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ABSTRACT The structure of a volcanic edifice depends on composition, volume of erupted magma,
and mechanism of eruption. In particular, pressure variations with depth due to density
variations of the volcanic rocks are crucial for magma degassing processes as well as
buoyancy mechanisms. In this paper, we analyze the effects of three different pressure
profiles with depth on the probability of occurrence of simulated eruptive events. We
describe the dynamics of magma ascent by means of a time dependent Self-Organized
Criticality field, which controls the opening of crack networks through which discrete
magma batches are allowed to rise. We find a characteristic power-law behavior for the
number of eruptions with erupted volume in all considered cases. As concerns the
probability of occurrence of an eruptive event with a given percentage of gas losses,
we find that extreme events, i.e., events with the lowest percentage of gas losses, are
more likely to occur if a step function is used to describe the relationship between rock
density and depth.

Key words: magma ascent, cellular automaton, density-depth functions.

1. Introduction

The rock density increases with depth in the Earth, as pressures rise. However, changes in
density with increasing depth may also be influenced by other factors, such as lithology, porosity,
presence of fractures. Usually, rock density is measured either by laboratory experiments on core
samples or by in-situ geophysical measurements. Since deep rock samples are not available,
gravimetric and/or seismic geophysical methods are generally used to obtain information on
density of the Earth’s internal structure (Gardner et al., 1974; Rymer and Brown, 1986). In
particular, volcanoes are generated only when structural conditions and particular rock density
distributions occur, allowing magma rising. Moreover, the density profile of a volcanic edifice
strongly influences the magma dynamics since it can affect the discharge rate and degassing
processes. In order to investigate the effect of rock density profiles on explosivity of eruptions,
we performed numerical simulations of magma ascent by considering three different density-
depth functions.

In a different way from traditional approaches, which describe the magma ascent by means of
solutions of partial differential equations of fluid mechanics, we use a statistical approach aimed
at reproducing the eruptive activity of a volcano. We do not assume a conduit of assigned
geometry, but start from a transport region where a time-dependent Self-Organized field controls
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the opening of crack networks through which discrete magma batches are allowed to rise. During
the ascent, magma loses gas in a way that depends on the rock density distributions. Therefore,
the choice of an appropriate density-depth function is essential for the computation of probability
distributions of eruptive events with a given degree of explosivity.

2. The statistical model

Contrary to traditional approaches, which assume the magma ascent through conduits of fixed
geometry (Papale, 1999; Legros et al., 2000), we model the magma rising as an infiltration
process through rock fractures (Scandone et al., 2007; Piegari et al., 2008, 2011), whose location
and sizes are controlled by Self Organized Criticality (SOC: Bak, 1996). To this aim, we
approximate the vertical section of a volcano by means of a two-dimensional grid whose square
cells are characterized by the values of two interacting fields: the field that controls the opening
of fractures in the surrounding rock, e, and the field of local presence of magma, n.

2.1. Modeling fracturing mechanism

Fractures in the rocks open in response to triggering mechanisms of different origins, such as
earthquakes, local regional stress. In our model (Piegari et al., 2008, 2011), we do not specify the
cause of fracturing, but describe it by means of a SOC field. We start from an initial non fractured
configuration, i.e., we attribute to each cell i a uniformly distributed random value of e,, with
0<e<1 Vi, which we expect to capture the heterogeneity of the stress values in the rock (Piegari
et al., 20006). Since e represents the ratio of driving forces to resisting forces, a cell becomes
fractured only if e reaches the threshold value e¢,=1. When a cell fractures, it relaxes and transfers
its stress instability to the four nearest neighbors cells that, in their turn, can fracture and transfer
their instability to nearest neighbors and so on. The fracturing process stops when all cells return
below the threshold value e,. In the simulations, we consider the isotropic case for stress
redistribution, which means that the four transfer parameters are equal to a constant value f, and
the non-conservative limit, 4/ < 1, to capture the dissipative nature of real systems (see Piegari
et al., 2008).

