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ABSTRACT We studied the conditions of crust and tube formation of a lava flow moving under the
effect of gravity in a rectangular cross-section channel and assumed a power-law
rheology for lava. We followed the work of Valerio et al. (2008), who studied the effect
of surface cooling on the formation and accretion of the crust in the central region of
the channel, assuming for lava a Newtonian rheology. According to these authors, tube
formation is influenced by topography and channel morphology. In this work, we
extended this study to a non-Newtonian rheology, in particular to the power-law
rheology. Results indicate that a power-law rheology strongly influences the condition
of crust formation but does not produce significant differences as a function of
topographical or morphological variations.
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1. Introduction

Many observed basaltic lava channels exhibit a surface crust that is carried along by the flow
and looks dark due to its lower radiative temperature (Griffiths et al., 2003). When the crust is
thick enough so as to form a connected roof, a lava tube can arise (Peterson et al., 1994).  Models
of lava tube formation, as a consequence of the crust welding to the channel levées , have been
proposed considering lava as a Bingham liquid (Dragoni et al., 1995) or a Newtonian liquid
(Cashman et al., 2006). Valerio et al. (2008) described the formation of the surface crust as a
consequence of the surface cooling of a Newtonian lava flow by introducing a temperature-
dependent, yield strength, which models the plastic behavior of lava under the solidus
temperature. The authors also explored how variations in channel width, ground slope and
volume flow rate can affect the formation of a lava tube.

Laboratory studies on basaltic melts have recently shown that lava rheology can exhibit a non-
Newtonian behavior under certain conditions which include  vesicularity (Spera et al., 1988;
Badgassarov and Pinkerton, 2004), crystal concentration (Pinkerton and Stevenson, 1992; Smith,
2000; Sonder et al., 2006; Champallier et al., 2008), temperature and shear rates (Shaw et al.,
1968). 

There is general consensus that the viscosity of  magma has a non-Newtonian pseudoplastic
behavior, with the only exception of Smith (2000), who attributes  a dilatant rheology to lava at
high crystal concentrations. Pseudoplasticity and dilatancy belong to a power law rheology, where
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the apparent viscosity depends on a power of the strain rate with exponent n. If n is lower than 1,
the fluid is pseudoplastic and it thins with an increase of shear stress. If n is greater than 1, the
fluid is dilatant and it thickens with an increase of shear stress.

When solving the problem of a gravity-driven lava flow, the power-law rheology introduces a
non-linearity in the diffusion term of the momentum equation and an analytical solution of the
governing differential equations is not possible. This has given rise to various approximate
solutions to the problem. The fully developed laminar flow of power-law fluids has been studied
numerically using the finite element method (Syrjälä, 1995) and the finite volume method
(Capobianchi, 2008) for a pressure driven flow in a horizontal rectangular duct and using the
finite volume method for a gravity driven flow down an inclined rectangular duct (Filippucci et
al., 2010).

In this work, we analyzed the crust and tube formation  by assuming  a power-law rheology
and investigated the difference with respect to the model of  Valerio et al. (2008).

2. Model equations

We consider a viscous fluid flowing in the x direction down an inclined rectangular channel,
with the cross-section parallel to the yz plane. The width of the channel is a and the thickness is
h; the slope of the inclined plane is α. The channel and the coordinate system are shown in Fig.
1a. The flow is assumed steady, laminar and subjected to the gravity force. The fluid is assumed
isotropic and incompressible, with constant density ρ.

Cooling is described for a lava flow exiting from a vent with an effusion temperature T0=1273
K.

We assume the flow as laterally isothermal (the effects of levées and of the ground on cooling
are neglected) and the cooling process occurs from the upper surface by assuming a fixed value
of the heat flux q0=104 W⋅m-2 where q0 can be considered as representative of the sum of the main
contributions to surface cooling (radiation and forced convection).  It describes the average heat
loss from the surface that is covered by solid crust and from the crust-free shear regions (Valerio

Fig. 1 - Coordinate system (a);  computational molecule for the dynamical problem (b); computation molecule for the
thermal problem (c). 
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et al., 2008). 
The momentum and energy equations governing the fluid flow and heat transfer are the

following:

(1)

(2)

where vx and gx are the x components of velocity and acceleration of gravity respectively, T is the
temperature, ηapp is the apparent viscosity, χ is the thermal diffusivity

(3)

where K is the thermal conductivity and cp is the heat capacity.
The apparent viscosity of a power-law fluid, under our assumptions, is:

(4)

where k is the fluid consistency, which is a measure of the resistance to shear.
The boundary conditions are the no-slip and the adiabatic condition at the walls and the

constant heat flux at the upper surface. Initially, the fluid has a uniform temperature T0. The
dynamic boundary conditions are:

(5)

(6)

At the time t=0, a constant heat flux q0 is set and the thermal boundary conditions for t>0
become:
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(7)

(8)

The dynamic problem is solved numerically by using the control volume method with an
iterative solver (Filippucci et al., 2010). In summary, the calculation domain is divided into a
finite number of non-overlapping sub-domains (or control volumes CV).  Variables are arranged
with the computational node located at the center of an internal CV.  The CV at the boundary is
half of the internal CV and the computational node is a boundary node. The position of any CV
is identified by a set of two indices (i,j) as shown in Fig. 1b.

