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ABSTRACT	 Large earthquakes are often followed by aftershocks, which can cause further damage 
and cost lives. A pattern recognition approach called Next Strong Related Earthquake 
(NESTORE) has been developed to forecast whether one of these subsequent large 
events is to be expected in an occurring seismicity cluster. This method, already 
successfully applied in Italy, Slovenia, California, Greece, and Japan, has been optimised 
in the NESTOREv1.0 software written in MATLAB. Using machine learning, NESTOREv1.0 
provides a probabilistic forecast of earthquake clusters where a mainshock is followed 
by a significant aftershock. It classifies clusters as type A (mainshock and strongest 
aftershock differ by ≤ 1 magnitude unit) or type B (larger difference). NESTOREv1.0 adapts 
to specific regions through supervised training. It trains one-node decision trees on 
individual features at increasing time intervals, selects the best classifiers, and combines 
them using a Bayesian method to forecast type A clusters. Recent improvements to 
the algorithm added a new approach for identifying clusters based on Epidemic-Type 
Aftershock Sequence (ETAS) and an innovative method for detecting outliers before 
training. This study compares results from Greece, Italy, western Slovenia, California, and 
Japan, highlighting the performance on independent test sets and seismicity features in 
different regions and interpreting the differences between the regions.
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1. Introduction

The increasing availability of high-quality seismic data and the advancement of machine 
learning techniques applied to seismology (DeVries et al., 2018; Karimzadeh et al., 2019; Wang 
et al., 2019; Mignan and Broccardo, 2020; Zhao et al., 2022; Stockman et al., 2023; Liu et al., 
2024; Schimmenti et al., 2024) have opened new roads for improving aftershock forecasting, a 
crucial component of seismic hazard assessment. In this context, we developed the Next Strong 
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Related Earthquake (NESTORE) algorithm, a data-driven approach designed to identify and 
classify clusters with strong aftershocks using supervised learning methods. This study presents 
the outcomes resulting from the application of NESTORE in five tectonically diverse regions, 
California, Italy, western Slovenia, Greece, and Japan, enabling a comparative analysis of its 
performance and generalisation capability. 

In this paper, we summarise, integrate, and coherently compare the results of previous 
NESTORE applications, which have been presented individually in papers, conferences, 
workshops, and theses (Gentili and Di Giovambattista, 2017, 2020, 2022; Anyfadi, 2023; Anyfadi 
et al., 2023; Gentili et al., 2023a, 2023b, 2024, 2025; Brondi et al., 2025a).

Here, we aim to jointly exploit these results to improve the understanding of feature performance. 
By comparing the behaviour of features and threshold values in different seismotectonic domains, 
we seek to identify patterns and evaluate how different tectonic settings may influence predictive 
capabilities, providing clues for future methodological and operational developments.

As NESTORE is also applied to new clusters, some results are shown here for the first time.
Over the years, the method has been modified and improved to make it more robust and to 

meet the challenges posed by the analyses of new regions. Section 2 describes the regions where 
NESTORE has been applied from a seismotectonic perspective, highlighting the differences within 
and between regions whereas Section 3 provides a detailed description of the newer version of 
the method. Section 4 illustrates how the results differ between regions both in terms of the 
performance of the algorithm and the parameters obtained through training. Finally, in Section 5, 
the differences observed in the different studied regions are discussed and interpreted, and the 
limitations and advantages of the method are explored together with the research approaches 
pursued to address these limitations.

2. Analysed regions: seismotectonic and available data

The NESTORE algorithm has been successfully applied in several regions (see Fig. 1) 
characterised by different productivity and characteristics of seismic clusters. In the following 
sections we summarise the seismotectonic regimes of the analysed regions.

It is important to point out that the quality of NESTORE’s performance is highly dependent on 
the selected area and the quality and consistency of the catalogue. For this reason, preliminary 
analyses of the available catalogues were conducted in each territory, taking into account 
location accuracy and magnitude homogeneity. We excluded some offshore regions because of 
their poorer location and magnitude accuracy, as well as their higher completeness magnitude. 
In addition, we excluded volcanic regions and regions with deep seismicity, since they behave 
differently from shallow tectonic seismicity regions.

