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ABSTRACT	 Facies classification plays a crucial role in geosciences, especially in the exploration 
and development of resources. Sedimentary facies offer valuable insights into physical, 
chemical, and biological conditions during sedimentation. Researchers have traditionally 
studied facies using rock samples, but machine learning offers a promising alternative 
for predictive modelling. This study employed two deep learning algorithms to classify 
facies using well-log data from the Hugoton and Panoma fields in North America, which 
derived from an academic exercise at the University of Kansas. The data set includes 
log data from nine wells, which was used to train supervised classifiers for predicting 
discrete facies groups. The first model, a Feedforward Neural Network (FFNN), achieved 
an accuracy of 72%, while the second model, a Convolutional Neural Network (CNN), 
demonstrated improved performance with an accuracy of 96%. These results underscore 
the effectiveness of deep learning for facies classification, with CNN outperforming 
FFNN in recognising complex geological patterns. Further improvements could be made 
through hyperparameter tuning and advanced architectures. Additionally, this study 
provides new insights into improving classification robustness by incorporating feature 
engineering and uncertainty estimation techniques.
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1. Introduction

Deep learning techniques have made significant strides in many domains, from image 
recognition to natural language processing, and they continue to transform how we approach 
complex problems. One of the most impactful applications of deep learning is in the field of 
classification, where models are used to categorise input data into predefined classes. This 
is particularly relevant in the context of log classification, where accurate identification and 
categorisation of log data can drive critical decision-making processes. In this article, we 
explore two popular deep learning architectures [Feedforward Neural Networks (FFNNs) and 
Convolutional Neural Networks (CNNs)] to classify log data into multiple categories. We will 
discuss the workings of each model, the associated hyperparameters, and their respective 
performance for this classification task.

Artificial Neural Networks (ANNs) have gained widespread use in the geological facies 
classification due to their capacity to model complex, nonlinear relationships within subsurface 
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data. A thorough review by Ofoh et al. (2023) investigates various ANN models, such as multi-
layer perceptrons (MLPs) and CNNs, in their applications for facies classification. These models 
have shown significant improvements in accuracy over traditional techniques, particularly 
when dealing with large, high-dimensional data sets from well logs and seismic surveys. The 
review highlights the strengths of ANNs in automatically learning relevant features from raw 
data, reducing reliance on expert knowledge for feature selection. Furthermore, the review also 
addresses challenges such as overfitting and the need for large, diverse data sets, by proposing 
strategies to mitigate these issues and enhance the generalisation of ANNs in geological 
applications.

FFNNs, also known as MLPs, are one of the most fundamental types of neural networks. FFNNs 
consist of an input layer, one or more hidden layers, and an output layer. In this architecture, 
neurons are connected in a directed manner, allowing data to flow from the input to the output 
without feedback loops, giving it its ‘feedforward’ nature. FFNNs excel in tasks where input-
feature relationships are relatively simple or can be approximated by linear combinations of 
features. They are highly flexible and can be applied to various tasks, including regression and 
classification. The key components of an FFNN are the number of neurons in each layer, the 
activation functions used in these neurons [such as the rectified linear unit (ReLU) or Sigmoid 
function], and the regularisation techniques like dropout, which help mitigate overfitting 
(Goodfellow et al., 2016).

While FFNNs work well for many problems, their effectiveness can be limited when the input 
data exhibit more complex relationships that are difficult to capture with a simple feedforward 
structure. This is particularly true in tasks such as log classification where the data may contain 
spatial or temporal dependencies that are challenging for a standard FFNN to capture. In such 
cases, more advanced models, like CNNs, come into play.

CNNs are a class of deep learning models designed to process data with a grid-like topology, 
such as images, audio, or time-series data. Unlike FFNNs, which rely on fully connected layers, 
CNNs utilise convolutional layers to perform localised filtering on the input data, learning spatial 
hierarchies, and patterns. This ability enables CNNs to effectively capture more complex and 
hierarchical features within the data. CNNs typically consist of three types of layers: convolutional 
layers, pooling layers, and fully connected layers (LeCun et al., 2015). The convolutional layers use 
small filters (kernels) that slide across the input data to extract features such as edges, textures, 
or patterns. The pooling layers, then, down-sample the data, reducing the spatial dimensions and 
focusing on the most important features, which also help reduce overfitting. The fully connected 
layers at the end of the network combine the learned features to make predictions.