The differential equation is integrated over each CV using linear interpolation functions between
the two nearest grid points. This is a second-order approximation scheme which corresponds to the
Central-Difference approximation of the first derivative in the Finite Difference methods (Ferziger
and Peric, 2002). This is known as discretization procedure and finds an algebraic equation that is
solved numerically and represents an approximation of the analytical solution.

The discretized momentum equation in grid notation is the following:

(9)

where

(10)

Focusing on ai-1,j and considering that the coefficients on the other faces are treated in the
same way, we have:

(11)

and

(12)

For a more complete treatment of the discretization of the viscosity coefficient ηi-1,j in Eq.
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(11), the reader should refer to Filippucci et al. (2010).
From the solution for the velocity, we can compute the shear stress as:

(13)

Fig. 2a shows σxy profiles in z =0 for different values of n.
The discretization of the energy equation involves, in addition, the integration of Eq. (2) over the

time interval from t to t+∆t. The integration is operated by using a fully implicit scheme, which
ensures simplicity and physical consistency (Patankar, 1980). The value T0 at the time t is used to
find the value T at the time t+∆t. The superscipt 0 denotes the value of T at the preceding time step.

The discretized energy equation in grid notation is:

(14)
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Fig. 2 - a) Shear stress profiles  (y, 0) for different values of n (a=10 m, h=3 m, α=0.2 rad, ρ=2800 kg m-3, k=104 

Pa sn); b) surface temperature T as a function of x for different values of n (cp=837 J kg-1 K-1, K=3 W K-1 m-1, q0=104

W m-2).
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(17)

Focusing on ci-1,j and considering that the coefficients on the other faces are treated in the
same way, we have:

(18)

The computational molecule of the thermal problem at the time t is shown in Fig. 1c. 
In our problem, the velocity field is independent of the temperature field and it is solved first.

Once the velocity field is known, the temperature field can be solved.
The algebraic Eqs. (9) and (14) are solved iteratively using a classical point by point Gauss-Seidel

method. Although the use of an iterative solver is necessary only for the momentum equation
(Ferziger and Peric, 2002), we adopted the same solution procedure also for the energy equation.

Valerio et al. (2008) substituted the time dependence of the solution in T with a space
dependence by the relation:

(19)

where

(20)

Lava velocity is strongly influenced by the  exponent n of the power-law rheology. Fig. 2b
shows surface cooling  as a function of the distance x from the vent, for different values of n.  

3. Crust formation

To model the plastic behavior of the lava crust, Valerio et al. (2008) introduced a temperature-
dependent yield strength τ, given by:

(21a)
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where Ts is the solidus temperature. τ0 is the maximum yield strength (set equal to 8100 Pa); b is
a constant (set equal to 170).

In Fig. 3a, we plotted τ as a function of x’, for different values of n, where x’ is a spatial
variable which vanishes where the lava surface reaches the solidus temperature Ts=1173 K.

In the regions of the lava surface where the horizontal shear stress σxy<τ, crust formation and
growth are possible; where σxy>τ shearing movements occur and crust formation is inhibited. d/a
is the portion of the crust surface covered by the crust and Fig. 3b shows d/a as a function of x’,
for different values of n.

4. Tube formation

In the example of Fig. 3b, the crust grows up to a maximum value d/a=0.83,  meaning that
the crust never  entirely covers the lava surface  if we simply consider the cooling effect. This is
valid for every value of n we used in the power law rheology.  Finally, we analyze how changes
in the channel width a, channel slope α and lava flow rate q can modify d/a so as to reach the
condition for tube formation, d/a=1. 

First, we analyzed the trend of the maximum shear stress, as a function
of the channel half width a/2 for two different values of the slope α (Figs. 4a and 4b).

Then, we computed d/a as a function of a/2, by comparing with τ0. For this example, we
considered four values of the exponent n=0.5, 0.75, 1.25, 1.5 and two values of the ground slope
α=0.2 and 0.4 rad. Results are in Figs. 4c and 4d. In each plot, the comparison with the
Newtonian case is also presented (n=1).

As a second effect, we studied the variation of as a function of the channel slope α for
two different values of width a=10 and 20 m and by varying the rheology as before (Figs. 5a and
5b). The ratio d/a as a function of α, for the two values of a, by varying the rheology is plotted  and
compared with the Newtonian case (Figs. 5c and 5d).  As we expected, the curve corresponding to
the Newtonian case lies exactly between the pseudoplastic and the dilatant cases.
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Fig. 3 - a) Yield strength τ as function of x’ for different value of n; b) crust coverage on lava surface d/a as function
of x’ for different values of n (a=10 m, h=3 m, α=0.2 rad, ρ=2800 kg m-3, k=104 Pa sn).
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Finally, we analyzed the variation of  with the volume flow rate q for two different
ground slopes α=0.2 and 0.4 rad (Figs. 6a and 6b), by varying n. In Figs. 6c and 6d we plotted
d/a as a function of q, for the two slopes and for different values of n.