In one case, after a preliminary analysis, we also removed a sub-region (the small orange 
area in Fig. 1, located in northern Italy), where the seismicity characteristics, in terms of event 
frequency, differed from those of the rest of the analysed territory (Brondi et al., 2025a). In 
the corresponding paper, we proposed some hypotheses regarding the physical meaning 
of this behaviour. From a statistical perspective, the clusters in this area belong to a region-
specific population distinct from the other clusters, so including them in a joint analysis would 
introduce bias. Particular care was taken in defining magnitude homogeneity. For example, we 
used the Southern California Earthquake Catalogue (Hutton et al., 2010; SCEDC, 2013), which 
lists local magnitudes for all earthquakes. However, we did not use the Northern California 
Earthquake Catalogue (NCEDC, 2014), despite its similar quality, because it lists different types 
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of magnitude for different earthquakes. For northern California and the limited data available 
in western Nevada along the California border, we used the Advanced National Seismic System 
(ANSS) California Comprehensive Earthquake Catalogue (U.S. Geological Survey, n.d.) when local 
magnitude data were available as its magnitude assessment aligns well with the Southern 
California Earthquake Catalogue. For the same reason, we used the revised Lolli and Gasperini 
(2006) catalogue prior to the start of the ISIDE (Italian Seismological Instrumental and Parametric 
Database) catalogue in 2005, as it was explicitly proposed to provide compatible magnitude 
assessment. Catalogues adopted in Italy and NE Italy and western Slovenia after 2020 have been 
used for applying our methodologies to clusters different from those used for the calibration of 
the method; these are the real-time versions of the catalogues used for the previous years. They 
have been used for the near-real-time (NRT) application of the algorithm.

Table 1 lists the catalogues used for each region.
The following sections summarise the tectonic framework across analysed regions, providing 

context for interpreting how local structures may affect the occurrence of the largest aftershocks 
within seismic sequences and how these regional tectonic differences may influence the 
performance of features used for forecasting strong subsequent earthquakes.

2.1. Italy

One of the regions where NESTORE has been more widely used is Italy (Gentili and Di 
Giovambattista, 2017; Brondi et al., 2025a) (indicated in orange in Fig. 1).

Italian seismicity results from the interaction between the African and Eurasian plates 
and can be divided into five main zones (Gentili and Di Giovambattista, 2017; Brondi et al., 
2025a):

Fig. 1 - Areas analysed in past NESTORE applications.
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•	 Alps and Dinarides. This sector was formed by the collision between the Eurasian plate 
and the Adriatic microplate, which led to crustal compression and uplift. Seismicity is 
shallow and clustered in the eastern sectors (Friuli, eastern Alps) and the western regions 
(Piedmont, Ligurian Alps), while the central Alps are quieter. Historical events include the 
1511 Idrija (MW ~6.8) and 1976 Friuli (MW 6.4) earthquakes, as well as modern MW 4–5 
earthquakes along thrusts and strike-slip faults. Global positioning system data indicate 
ongoing deformation consistent with these seismogenic structures (Devoti et al., 2008);

•	 Apennine Range. This range is characterised by ongoing extension due to slab retreat, 
with frequent earthquakes occurring along NW–SE normal faults (http://emidius.mi.ingv.
it/CPTI/; Malinverno and Ryan, 1986; Doglioni, 1991, 1995). Major historical and recent 
events include earthquakes of 1688, 1805, 1962, and 1980 Irpinia, 1984 Abruzzo-Lazio 
(Milano and Di Giovambattista, 2011), 1990 Potenza (Azzara et al., 1993), 1997 Umbria-
Marche (Miller et al., 2004), and 2016 Amatrice (Calderoni et al., 2017). This range 
presents seismicity clusters along the active fault network with increasing deformation 
rates southwards;