The application of deep learning techniques, particularly CNNs, has revolutionised the 
classification of lithological facies in geological studies. CNNs have proven to be highly effective in 
extracting relevant features from well log data, which are essential for accurate facies identification. 
This approach benefits from the hierarchical feature learning capabilities of CNNs, enabling the 
model to detect intricate patterns in the data without the need for extensive manual feature 
engineering. The study by Xie et al. (2020) demonstrates that CNNs can significantly improve the 
classification accuracy of lithological facies compared to traditional methods. Their work showcases 
how CNN models can be trained on raw geological data, leading to more efficient and reliable 
facies classification, which is crucial for tasks such as reservoir characterisation and exploration.

Recent advancements in deep learning have significantly enhanced facies classification in 
geological exploration. Researchers have developed various neural network architectures, 
including CNNs and FFNNs, to improve the interpretation of complex geological data. These 
studies have demonstrated the potential of deep learning models to automate and refine the 
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process of facies classification, thereby, reducing manual labour and subjectivity.
Lee et al. (2023) introduced a latent diffusion model specifically designed for the conditional 

generation of reservoir facies. This model produces high-fidelity facies realisations that rigorously 
preserve conditioning data and significantly outperform previous generative adversarial network-
based alternatives. The approach addresses the challenges of capturing complex geological 
patterns, offering a more accurate representation of subsurface structures. 

Shang et al. (2023) applied deep learning techniques to core image analysis in the Mackay 
River oil sand reservoir. Utilising the ResNet50 CNN, they developed an intelligent system 
capable of automatically identifying facies types from core images. The system achieved a 
recognition accuracy of 91.12%, surpassing traditional CNNs and support vector machines. This 
advancement facilitates efficient and objective facies identification, essential for understanding 
subsurface reservoirs. 

Zhang et al. (2024) proposed KG-Unet, a knowledge-guided deep learning approach for seismic 
facies segmentation. This method integrates domain knowledge into the Unet architecture, 
enhancing the accuracy of seismic facies segmentation. The incorporation of geological constraints 
ensures that the segmentation results are both data-driven and geologically plausible, improving 
the reliability of subsurface interpretations. 

Li et al. (2022) addressed the challenge of limited labelled data in seismic facies classification by 
introducing a contrastive learning approach for semi-supervised learning. Their method efficiently 
identifies seismic facies using only 1% of the original annotations, making it highly effective in 
scenarios where labelled data are scarce. This approach leverages pixel-level contrastive learning 
to enhance feature representation, leading to improved classification performance. 

CNNs have become the go-to architecture for tasks that involve spatial or sequential data. 
They have demonstrated exceptional performance in a variety of fields, including computer 
vision (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012), and, more recently, in 
time-series classification tasks. Given that log data often contain temporal dependencies and 
sequential relationships between entries, CNNs are well suited for this type of classification 
problem, where they can learn patterns over time.

Although both FFNNs and CNNs are widely used, each has distinct strengths and weaknesses. 
FFNNs are relatively simple and computationally efficient, making them ideal for smaller data sets 
or problems where feature relationships are less complex. However, FFNNs may struggle to model 
the complex, high-dimensional relationships in data with spatial or temporal dependencies, which 
limits their performance in certain tasks. On the other hand, CNNs excel at capturing hierarchical 
patterns and can automatically extract relevant features from raw input data, but they are 
computationally more expensive and require more training data to generalise effectively.

Despite the success of deep learning in facies classification, some challenges remain, including 
overfitting, limited labelled data sets, and the need for robust validation methods. In this study, 
FFNNs and CNNs are compared for the task of multi-class facies classification, where the goal is 
to classify facies into one of nine categories based on the log features. 

The study aims to determine which model provides better generalisation and performance 
in complex geological settings while introducing a novel evaluation framework incorporating 
feature selection, uncertainty estimation, and comparative model performance analysis. We 
focus on hyperparameter tuning for both models, including the number of hidden units, the 
dropout rate, and the learning rate for FFNNs, as well as the number of filters, kernel size, and 
pool size for CNNs. By examining the impact of these hyperparameters on the performance of 
both models, we aim to provide insights into how to optimise each model for better accuracy in 
the context of log classification.
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2. Data set

In this study, we use well log data from the Hugoton and Panoma fields in North America, 
obtained from an academic exercise at the University of Kansas (Dubois et al., 2007). This data 
set originates from the Council Grove gas reservoir in SW Kansas, a carbonate gas reservoir 
spanning 2,700 square miles. It includes data from nine wells, totalling 4,149 samples, each with 
seven predictive features and associated rock facies (class). A separate validation set, comprising 
830 samples from two wells, uses the same seven predictors. Facies classification is based on 
core samples taken at half-foot intervals from the nine wells (Bohling and Dubois, 2003).