5. Discussion and conclusion

In a previous paper (Filippucci et al., 2010), we showed that the velocity profiles of a gravity-
driven channeled lava flow with a Newtonian rheology can be strongly modified by the
assumption of a power-law rheology. In particular, it was shown that differences among
Newtonian, pseudoplastic and dilatant rheologies grow by increasing the channel slope.

In this paper, we extended the study of the differences between the Newtonian and the power-
law model. We used the model published by Valerio et al. (2008) to study how the power-law
rheology can affect the conditions of crust and tube formation for a gravity-driven, channeled lava
flow. To facilitate the comparison with the Newtonian case of Valerio et al. (2008), we used the
same values of model parameters τ0, b, ρ, h, a, α, g and we used the value of η to model k.

First, we studied the surface cooling of the lava channel by numerically solving the heat
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Fig. 4 -  as function of a/2 (h=3 m, ρ=2800 kg m-3, k=104 Pa sn) for α =0.4 rad (a) and α =0.2 rad (b); d/a as
function of a/2 for α =0.4 rad (c) and α =0.2 rad (d).
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conduction equation.
We can observe that for the dilatant fluid (n=1.25 - 1.5) the solidus is reached much closer to

the vent than for the Newtonian fluid (n=1) and for the pseudoplastic fluid (n=0.75-0.5).
As the surface temperature reaches Ts (x’=0), τ starts to increase up to the threshold τ0 and the

distance from the vent where τ reaches τ0 strongly depends on the assumption on rheology (Fig.
3a). When τ increases, the crust width d/a grows too and attains its maximum width and stops
widening where τ reaches τ0 (Fig. 3b). In particular, with respect to the Newtonian fluid, while
for the dilatant fluid the crust stops widening very close to the point where T=Ts, the
pseudoplastic fluid will cover a much longer distance before the crust reaches its maximum
width. This result is a consequence of the substitution (19). In fact, with our assumptions, the
pseudoplastic fluid down a slope flows with  greater than that of the Newtonian fluid, which
in turn is greater than that of the dilatant fluid, and this has the consequence that, at the same time
as t, it will have covered the greatest distance x before the crust stops widening.

The transition from a mobile crust to a solid roof is achieved when d/a=1. We also explored
the possibility of developing a solid roof and analyzed the effect of the non-linear rheology.
Following Valerio et al. (2008), we studied the effects of variations of topography (slope) and of
morphology (width and volume flow rate) of the lava channel on and on d/a. We considered
four different values of n (n=0.5, 0.75, 1.25, 1.5) and compared our results with the Newtonian
rheology. We found that, independently of n, and d/a are decreasing functions of channel
width (Fig. 4) and are increasing functions of channel slope (Fig. 5) and of volume flow rate (Fig.

 
σ xy

M

σ xy
M

 v x

Fig. 5 -  as function of channel slope α (h=3 m, ρ=2800 kg m-3, k=104 Pa sn) for a = 10 m (a) and a = 20 m (b); d/a

as function of α  for a = 10 m (c) and a = 20 m (d).
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6). We also found that conditions for tube formation are favoured for thin channels, for gentle
slopes and for low volume flow rates. It is worth noting that the use of a power-law rheology in
this case does not produce important differences with respect to the Newtonian rheology. The
only exception is shown in Fig. 6d, where it can be seen that, for a pseudoplastic fluid, the volume
flow rate must be lower than in the case of a Newtonian and a dilatant fluid, in order to achieve
the condition for tube formation.

In conclusion, we have shown here that the formation of a lava tube, due to topographic and
morphological variations of the lava channel, has a slight dependence on the non-linearity of the
fluid and the results of Valerio et al. (2008) on the Newtonian fluid seem to be valid also for
power-law fluids.

The effect of non-linear rheology is more important when a cooling process is considered. In
fact, we have shown that the rapidity of the crust formation, due to a constant heat flow, at the
lava channel surface strongly depends on the degree of non-linearity of rheology.

So, although the effect of a power-law rheology can be considered negligible when
topographic and morphological variations occur, the power-law rheology plays a very important
role when thermal variations occur. Due to the importance of the cooling process of a gravity-
driven, lava flow involving the power-law rheology, this matter should be object of more detailed
future studies.

Fig. 6 - as function of volume flow rate q (a=10 m, ρ=2800 kg m-3, k=104 Pa sn) for α = 0.4 rad (a) and α = 0.2 rad
(b); d/a as function of q for α = 0.4 rad (c) and α = 0.2 rad (d). 
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