•	 Calabrian Arc and southern Tyrrhenian Sea. This is an active subduction margin where the 
Ionian plate subducts beneath the Calabrian Arc, generating shallow and deep earthquakes 
(Doglioni et al., 2007; Chiarabba et al., 2008). Notable events include earthquakes of 1783 
and 1905 Calabria, and 1908 Messina-Reggio Calabria (MW ~7.1). Deep-focus quakes reach 
~500 km beneath Calabria and the Aeolian Islands, with seismicity reflecting slab rollback 
and crustal stretching (Polonia et al., 2016). Studies also suggest the presence of a slab 
tear at the southern edge of the subducting Ionian lithosphere (Polonia et al., 2016), 
which had been imaged by Godano et al. (2025) using b-more-positive method (Lippiello 
and Petrillo, 2024) tomography;

•	 Southern Tyrrhenian basin. A back-arc basin formed by slab retreat, with crustal thinning, 
extension, and volcanic activity (Aeolian Islands). Seismicity spans from shallow extensional 
and volcanic earthquakes to deep events marking the subducting Ionian plate, highlighting 
the interplay of extension, magmatism, and subduction (Chiarabba et al., 2008);

•	 Northern Sicily. Located at the junction of compressional and strike-slip tectonics between 
the Sicilian thrust belt and Calabrian Arc. Moderate to strong earthquakes occur inland 
and offshore, with the 1908 Messina earthquake as a key destructive event. Seismicity 

Table 1 - Catalogues adopted in different regions and time periods for which they are used.

	 Region	 Time interval	 Reference
		  1980–2004	 Lolli and Gasperini (2006) 
	

Italy
	 2005–2020	 Italian Seismological Instrumental and Parametric Database 

			   (ISIDe Working Group, 2007) 
		  2021–2025	 https://terremoti.ingv.it/
	

NE Italy – western Slovenia
	 1977–2020	 Snidarcig et al. (2020) 

		  2021–2025	 https://terremoti.ogs.it/
		  1980–2023	 Southern California Seismic Network (SCSN) 
	 California		  earthquake catalogue (Hutton et al., 2010) 
		  1980–2020	 ANSS ComCat
	

Greece
	 1995–2023	 Aristotle University of Thessaloniki (AUTH) 

			   earthquake catalogue
	 Japan	 1973–2024	 Japan Meteorological Agency (2024)
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is focused along the offshore northern Sicily fault system and inland thrust faults, with 
seismic risk driven by compression, strike-slip motion, and proximity to subduction (Totaro 
et al., 2016).

Overall, these diverse tectonic settings (collision zones, extensional belts, and active 
subduction) make Italy a highly seismically active region in the Mediterranean area, with a long 
history of destructive earthquakes and significant ongoing hazard.

2.2. NE Italy and western Slovenia

In addition to the national level, NESTORE was also applied to a region at the edge between 
Italy and Slovenia (red region in Fig. 1) (Gentili and Di Giovambattista, 2020; Brondi et al., 2025a) 
using the regional OGS (National Institute of Oceanography and Applied Geophysics) catalogue 
(Snidarcig et al., 2020). This area is characterised by the reduced spatio-temporal extent of the 
clusters and a lower productivity in terms of cumulative moment and number of earthquakes 
(for a given mainshock magnitude) with respect to the Italian seismicity (Brondi et al., 2025a). 
The predominant deformation regime varies from compressional in the western sector to strike-
slip in the eastern sector. Several tectonic phases have reactivated old fault structures, leading to 
a fragmentation of the crust into different tectonic blocks that define the current seismotectonic 
zonation (Bressan et al., 2003). Seismic activity is mostly concentrated in two main fault systems: 
the Alpine system, with an approximate E-W orientation, and the Dinaric system, with a NW-SE 
orientation, respectively in the northern and eastern parts of the region. The earthquakes are 
shallow and typically occur at a depth of 6–12 km in the western area (Bressan et al., 2012, 2018) 
and 2–7 km in the eastern area (Bressan et al., 2009; Gentili and Gentile, 2015). Focal mechanism 
solutions indicate that thrust faulting prevails in the western part, while strike-slip faulting 
mechanisms are more common in the eastern part, with occasional normal faulting (Bressan et 
al., 2016 and references therein). The area experienced several strong earthquakes in the past 
[11 clusters of seismicity with earthquakes of intensity IX-X from 1117 to 1976, see e.g. Gentili 
and Franceschina (2011)] causing death and destruction. After the ML = 6.4 earthquake in 1976, 
lower magnitudes followed, with 10 stronger events with latitudes between 45°–46.5° N and 
longitudes between 11.5°–14.5° E (a rectangle approximately 230 km in longitude and 170 km 
in latitude) in the magnitude range of 4.5–5.6 in the almost 50 years from 1977 to 2025 (Gentili 
and Di Giovambattista, 2020; Brondi et al., 2025a).

