate tremor components of proper volcanic origin from multisensor datasets
contaminated by microseisms. In this work, we present a new approach based on Non-negative
Matrix Factorization technique to extract a target source from a single-sensor volcanic seismic
datasets.

3. Erta ’Ale volcano seismic dataset

Erta ’Ale is a basaltic shield volcano in Afar region, Ethiopia (13.608°N, 40.678°E, 613 m
a.s.l.). The volcano features a 1600 x 700 m2 summit caldera with two pit craters where one or
more lava lakes are almost permanently hosted since at least 1906 (Dainelli and Marinelli, 1907;
Barberi and Varet, 1970). These constitute the upper surface of a convecting magma column,
which allows continuous observations of magma system circulation (Oppenheimer and Francis,
1998) driven by density contrasts that can arise from a combination of degassing, crystallisation
and, especially at a superficial level, cooling (Harris, 2008). In February 2002 simultaneous
seismic, thermal and video data were acquired by Harris et al. (2005) and Alean et al. (2011). In
particular, a 5 s Lennartz LE-3D, a 30 s Guralp CMG-40 and a 0.5 s Mark Products L-22
seismometer were used, together with an Omega thermal infrared thermometer. Harris et al.
(2005) mainly studied the thermal signal to track convection processes in the lake, while Jones et
al. (2006) focused on the continuous, non monochromatic, volcanic tremor, to investigate the
variable rates of lava lake convection. The lake cycled between tens-of-minutes-long periods
characterized by low (0.01 − 0.08 m/s) and high (0.1 − 0.4 m/s) convection rates. The seismic
signature of each regime was characterized by Jones et al. (2006) using spectral content,
wavefield polarization, and tremor source location. In his Ph.D. work, Jones (2009) suggested
that continuous tremor had multiple, simultaneously active seismic sources, not all of which were
persistent: magma flow in a conduit, degassing at fumaroles, gas bubbles coalescing in the
shallow, active lava lake, and degassing in a crater that formerly held a lava lake. The spectral
transitions result from secondary signals introduced during periods of rapid lava lake convection.
The signal, which we interpret as being generated by magma flow in a conduit, does not change
between the two convective regimes. Thus, changes in the rate of lava lake convection (and
corresponding spectral changes) are driven entirely by shallow processes in the lava lake, rather
than changing properties of the magma supply. The separation of a “high convective” seismic
source of interest from a “low convective” non stationary noise in a single-sensor seismic time
series recording is a challenging task that, if successful, could be extended to other seismic noise
time series.

4. A novel approach to single-sensor seismic analysis

The presented approach is implemented by the Non-negative Matrix Factorization (NMF),
where the basic idea is that we can obtain a meaningful part-based factor decomposition (Lee and
Seung, 1999) from a single-channel data observation by the only constraints of non-negativity
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and sparsity. 
In the simplest case, NMF problem can be stated as follows: given a non-negative data matrix

X ∈ (with xft ≥ 0 or equivalently X ≥ 0) and a reduced rank K (K≤min(F, T)), find two non-
negative matrices D ∈ , called dictionary and H , called sparse code, which factorize
X as well as possible, that is:

X = DH + E  (1)

where E ∈ represents the approximation error to minimize.
In this section, we describe the essential components of the one channel enhancement model

developed for audio in Cabras et al. (2010b) and we show that they can be adopted to analyze
single-sensor volcanic seismic datasets.

4.1. Source separation applied to single-channel volcanic signal

We aim to estimate the undesired components, or interference, n(t) and the target, s(t) directly
from the observable data mix in the time domain, with minimal a priori knowledge. We assume
that saturation effects are absent in the mixed observable x(t):

x(t) = s(t) + n(t). (2)

The existence of different superimposed independent signals that contribute to form volcanic

  � +
×F T

  � +
×K T

  � +
×F K  � +

×F T

Fig. 1 - General scheme of the proposed signal enhancement framework.
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tremor at Erta ’Ale is discussed in Jones et al. (2012). This implies that in this case study it is
reasonable to assume that s(t) and n(t) are uncorrelated. This extends linearity in the power
spectral domain and let us transform the data in a non-negative representation suitable for NMF:

|X(f, t)|2 = |S(f, t)|2 + |N(f, t)|2 (3)

where the observable signal x(t) is transformed into a complex time-frequency representation X(f, t).
The proposed method is shown in Fig. 1 and key modules are discussed in the next subsections. This
general single channel enhancement model is equivalent to the model presented in Cabras et al.
(2010a) with a classical refiltering technique as suppression rule, such as a Wiener filter. A
common technique to manipulate a time-varying observed signal consists of transforming it in a
time-frequency representation that we describe in subsection 4.1.1. A priori knowledge about
undesired components can be trained directly from selected time sections of the available signal
using a NMF model estimation, which will be described in subsection 4.1.2. A further non trivial
step is needed to assign the decomposed parts to the source of interest to discard the interference
source; in subsection 4.1.3 we show how to solve this problem with a solution based on a
constrained NMF (NMF*) model estimation and prior knowledge on undesired component.