The predictor variables include five continuous measurements from wireline logs and two 
geological constraints derived from expert knowledge, sampled at a half-foot resolution:

•	 wireline log measurements: gamma ray, resistivity, photoelectric effect (PE), neutron-density 
porosity difference, and average neutron-density porosity. Note: some wells lack PE data;

•	 geological constraints: a nonmarine-marine indicator and relative position.
Facies are classified into the following nine categories:
1.	 nonmarine sandstone (SS),
2.	 nonmarine coarse siltstone (CSiS),
3.	 nonmarine fine siltstone (FSiS),
4.	 marine siltstone and shale (SiSH),
5.	 mudstone, primarily limestone (MS),
6.	 wackestone, a type of limestone (WS),
7.	 dolomite (D),
8.	 packstone-grainstone, a form of limestone (PS),
9.	 phylloid-algal bafflestone, another limestone type (BS).

2.1. Data quality control

Before training, data quality control (QC) was performed to ensure reliability. The QC steps 
included:

•	 outlier detection: removal of extreme values using statistical thresholding and visualisation 
techniques such as box plots,

•	 missing data handling: imputation using k-nearest neighbours (KNN) and mean substitution,
•	 normalisation: min-max scaling to standardise feature ranges and improve model 

performance,
•	 feature engineering: transforming input variables to enhance model interpretability, 

including principal component analysis for dimensionality reduction and synthetic feature 
creation for better class separation.

3. Methodology

3.1. One dimensional CNN model

The model used for facies classification is a one dimensional (1D) CNN designed to extract 
meaningful patterns from sequential data for multi-class classification. Fig. 1 shows the structure 
of the 1D CNN model. The architecture consists of an input layer, convolutional layers, pooling 
layers, dropout layers, fully connected dense layers, and an output layer. The input layer accepts 
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data shaped according to timesteps and features, where both dimensions are required. The 
convolutional layers automatically learn feature representations from the data. These layers have 
increasing filter sizes of 64, 128, and 256, which help capture patterns with complexities that 
vary as the depth increases. ReLU activation is applied for nonlinearity, and diverse kernel sizes 
of 3, 5, and 2 are employed to balance between capturing short- and long-term dependencies. 
Batch normalisation is used after each convolutional layer to stabilise training.

Fig. 1 - The structure of the 1D CNN model (Yang, 2022).

Pooling layers are integrated to reduce spatial dimensions while retaining essential features. 
1D maximun pooling with a pool size of 2 is used in earlier layers, while 1D global average pooling 
is used at later stages to summarise features without risking a dimensionality collapse. Dropout 
layers are placed after convolutional and dense layers, with dropout rates gradually increasing 
from 0.2 to 0.5 to prevent overfitting. Fully connected dense layers map the extracted features to 
the final output space. The hidden layers include 256 and 128 units with ReLU activation, followed 
by an output layer with nine units (corresponding to the nine classes) and softmax activation for 
generating class probabilities. L2 regularisation is applied in dense layers to discourage large 
weights, improving generalisation.

The hyperparameters were carefully tuned to optimise model performance. In the 
convolutional layers, the filters were set to 64, 128, and 256, which are common values in 
CNNs. This allows the model to effectively learn hierarchical patterns. Kernel sizes of  2, 3, 
and 5 were selected to balance the detection of fine-grained and broader context patterns. 
Dropout rates from 0.2 to 0.5 were used to regularise the model, preventing co-adaptation 
of neurons. The batch size was set to 64, providing a balance between training speed and 
stability. The learning rate was optimised at 0.0005, which is sufficiently small to ensure precise 
convergence without overshooting. Training was conducted over 200 epochs, monitored by 
early stopping to halt training once validation loss plateaued for 20 epochs, ensuring efficient 
training. Fig. 2 shows training and validation curves for the CNN model: a) loss and b) accuracy 
across epochs.

The training loss consistently decreases and stabilises, indicating effective model learning. 
Validation loss decreases initially and plateaus around epoch 50, showing no significant 
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overfitting. The training accuracy steadily improves, reaching 98%, while the validation accuracy 
stabilises at 96%, demonstrating strong generalisation. Overall, the model achieves high accuracy 
on both training and validation data sets with minimal overfitting, making it a robust solution for 
the task. Further improvements, such as hyperparameter tuning or data augmentation, could 
further optimise performance, if necessary.