2.3. California

The works on seismicity in California (Gentili and Di Giovambattista, 2022; Gentili et al., 2023a, 
2023b) represented a significant development of NESTORE. These papers introduced several 
improvements to the algorithm and code, resulting in NESTOREv1.0, now publicly available on 
GitHub (Gentili et al., 2023a).

California is among the most seismically active regions in the world, located along the complex 
transform boundary between the Pacific and North American plates (Hauksson and Shearer, 
2005). The seismicity of the region is dominated by the right-lateral San Andreas fault system, 
the eastern California shear zone, and subsidiary faults such as the San Jacinto and the Hayward, 
creating distinct seismotectonic domains with different stress regimes and seismic productivity 
(Trugman and Ben-Zion, 2023).

Southern California, in particular, exhibits high seismicity rates due to the interaction of 
these major fault systems with a network of secondary faults, resulting in frequent moderate-
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to-large earthquakes and diverse focal mechanisms (Hauksson and Shearer, 2005). This 
complexity drives the cluster behaviour and aftershock sequences observed across the region 
and has implications for seismic hazard assessment and operational forecasting (Trugman and 
Ben-Zion, 2023).

2.4. Greece

The newly developed NESTOREv1.0 algorithm was also applied to the seismicity of Greece 
(black region in Fig. 1) (Anyfadi, 2023; Anyfadi et al., 2023). Greece lies at the boundary between 
the Eurasian and African tectonic plates, where the complex and sometimes powerful seismicity 
is driven by various geological structures, such as the Hellenic subduction zone, stretching from 
the Ionian Islands to Crete (Le Pichon et al., 1995), while the North Anatolian Fault, a major 
strike-slip fault extending from Turkey into the Aegean region, transfers deformation westwards. 
The Hellenic subduction zone is one of the dominant geodynamic features in the eastern 
Mediterranean region. The Mediterranean lithosphere subducts beneath the back-arc area of 
the southern Aegean Sea, the tectonics of which are mainly driven by a regional field of extension 
(McKenzie, 1978). The complex geologic setting of the Aegean is dominated by two tectonic 
processes. The first is the northward movement and subduction of the African plate beneath the 
Aegean at a rate of 0.9 cm/year (McClusky et al., 2000; Reilinger et al., 2010), resulting in the 
formation of the Hellenic subduction zone, while the second is the southward migration of the 
Aegean plate due to the African slab rollback. The subduction of the African plate formed the 
Wadati-Benioff zone in the southern Aegean which extends down to about 170 km (Papazachos 
et al., 2000). The southern Aegean itself is a region where high seismicity occurs along the fore-
arc. On the other hand, the back-arc region is characterised by moderate seismicity except from 
its eastern part with stronger seismicity. Dimitriadis et al., 2010). In front of the Hellenic Arc, 
Crete endures intense seismic activity due to active subduction and regional extension. Fault 
systems on Crete align in multiple directions, with the most recent and active normal faults 
trending WNW–ESE and NNE–SSW. The interplay of arc-parallel and arc-perpendicular extension 
contributes to significant vertical and horizontal displacements (Delibasis et al., 1999; Vallianatos 
et al., 2022). Furthermore, in the western part of Greece the Cephalonia transform fault marks 
the transition between the subduction zone of the Hellenic Arc and the zone of western Greece. 
In central Greece, the Corinth rift is rapidly extending and is a highly active break-up zone 
(Ambraseys and Jackson, 1997; Sakellariou et al., 2007).