2.2. Modeling magma infiltration

To describe the local presence of magma in the volcanic edifice, we attribute to each cell of
the grid a value of the field n. If a cell is empty, the corresponding value of n is 0. If a cell is filled
with magma, the corresponding value of n ranges between 1 and 1-n,,, where n, is the
percentage of gas loss (see section 2.3). At the bottom line of the grid, we locate the magma
reservoir, which is constituted by L/4 cells filled with magma (n = 1), where L is the linear
dimension of the system. When a cell adjacent to the magma reservoir becomes fractured, magma
is allowed to ascend and move through all connected fractured cells. If fractured cells are
connected to the surface, magma is discharged and an eruption occurs. If fractured cells are not
connected to the surface, magma stops within the transport region and loses gas as described
below. In Figs. 1 and 2, two snapshots show typical configurations of the system corresponding
to a big and small eruptive event, respectively.

It is worthwhile noting that to describe the formation of a central conduit, we assume an axial
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The amount of gas in a magma is a key ingredient for explosivity. At high lithostatic pressure,

gas is dissolved in the liquid, but it starts to exsolve when pressure is decreased. To simplify the

description of degassing processes, we take into account only the water content of the magma,
The lithostatic pressure is the pressure imposed on a layer of soil or rock by the weight of

overlying material. At a depth z, it is given by

it loses an amount of gas, which depends on pressure. We use the relationship between the
n,

dissolved water concentration, n, and lithostatic pressure, p, for basalt (Scandone and

Giacomelli, 1998)

the height of the simulated volcanic edifice, horizontal movements of magma are allowed only if
which we consider at the saturation pressure in the magma reservoir. Therefore, as magma rises,

symmetry in the dynamical rules of the field n. In other words, we impose that from the half of
they are towards the central axis of the grid.

Fig. 1 - Snapshot of a large synthetic eruptive event involving about 2000 cells and connecting the reservoir to the
surface. Since a path of fractures connected to the surface is opened, magma stored in the system is discharged. White

cells represent non-fractured rocks, shaded cells represent fractured cells, colored cells correspond to cells that contain

magma. Color scale reports magma degassing: red cells are rich of gas, magenta cells are completely degassed.

2.3. Modeling magma degassing
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Fig. 2 - Snapshot of a synthetic eruptive event involving 14 cells. White cells represent non-fractured rocks, shaded
cells represent fractured cells, colored cells correspond to cells that contain magma. Color scale reports magma
degassing: red cells are rich in gas, magenta cells are completely degassed.

p=py+g|pz)dz o)
0

where p(z) is the density of the overlying rock at depth z, g is the acceleration due to gravity, and
Do 1s the pressure at the surface. In the following, we study statistical distributions of simulated
eruptive events by using the three different rock density profiles shown in Fig. 3. In the first case,
we assume a constant rock density p; = 2700 kg/m?; in the second case, we approximate the rock
density to a step function p,(z), while in the third case, we consider the rock density as a linear
function of the depth p;(z)=a+bz, where the constants a and b are found by imposing that the rock
density value is 3000 kg/m? at the bottom of the volcanic edifice (z = 12 km) and 2200 kg/m? at
the surface (z = 0).

Substituting Eq. (2) in Eq. (1), we calculate the changes of the dissolved water concentration
with the depth. To estimate the percentage of gas loss, n,,,,, we assume that the exsolved water,
n,, is completely lost, n,,,= n,, and calculate the exsolved water by the following equation
(Sparks, 1978; Wilson and Head, 1981):
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Fig. 4 - Normalized number of eruptions with percentage of gas losses between n,,, and n,+ & (with § = 0.1%)
obtained for a) a constant rock density; b) a density-depth step function; c) a density-depth step function in the
undersaturated case; d) a density-depth linear function.
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P,

Fig. 5 - Probability of occurrence of an eruptive
event as a function of the erupted volume, which is
the sum of the values that the field » assumes in all
fractured cells connected to the surface. The four
curves are obtained from the different density-depth
v functions as in the legend.

n=n,—n, 3)

where n, is the initial dissolved water concentration in the magma reservoir.