The evaluation was conducted using metrics like F1-score, Jaccard index, and accuracy. The 
F1-score assessed the balance between precision and recall, particularly useful for imbalanced 
data sets, while the Jaccard index evaluated the similarity between predicted and true labels. 
Accuracy is measured by the proportion of correctly classified samples. The data set was split 
into training, validation, and test sets in a 70-15-15 ratio. Early stopping ensured the model did 
not overfit by halting training at the point where validation performance ceased to improve. 
A confusion matrix was used to visualise performance across all nine classes, helping identify 
misclassifications. Fig. 3 shows the confusion matrix of the CNN model.

The final model achieved a test accuracy of 98% and a weighted F1-score of 0.96 after 
hyperparameter tuning. The architecture effectively utilised deep convolutional layers with 
diverse kernel sizes to capture intricate patterns in the log data. Regularisation techniques, such as 
dropout and L2 penalties, successfully minimised overfitting, thus enhancing generalisation. The 
use of 1D global average pooling enabled the model to summarise features without dimensionality 
issues. Overall, the model demonstrated competitive performance for log classification, balancing 
depth, regularisation, and feature extraction to generalise well on unseen data.

Fig. 2 - Training and validation curves for the CNN model: a) loss and b) accuracy across epochs.

4. The FFNN model

A FFNN is a type of ANN where connections between nodes do not form cycles. It is the 
simplest form of neural network and is typically organised into layers: the input layer receives 
the input features of the data set, the hidden layers perform computations using weights, biases, 
and activation functions to extract patterns and relationships from the data, and the output 
layer produces the final prediction. For classification tasks, the output layer often uses a softmax 
activation function to output probabilities for each class. In this model, the FFNN was used for a 
multi-class classification problem with nine categories.
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Fig. 3 - Confusion matrix of the CNN model.

Hyperparameters are settings that define the architecture of the model and the learning 
process. Fig. 4 shows a diagram of the FFNN model (Ma et al., 2019). In this model, hyperparameter 
tuning was conducted using Keras Tuner to optimise the FFNN performance. The number of units 
(neurons) in each hidden layer plays a crucial role, with the first hidden layer ranging from 64 to 
256 units (step size = 32), the second from 256 to 512 units (step size = 32), and an optional third 
hidden layer ranging from 128 to 256 units (step size = 32). The neurons in each layer determine 
the model’s capacity to learn features. More units allow the model to capture complex patterns, 
but increase the risk of overfitting. During tuning, 64 units in the first layer and 256 units in the 
second layer were found to be optimal, balancing model complexity and generalisation.

The dropout rate is a regularisation technique that deactivates a fraction of neurons during 
training to prevent overfitting. In this model, the range for dropout was set between 0.1 and 
0.3, with a step size of 0.05. Lower dropout rates, like 0.1, enable the model to retain more 
neurons, which can lead to better learning in small data sets, while higher rates, like 0.3, prevent 
overfitting in larger models. The final selected dropout rates were 0.2 and 0.3 for the first and 
second hidden layers, respectively. The learning rate, controlling the step size during gradient 
descent, ranged from 0.001 to 0.0001. A larger learning rate, e.g. speeds up convergence but 
risks overshooting the optimal point, while a smaller rate, e.g. provides finer adjustments but 
requires more epochs to converge. The best results were achieved with a learning rate of 0.001.

The final model architecture derived from hyperparameter tuning includes an input layer 
accepting 20 numerical features, a first hidden layer with 64 neurons using ReLU activation 

Fig. 4 - Diagram of the FFNN model (Ma et al., 2019).



8

Bull. Geoph. Ocean., XX, XXX-XXX	 Noroozi and Riahi

and a 0.2 dropout rate, a second hidden layer with 256 neurons and a 0.3 dropout rate, batch 
normalisation after each layer to stabilise learning, and an output layer with nine neurons using 
softmax activation. The combination of these layers and hyperparameters resulted in a model 
that effectively balances complexity and generalisation.