In addition, the Peloponnese region experiences extensional tectonics with major active 
normal faults trending NE–SW and WNW–ESE, influenced by the subduction zone to the SW 
and the Corinthian Gulf to the north (Koukouvelas et al., 2010). Thessaly in the main land of 
Greece, shaped during the Neogene–Quaternary period, is characterised by a network of normal 
faults, grabens, and horsts trending NW–SE and E–W. These faults result from ongoing N–S and 
NE–SW extensional forces and demonstrate a mix of active normal, reverse, and thrust faulting, 
especially along the edges of major mountain ranges like the Pindos (Caputo and Pavlides, 1993). 
Southern Thessaly is seismically active with several large earthquakes occurring over the past 
century, while northern Thessaly, despite similar geological conditions, shows significantly less 
seismicity (Caputo, 1995; Vallianatos et al., 2021).

In northern Greece, the central Macedonia region lies within the inner Hellenic orogeny 
and exhibits complex tectonics. The extension of the N-S to NE-SW high-angle (50–80° dips) 
(Gkarlaouni et al., 2015) normal faults and rift basins formed since the Miocene and are consistent 
with the Aegean back-arc tectonics. The Mygdonian graben, aligned NW–SE, is especially active, 
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reflecting a broader N–S extensional regime tied to back-arc spreading behind the Hellenic 
subduction zone. In the Halkidiki peninsula, faults trend NW–SE, E–W, and N–S, with notable 
systems like the Stratoni-Varvara and Gomatius faults (Alatza, 2013). Overall, the seismic activity 
in mainland Greece and its islands is shaped by a combination of extensional and compressional 
forces, leading to a variety of seismotectonic regimes which make it one of the most interesting 
areas for the implementation of the NESTORE algorithm.

2.5. Japan

The last published application in chronological order of NESTORE is Japan seismicity (blue 
region in Fig. 1) (Gentili et al., 2025). Japan’s seismicity is mainly driven by the convergence of 
multiple tectonic plates. The Pacific plate subducts beneath the Eurasian plate, along the Japan 
trench, producing powerful megathrust earthquakes. In the SE, the Philippine Sea plate also 
subducts beneath the Eurasian plate, generating significant interplate seismicity along the Nankai 
trough. Subduction rates are high, approximately 9–11 cm/year for the Pacific plate and 6–11 
cm/year for the Philippine Sea plate (DeMets et al., 2010; Argus et al., 2011; Wu et al., 2016). In 
the north, interactions between the Eurasian and North American plates contribute to complex 
seismic patterns. Japan’s earthquake distribution is highly heterogeneous and reflects the complex 
interplay between these tectonic systems. The eastern offshore region, encompassing the Japan 
trench, is characterised by frequent intermediate to large subduction earthquakes. The south-
western margin, particularly along the Nankai trough, has a well-documented history of great 
earthquakes occurring in segmented patterns, e.g. the 1944 Tonankai and 1946 Nankai events 
(Kanamori, 1972). Inland Japan is also seismically active due to crustal deformation resulting from 
ongoing plate convergence. Numerous active faults, such as the Itoigawa-Shizuoka tectonic line 
and the Japan median tectonic line, accommodate interplate stress and can generate damaging 
shallow earthquakes, but these are just examples of regional-scale structures. Nonetheless, the 
seismicity is not only confined to the plate boundaries: very strong earthquakes also occur in 
central and western Honshu, Kyushu, and the Niigata and Nagano area with reverse or strike-
slip faulting. Volcanic activity is another important source of seismicity in Japan, with hundreds 
of volcanoes distributed all along the archipelago islands with most of them still active. These 
volcanoes are associated with magma-induced seismic swarms and shallow volcano-tectonic 
earthquakes. In March 2011, the Tōhoku earthquake sequence occurred, starting with a MW 7.3 
foreshock on 9 March, followed by the devastating MW 9.1 mainshock on 11 March. This event 
triggered a massive tsunami, resulting in significant human and environmental losses, including 
the Fukushima Dai-ichi nuclear disaster. The mainshock ruptured a ~400 km long segment of the 
subduction interface with an estimated slip of ~50 m (Lay, 2018), highlighting the destructive 
potential of subduction zone earthquakes. It was one of the largest earthquakes ever recorded. 
While events of this magnitude are rare, over 80 earthquakes with M ≥ 7 were recorded between 
1973 and 2023 in Japan and surrounding areas belonging to the Asia-Pacific region. To define the 
study area, we considered factors such as completeness magnitude, seismic network coverage, 
and the distribution of volcanic seismicity. Mount Fuji and Miyake Island, for instance, were 
excluded from our study.
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3. Methods