3. Numerical results

We study the probability of occurrence of a simulated eruptive event, p(n,,,,), with percentage
of gas losses between n,,, and n,,,, + & (with § = 0.1%). We treat statistics of over 10'° per run
with open boundary conditions, which means that border cells have only three neighbours instead
of four. In Fig. 4, we report p(n,,,,) obtained by using the three pressure profiles discussed in the
previous section. First of all, we notice that if we approximate the rock density with a step
function, p,(z), the number of simulated eruptions (Fig. 4b) shows essentially a linear decreasing
behaviour with the percentage of gas loss. Such a linear decreasing behaviour is missing in the
other two cases (Figs. 4a and 4d), where the normalized number of eruptions abruptly decreases
with lowering of the amount of gas losses. This feature implies that in both cases of constant rock
density, p;, and linear rock density, p;(z), eruptions that occur with a very low percentage of gas
loss (extreme explosive events) are more unlikely and a minimum threshold value of 7, exists.
We observe that the initial dissolved water concentration n, (see previous section), which
determines the maximum percentage of gas loss of an eruptive event, has similar values in the
cases of constant (p,) and linear [p;(z)] rock density, where 7, is about 6%. Instead, by using
Eq. (1) when p(z)=p,(z), the initial water content dissolved in the liquid results approximately
10% and, therefore, for this case we also study the undersaturated case (Fig. 4c), where the
saturation value of the pressure is obtained for 7, = 6% and gas losses are allowed only at depths
for which pressures are less than such a saturation value. Also in the undersaturated case, an
essentially linear decrease with the percentage of gas loss is observed, but an increase of the
normalized number of eruptions for low gas losses emerges with respect to the saturated case (see
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Fig. 4b).

To analyze how the number of eruptions is distributed in terms of erupted volumes, we plot in
Fig. 5 the probability of occurrence of an eruption of volume V for the selected density profiles.
The volume V' is obtained by adding the values of n in all fractured cells connected to the surface.
We notice that the size of each cell of our grid is of the order of 10* m?, since we discretize a
depth of 12 km (see section 2.3) with 120 square cells and assume a unitary length in the direction
orthogonal to the grid. In this way, eruptive events involving from 1 to 1000 cells are
characterized by erupted volumes ranging from 10* to 107 m>. We specify that the unitless field
n quantifies the percentage of magma in a rock cell being n =1 - n,, where 1 is the value in the
magma reservoir and ne depends on the depth as established by Eq. (3). The plot in Fig. 5 shows
an approximately linear decrease of the normalized number of eruptions with erupted volumes in
a log-log scale, which suggests a characteristic power-law behavior. However, peaks in the
probability functions appear in all considered cases. The presence of peaks is explained if we
consider that different patterns of fractures filled with magma can provide the same value of V.
The more the number of equivalent patterns of fractures is high, the more the peak is pronounced.
As it is reasonable to expect, the first peak of p(V) is found when the rock density is approximated
by a step function. In this case, the largest number of cells are characterized by the lowest value
of the rock density, which causes the largest gas losses and, consequently, the smallest values of
V.

4. Conclusions

We studied the effect of three different rock density profiles on the statistical distribution of
eruptions in terms of gas losses. We described the magma ascent by means of a field of
fractures through which magma can rise (Scandone et al., 2007; Piegari et al., 2008). The
presence of magma in the fractured rock is taken into account by introducing another field,
whose values change when degassing processes occur. Since the way of magma degassing
depends on the rock density profile, we performed numerical simulation with three rock
density profiles to study the effects of such variations on the probability of occurrence of
eruptive events. We found that the model gives quite similar results in both the cases of a
constant rock density and a rock density linearly dependent on the depth, due to a sort of
compensation between the largest and smallest values of the resulting lithostatic pressure.
Conversely, if the rock density is approximated by a step function, the normalized number of
simulated eruption exhibits an essentially linear decreasing behavior with the percentage of gas
loss and extreme events are the most likely to occur, if compared with those predicted by the
other two cases. We notice that in this paper we have taken into account only the effects of rock
density and have neglected those related to density of magma. Such a simplification is the main
limitation of the model, as it does not allow to describe mechanisms of magma buoyancy. For
this reason, such a restriction will be relaxed and both the rock and magma densities will be
taken into account in future work.
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