The number of neurons greatly influenced the model’s accuracy, as too few neurons led 
to underfitting, while too many caused overfitting. Dropout rates higher than 0.3 degraded 
accuracy by removing too much information during training, while optimal rates of 0.2 and 
0.3 provided sufficient regularisation. The learning rate of 0.001 balanced training speed and 
accuracy, as smaller rates required significantly more epochs to achieve similar performance. 
The model was evaluated using a validation split, with 20% of the training data used for 
validation. Early stopping was employed to prevent overfitting and halt training when the 
validation loss failed to improve for 10 consecutive epochs. The best model was, then, 
tested on a separate test set, achieving a maximum test accuracy of approximately 72%. A 
confusion matrix was used to visualise performance across all nine classes, helping identify 
misclassifications. Fig. 5 shows the confusion matrix of the FFNN model. This suggests that 
further improvements could be made through methods such as the collection of more data 
or usage of advanced techniques such as ensemble models. Fig. 6 shows the training and 
validation curves for the FFNN model: a) loss and b) accuracy across epochs. In this training 

Fig. 5 - Confusion matrix of the FFNN model.

Fig. 6 - Training and validation curves for the FFNN model: a) loss and b) accuracy across epochs.
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output, both the training and validation losses steadily decrease over time, with validation 
loss closely following the training loss. This indicates that the model is effectively learning 
and the performance is improving without signs of overfitting. The training accuracy shows 
a consistent upward trend, reaching a high level, and the validation accuracy also increases, 
stabilising at around 70%. The minimal gap between training and validation accuracy suggests 
good generalisation and an effective learning process. This overall pattern reflects successful 
model training with steady improvement.

The architecture of this FFNN model, coupled with hyperparameter tuning, achieved a good 
balance between complexity and regularisation. The hyperparameter ranges explored directly 
influenced the model’s ability to generalise, while the evaluation method ensured the model 
was not overfitted. The process highlights the importance of careful tuning and evaluation in 
achieving competitive performance.

5. Comparison between the FFNN and CNN models

In the process of developing a robust model for multi-class log classification, two architectures 
were explored: a FFNN and a CNN. Both models were designed and extensively tuned, with 
hyperparameters optimised to achieve the best possible performance. Below is a comparison 
of their characteristics (Table 1), strengths, and limitations, providing a basis for the conclusion.

Table 1 - Comparison between the FFNN and CNN models.

	 Layer type	 FFNN model	 CNN model
	 Input layer	 20 neurons	 (num_samples, 20, 1)
	 Hidden layers	 2 Fully connected (dense) layers	 2 convolutional + 2 pooling layers
	 Convolutional layers	 None	 2 (64 filters, 128 filters)
	 Pooling layers	 None	 2 (max pooling)
	 Output layer	 9 neurons (softmax)	 9 neurons (softmax)

1.	 Model architecture:
•	 the FFNN model was composed of fully connected layers designed to extract 

relationships between features in the data set. The model architecture included two 
hidden layers with 64 and 256 neurons, ReLU activations, and dropout rates of 0.2 and 
0.3 for regularisation;

•	 the CNN model leveraged convolutional layers to automatically extract spatial and 
sequential patterns from the data. It featured three convolutional layers with 64, 128, 
and 256 filters, kernel sizes of 3, 5, and 2, ReLU activation, max pooling, and a fully 
connected output layer.

2.	 Performance metrics:
•	 the FFNN model achieved an accuracy of approximately 72% and a weighted F1-

score of 0.72. These results indicated the model’s ability to capture basic patterns but 
suggested a limited capacity to handle complex dependencies in the data;

•	 the CNN model achieved a higher accuracy of approximately 98% and a weighted F1-
score of 0.96. The improved performance highlights CNN’s superior ability to detect 
intricate patterns and relationships in sequential data.
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3.	 Regularisation and overfitting:
•	 in the FFNN model, regularisation was achieved through dropout and L2 penalties. 

While effective to some extent, the FFNN model was more prone to overfitting, 
particularly as the depth of the network increased;

•	 the CNN model benefited from additional regularisation through pooling layers and 
the hierarchical feature extraction process inherent in convolutional layers. This made 
the CNN model more resistant to overfitting, even with a more complex architecture.

4.	 Hyperparameter sensitivity:
•	 the performance of the FFNN model was highly sensitive to the number of neurons and 

dropout rates. Excessive neurons or insufficient dropout led to overfitting, while too 
few neurons caused underfitting;

•	 the CNN model was less sensitive to specific hyperparameter values due to its inherent 
ability to adapt to spatial hierarchies in data. However, filter size and kernel size 
required careful tuning to balance feature extraction and computational efficiency.