NESTOREv1.0 consists of four main modules: the cluster identification module, training 
module, testing module, and NRT classification module. During these years, the key 
advancements of NESTORE development lay in the enhanced cluster identification methodology 
and implementation of stringent quality criteria for the training dataset and result validation, 
aimed at improving the algorithm’s generalisation capability (Brondi et al., 2025a; Gentili et al., 
2025). The modularity of the approach enabled us to substitute the cluster identification module 
if it was not effective for the current dataset, as in the Japan seismicity case (Gentili et al., 2025).

In all NESTORE versions, the analysis starts with the occurrence of an earthquake exceeding 
a certain magnitude threshold, provided it is not part of any previously identified cluster. This 
event is termed the “operative mainshock” (or o-mainshock). This concept is used because 
NESTORE aims to produce NRT forecasts during the early evolution of a seismic cluster, assessing 
the probability of a strong event occurrence after a moderate to intense o-mainshock. It is 
important to note that the operative mainshock may not be the actual mainshock of the cluster, 
as the true mainshock might not have occurred yet at the time of the forecast.

3.1. Cluster identification and selection

The easiest way to select clusters corresponds to methods known as the window-based 
methods, which consider all events within a given radius and time window from the stronger 
one(s) as part of the same cluster. The NESTOREv1.0 code (Gentili et al., 2023a) enables to select 
clusters by applying user-defined windows based on the magnitude of the stronger event(s). 
This method (see Section 3.1.1) supplied good results for most clusters in Italy, western Slovenia, 
California, and Greece (Gentili and Di Giovambattista, 2017, 2020, 2022; Anyfadi et al., 2023; 
Brondi et al., 2025a; Spassiani et al., 2025), while its application to Japan required a further, more 
complex approach. In fact, identifying earthquake clusters in Japan poses significant challenges 
due to the region’s high seismicity rate and spatial-temporal overlap of nearby sequences (Gentili 
et al., 2025).

3.1.1. Window-based methods

In the window-based methods, any event with magnitude Mm greater than a fixed threshold 
Mth is considered as a potential main earthquake. The corresponding cluster aftershocks are 
detected in space and time by using a circular region centred on the main earthquake epicentre 
and a temporal window, with both the circle radius and the time duration depending on Mm. If a 
potential mainshock is in the cluster spatio-temporal window of a previous one, the two clusters 
are merged, and only one of the two is considered as the mainshock. The radius and duration 
of the cluster are defined based on some equations, generally referred to as <Proposer’s name> 
(<year>) law. We selected different laws for different analysed areas by comparing different laws 
existing in literature with real data (further details in the corresponding papers). In detail, we 
used the following laws for each area:

•	 Uhrhammer (1986) and Lolli and Gasperini (2003) laws for the spatial and temporal 
selection of aftershocks, respectively, in Italy;

•	 Gentili and Bressan (2008) laws for both space and time for NE Italy - western Slovenia; in 
order to take into account the inaccuracies in localisation in the first years of the catalogue, 
2 km have been added to the radius;
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•	 Kagan (2002) law for space and Gardner and Knopoff (1974) law for time in California;
•	 Uhrhammer (1986) for both space and time windows in Greece.

3.1.2. Graph-based approach to the epidemic-type aftershock sequence:  
3.1.2. a method based on stochastic declustering

Traditional window-based methods may be inadequate because clusters from different 
sources often occur close in both time and space. This can lead to incorrect associations and 
contamination of clusters, negatively affecting the performance of classification algorithms such 
as NESTORE. 