4.1.1. Signal representation

We transform the signal into a time-frequency non-negative matrix energy representation (by
a Short Time Fourier Transform - STFT) along time elements (frames) and frequency elements
(bins). We represent the signal as an element-wise exponentiated STFT:

X = |STFT{x(t)}|γ (4)

The linearity expressed by Eq. (2) applies also to Eq. (4) when γ = 2, but even with seismic
signals, our experimental results show that γ is an important parameter to NMF performance and
γ = 2 is a bad choice for accurate component separation. To verify this important issue, we
evaluated the results varying the value of γ on an empirically chosen range of values between 1/3
and 2. This experimental testing activity with Erta ’Ale and other volcanic tremor signals
confirms previous component separation results adopting NMF in noisy speech enhancement by
Schmidt et al. (2007) that an heuristic optimal choice is γ = 2/3, which corresponds to the cube
root compression of power STFT, while outcomes are significantly worse using the power
spectrogram representation (γ = 2).

4.1.2. Undesired component training

During the training stage, we assume availability of some target-absent frames, applying a
human supervised selection, that we call Target Present Detection, to the observable signal
X(f, t); the resulting signal:

Z(f, t) = X(f, t)  Ā(t, t) (5)

is equivalent to X(f, t), with target-present frame suppressed by the diagonal index matrix  Ā(t, t),
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a binary square matrix showing the absence of target source in frame t:

(6)

Applying a Regularized Euclidean NMF to Z(f, t) (Eggert and Körner, 2004), we obtain the
strictly positive dictionary Dn(f, k) of the interference learned from data, where k is the number
of user-defined elements of undesired component. Following the simplification proposed in
Eggert and Körner (2004) to estimate the NMF model, we define as follows the complete
multiplicative iterative algorithm (Cabras et al., 2010b):
1. initialize Dn(f, k) and Hn(k, t) with random values between 0 and 1, multiply Hn(k, t) by   Ā(t, t)

to suppress target-present frames;
2. define Euclidean column-wise normalization of the dictionary to prevent joint numerical drifts

in Hn and Dn:

(7)

3. calculate the reconstruction according to:

(8)

4. update the sparse code according to the rule:

(9)

5. calculate the reconstruction according the Eq. (8);
6. update the non-normalized dictionary according to the rule:

(10)

7. repeat from step 2 until convergence to a local minimum of the Euclidean Cost function:

(11)
  
C Z f t X f t H k ti

n n n
k tf t

( )

,,

, ˆ , ,= ( ) − ( )( ) + ( )∑∑1

2

2
λ

   

D D
ZH D X H D

X H D ZH
n n

n
T

n n n
T

n

n n
T

n n
T

← •
+ • •( )( )

+ •

1

1

ˆ

ˆ ••( )( )Dn

  

H H
D Z

D Xn n
n
T

n
T

n n

← •
+ˆ λ

  
X̂ D Hn n n=

  

D f k
D f k

D f k

D f k

D K
n

n

nf

n

n

,
,

,

,( ) =
( )

( )
=

( )
( )∑ 2

2

  

A t t,( ) =
1, if target source is absent in framme t

0, otherwise.

⎧
⎨
⎩



237

Non-negative Matrix Factorization: an application to Erta ‘Ale volcano, Ethiopia  Boll. Geof. Teor. Appl., 53, 231-242

We stop the algorithm at iteration i when |C (i)−C (i−1)| < ε C (i).
Note that • operator indicates element-wise multiplication, the fraction line indicates element-

wise division between two matrices, 1 is a suitable size square matrix of ones. Multiplicative rules
ensure the non-negativity of the factor matrices, since all the successive estimates remain positive
if the initial estimate is positive. The regularization parameter λn weights the importance of the
sparsity term to the reconstruction.

The final Dn matrix represents the dictionary of the interference learned from data and it will
be used by the next module to estimate the two additive sources composing the mixed signal.

4.1.3. Estimation of undesired source and target source

In order to estimate the sources, we use again an NMF* to compute the dictionary of the target
source and the sparse code of both sources. Assuming, as usual, the additivity of sources, the
dictionary of the mixed signal can be seen as the horizontal concatenation of the individual source
dictionaries. Moreover, the sparse code of the mixed signal X can be seen as the vertical
concatenation of the individual source sparse codes:

(12)

In the previous Eq. (12), E is an unknown matrix representing approximation errors. We can
not solve Eq. (12) directly with NMF, due to a permutation ambiguity. In fact, we can write

DH = (DP)(P−1H) (13)

where P is a generalized permutation matrix, i.e., a matrix with only one non-zero positive
element in each row and each column.