5.	 Scalability and computational efficiency:
•	 the FFNN model required less computational power and trained faster due to its 

simpler architecture. This makes it suitable for smaller data sets or scenarios with 
limited computational resources;

•	 the CNN model required significantly more computational resources and longer training 
times, owing to the larger number of parameters and the convolutional operations. 
However, this trade-off resulted in better generalisation and accuracy.

6.	 Suitability for the data set:
•	 the FFNN model performed adequately for simpler patterns but struggled to effectively 

model the inherent sequential dependencies in the log data;
•	 the CNN model outperformed the FFNN model by leveraging its convolutional layers to 

identify sequential patterns and spatial hierarchies, making it better suited for this data set.

6. Predict blind well data

Initially, the Churchman Bible well data were removed from the training data and designated 
as blind data. This was done to evaluate the model performance on data that had not been seen 
during training and had served as an independent test set. This approach enabled the assessment 
of the model accuracy and generalisation capability on unseen data, ensuring that the predictions 
made by the model were not influenced by prior knowledge of these specific data points.

Next, a CNN model was applied to the blind data. This process enabled a more accurate 
and efficient simulation of the facies, with the results from these predictions offering valuable 
insights for exploration and development decisions in geosciences.

The CNN model achieved an accuracy of 92% and a weighted F1-score of 0.88 on unseen 
data after hyperparameter tuning. The architecture effectively utilised deep convolutional 
layers with diverse kernel sizes to capture intricate patterns in the log data. Regularisation 
techniques, such as dropout and L2 penalties, helped minimise overfitting, consequently 
contributing to better generalisation. The use of 1D global average pooling enabled the 
model to summarise features efficiently without encountering dimensionality issues. 
Overall, the model demonstrated strong performance for log classification, balancing depth, 
regularisation, and feature extraction, while maintaining good generalisation on unseen 
data.
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Ultimately, the output of the model’s predictions on the blind data is shown in Fig. 7. These 
results represent the model’s accuracy in predicting facies for the Churchman Bible well. In 
this figure, a comparison is made between the predicted facies and the actual facies data, 
which visually demonstrates how well the model has performed in simulating the facies. This 
comparison not only validates the model’s effectiveness but also highlights potential areas for 
improvement and model refinement.

Fig. 7 - Comparison of predicted and actual facies for the Churchman Bible well using the CNN model. The first 
five graphs are log measurements, while the last two graphs compare the predicted facies with the actual facies 
data.

7. Conclusions

This study employs deep learning techniques to classify geological facies using well-log data 
from the Hugoton and Panoma fields. Two models, a 1D CNN and an FFNN, were implemented 
and trained on log data consisting of multiple predictive features. The CNN architecture 
comprises convolutional layers with increasing filter sizes, pooling layers, dropout layers, and 
fully connected dense layers, optimised using hyperparameters like kernel size, dropout rate, 
and learning rate. The FFNN, with a simpler architecture, consists of multiple fully connected 
layers with ReLU activation and dropout regularisation. Both models were evaluated using 
accuracy, F1-score, and Jaccard index, with the data set split into training, validation, and 
test sets. A blind well test was conducted on unseen data to assess the model generalisation 
ability.

The results indicate that while both models achieved reasonable classification accuracy, 
CNN significantly outperformed FFNN, achieving 98% test accuracy compared to the 72% for 
FFNN. CNN’s hierarchical feature extraction enabled it to capture intricate sequential patterns 
in the data, making it better suited for facies classification. However, this came at the cost of 
higher computational requirements. FFNN, while computationally efficient, struggled with the 
complexity of the data set and exhibited limitations in recognising spatial dependencies. The 
study highlights trade-offs between accuracy and efficiency, suggesting that CNN is preferable for 
high-precision tasks, whereas FFNN remains a viable option for simpler applications or resource-
constrained environments.
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In conclusion, deep learning offers a promising alternative to traditional facies classification 
methods, with CNN demonstrating superior accuracy and generalisation. However, challenges 
such as data limitations, computational cost, and uncertainty estimation must be addressed. 
Future research could explore hybrid models, ensemble techniques, and advanced architectures 
like recurrent neural networks to further enhance predictive accuracy. Additionally, incorporating 
uncertainty quantification methods, such as Bayesian neural networks, may improve model 
reliability. Overall, this study reinforces the effectiveness of deep learning in geological exploration 
while emphasising the importance of optimising models based on application constraints.
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