To overcome these limitations, we implemented a hybrid cluster identification method that 
integrates probabilistic and deterministic elements. The core of the method is based on the 
stochastic declustering algorithm developed by Zhuang et al. (2002), which models seismicity 
using the Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988). In this framework, 
each event may be either a background (independent) earthquake or may be triggered by a 
previous one, with associated probabilities estimated through maximum likelihood.

The ETAS model defines the conditional intensity function as the sum of a background term 
and a triggering term that accounts for the contributions of all preceding events. This includes 
temporal decay (Omori-Utsu law), spatial decay, and productivity scaling with magnitude. The 
model assumes magnitude independence between triggering and triggered events (Petrillo and 
Zhuang, 2022, 2023). ETAS model parameters are estimated using the original iterative algorithm 
by Zhuang et al. (2002) and Ogata and Zhuang (2006), ensuring reproducibility with prior studies.

Each event in the catalogue is assigned a probability of being background or being triggered 
by a specific preceding event. Stochastic declustering proceeds by generating a random number 
and assigning each event to the background or to a parent event probabilistically. Because of its 
stochastic nature, the clustering output varies across realisations.

The new algorithm proposed in Gentili et al. (2025), here referred to as the graph-based 
approach to ETAS (GRETAS), treats the ETAS output from the graph approach point of view. 
Different runs of the stochastic declustering algorithm supply a set of clusters that can be 
represented by oriented graphs (trees) that are different from one run to the other depending 
on the values of the random numbers generated by the algorithm. The nodes of the trees are 
the earthquakes, while the weight of the arcs between events n (parent) and j (descendent) is 
related to the probability for event j of being the background and to the sum of probabilities 
that j is the descendent of events up to n. The arc is generated only if its weight is larger than the 
random variable. The events that are strongly connected within a cluster, i.e. the ones that are 
close in space and time to several previous events, tend to remain grouped together across all 
runs of the stochastic declustering method. These events typically persist in the cluster because 
they are linked to multiple other events, not just one. For this reason, we chose to define cluster 
belonging based only on events that show strong and consistent connections to others. In order 
to do this, we ran stochastic declustering several times [in Gentili et al. (2025) we chose 10 times]. 
For each mainshock (defined as the largest event in the cluster), we identified the corresponding 
cluster members by intersecting the outcomes of the different runs. Only events consistently 
associated with the same mainshock across multiple runs were retained. This ensures that the 
final clusters include only the most stably connected events, avoiding the inclusion of loosely 
connected or ambiguous events that may belong to overlapping sequences.

To avoid excessive spatial spreading of clusters, the last part of the GRETAS algorithm applies 
a final spatial filter selecting only earthquakes within a given distance from the mainshock. In 
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Gentili et al. (2025), we selected the empirical law of Uhrhammer (1986) for Japan. However, this 
constraint had a marginal effect on the results, removing less than 1% of the events.

This robust identification process was applied uniformly to both the training and testing 
datasets, ensuring consistency in cluster definition throughout the study.

3.2. NESTORE training, testing, and near-real-time modules

3.2.1. Training

The clusters identified in the cluster identification module are the inputs for the training 
module. Nine features related to the seismic productivity and spatio-temporal evolution, in terms 
of radiated energy, magnitude, number of events, and their spatial distribution, are computed at 
different time intervals starting soon after the operative mainshock [for further details on the time 
start see Gentili et al. (2023a)]. A threshold is estimated for each of these features to distinguish 
type A clusters from type B clusters. Typically, most type A clusters have feature values above 
this threshold, whereas, in contrast, most type B clusters have values below this threshold. The 
training routine consists of four steps: 1) feature extraction, 2) decision tree training, 3) selection 
of the time intervals characterised by good performance for each feature (good interval), and 4) 
inheritance and validation. Since several improvements have been made over time, the training 
for versions of the algorithm starting with Brondi et al. (2025a) is described herein.

Feature extraction. The features, detailed in Section 3.3, are extracted from events with 
magnitude greater than, or equal to, Mm-2 in 10 time intervals Ti, starting s1 = 1 minute after the 
occurrence of the o-mainshock and ending at steps of six hours on the first day and 24 hours 
during the first week.