Schmidt et al. (2007) suggest to pre-compute Dn, as we have done in the previous section for
the interference in the Z(f, t) signal; then learn Ds(f,m), Hs(m, t) and Hn(k, t), where m is the
number of user defined elements of the target source, with a modified NMF*, which we apply to
Y (f, t) = X(f, t)A(t, t) (i.e., the observed signal in the target-present frames). We describe here the
developed one-dictionary constrained (D*n) algorithm:
1. initialize Ds( f,m), Hs(m, t) and Hn(k, t) with random values in the range (0÷1); to multiply

Hs(m, t) and Hn(k, t) by A to suppress target-absent frames;
2. define Euclidean column-wise normalization of the target dictionary to prevent joint numerical

drifts in Hs and Ds:

(14)

3. calculate the overall reconstruction according to:
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(15)

4. update the sparse code of target according to the rule:

(16)

5. calculate the overall reconstruction as in Eq. (15);
6. update the sparse code of interference according to the rule:

(17)

7. calculate the overall reconstruction as in Eq. (15);
8. update the target non-normalized dictionary according to the rule:

(18)

9. repeat from step 2 until it reaches the convergence of the Euclidean Cost function to minimize:

(19)

We stop the algorithm at iteration i when |C(i) − C(i−1)| < εC(i). The regularization parameters
and determine the degree of sparsity in the activity matrix. Dn, the dictionary of the

undesired component, is left unchanged by this algorithm because it is predefined and fixed by
the previous training stage; moreover, we do not seek a sparse code for the fixed dictionary, but
the code that minimizes the reconstruction error, setting = 0. In general λn, , k and m are
depending on unknown sources, i.e., are defined a priori.

5. A case study: Erta ’Ale convection regimes

For illustrative purposes, we applied our methodology to a seismic dataset recorded at Erta
’Ale volcano, where the target is defined to be the seismic footprint of the fast convective regime
while the interference is defined to be the tremor associated to the slow convective regime. The
seismic footprints of each regime were identified by comparison of spectral patterns with direct
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observations and video recordings (Harris et al., 2005; Jones et al., 2006). As argued by Harris
(2008) and Jones (2009), tremor recorded during the ”fast” convective regime appears to be new
signals superimposed on the background signals of the ”slow” convective regime. The examples
of slow regime to train the dictionary of interference were identified manually on the base of
visual observations. With our experimental datasets, good results were obtained for λn = 0.2 and

= 0.05, k = 32 and m = 32.
Fig. 2 shows the matrices modeling the involved target and interference estimations of Eq.

(12). It is worth noting that the dictionary of interference [panel (c)] was trained in the previous
stage and kept fixed in this separation stage.

The resulting fast regime spectrogram = DsHs estimate and the slow regime spectrogram
= DnHn estimate are shown in Fig. 3.

6. Conclusions

NMF techniques can be used to separate different components of volcanic origin which are
superimposed in time and frequency and the source of interest is non-stationary, as shown at Erta
’Ale single-sensor case study. In this case, the separation of sources is not blind as in ICA
applications (Cabras et al., 2010c), because the learning algorithm of NMF requires “background

  
X̂ n

  
X̂ s

  � s

Fig. 2 - Matrices involved in sources estimate. a) In the 12 hours spectrogram registration, we recognize continuous
tremor with spectral changes corresponding to the changes in the rate of lava lake convection; b) dictionary of target
as learned by target component estimate in target-present frames, in this case the target is the fast regime; c) dictionary
of interference Dn as trained by undesired component estimate in target-absent frames, in this case the interference is
the slow regime; d) the fast regime sparse code and e) the slow regime sparse code; f) interference estimate, i.e., slow
regime; g) target estimate, i.e., fast regime; h) overall signal reconstruction which is comparable to observed signal (a).
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Fig. 3 - Spectrograms of original corrupted signal X (top panel), estimated target source  X̂s (center panel) and estimated
interference X̂n (bottom panel) of 12 hours of Erta ’Ale Z component MARS seismometer. Slow regime pattern
(bottom) and fast regime pattern (center) are clearly separated.
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samples” but, acting on a single channel, can have wider applicability, particularly because most
volcanoes have only limited seismic monitoring. The subtle changes associated with the
departure of volcanic tremor from background signal regimes could be detected by such
algorithms, which could lead to better early detection of unrest. The example here demonstrates
that, even with only one seismic station, NMF can help to explore fundamental questions about
the nature and causes of volcanic tremor. In particular, the proposed technique can assume an
important role in the efficient filtering of low signal-to-noise volcanic seismic data by extracting
coherent volcanic components from more energetic background noise. Presumably, this method
could be applied almost identically to other volcanoes whose tremor exhibits similar spectral
transitions, e.g., Ambrym (Carniel et al., 2003) or Stromboli (Ripepe et al., 2002). Moreover, it
could potentially be extended to the extraction of tremors of other origin [e.g., geothermal in
Carniel et al. (2010) or plate subduction in Rogers and Dragert (2003)] which are often
characterized by a low signal-to-noise ratio, and to the proper analysis of seismic noise with
important seismic risk implications [such as site effects estimation with HVSR (Carniel et al.,
2006)] and/or clear economic implications [such as the identification of hydrocarbon tremor (Ali
et al., 2010)]. The theoretical limit of the proposed signal enhancement model, depicted in Fig.
1, is given by the combination of the modified spectral amplitude (refiltered with a simple Wiener
rule) and the unmodified noisy observed phase. An enhancement of the phase could be desirable
at low SNR, although phase enhancement is an open problem without strong hypotheses
concerning the unknown target.
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