Decision tree training. For each feature, a one-node decision tree is trained in each time 
interval so that, if the tree converges, it finds a threshold above which the majority of the feature 
values of the type A clusters lie. If no threshold value can be found, the feature is discarded for 
this time interval.

Selection of good interval. The reliability of the determined threshold values is tested with 
a k-fold cross-validation method with k = 1, i.e. the Leave-One-Out (LOO) method, which is 
particularly suitable for small training datasets (i.e. the order is of the dozens of cases). The 
decision tree performance is evaluated based on four statistical properties: accuracy, precision, 
recall (ranging between 0 and 1), and informedness (ranging from -1 to 1). These evaluators are 
used for evaluating binary classifier performance. The two classes are defined as positive and 
negative. In our case we considered the type A cluster as positive and the type B as negative. 
Accuracy is defined as the percentage of correct classifications. Precision is defined as the 
percentage of samples classified as positive that are actually positive. Recall is defined as the 
percentage of correct classification of positives; vice-versa, inverse recall, is the percentage of 
correct classification of negatives. All these percentages are normalised to 1. Informedness is 
the sum of recall and inverse recall -1 and is a measure of how informed the classifier is about 
the classes.

A feature is used by NESTORE in a certain interval, which is defined as “good interval”, if the 
evaluators fulfill certain criteria. More specifically:

•	 accuracy, precision, and recall must be strictly above 0.5;
•	 accuracy must be equal to or greater than that of a tree classifying each cluster in the 

more populated class;
•	 informedness must be strictly greater than 0.
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The good interval ends at a time less than, or equal to, s2 when informedness is maximal. The 
feature value and the threshold value for s2 are ‘inherited’ into the subsequent time intervals.

Inheritance and validation. The constancy of the calculated and inherited feature values and 
thresholds is reinforced by reapplying the LOO method to calculate the percentage of correct 
classification of type A clusters (recall or true positive rate) and the percentage of incorrect 
classification of type B clusters (false positive rate) for each Ti. The feature thresholds of the 
Ti intervals, in which the false alarm rate is greater than the recall value, are discarded. For the 
selected features and time intervals, the probability that the cluster is of type A when the feature 
value is above or below the threshold is estimated from the training set as the percentage of 
A clusters with this feature above or below the threshold. Since the method is applied to real 
data, the probability may be less than one above the threshold and greater than zero below the 
threshold due to noise or imperfect performance of the feature in discriminating the cluster 
typology.

3.2.2. Testing

The testing module uses the values determined in the training module to forecast the class 
type of the clusters of an independent test set. For each test set cluster, the features selected 
in the training phase are calculated in the 10 time intervals Ti from the operative mainshocks 
of this new dataset and, depending on whether they are above or below the training threshold, 
the probability that the cluster belongs to type A is estimated for each feature and each time 
interval Ti.

Let pn,i = P(A|Fn,i) be the probability that the cluster is of type A for the nth feature Fn in the 
ith time interval. In more recent versions of NESTORE [first used in Gentili and Di Giovambattista 
(2020)], these probabilities are combined using an approach based on the Bayes theorem to 
calculate the overall probability P that the cluster is of type A for each time interval Ti:

(1)

where N(A)i and N(B)i are the number of clusters A and B at time Ti in the training dataset. It is 
important to know the number of samples for each class to account for the possible imbalance 
between classes. Eq. (1) was obtained from equations by Bailer-Jones and Smith (2011) for 
combining probabilities from different independent features, D1…,Dn:

(2)

where P(C) is the probability of having class C, P(C|Dn) is the posterior probability that class is C 
given Dn, and a is a normalisation factor so that Σk P(Ck|D1...,DN) = 1 .

In our case, we assumed that the probability of class type A and type B corresponds to 
the fraction of instances of such class in the training set [for further details, see Gentili and Di 
Giovambattista (2020)]. The output of the NESTOREv1.0 testing module is the estimation of the 
cluster type, expressed as probability P(A).

In order to estimate the performance of the method, the forecasting about type A or type B 
clusters is provided by comparing the resulting probability P(A) with the threshold equal to 0.5: 
if P(A) ≥ 0.5 the cluster is classified as type A, otherwise as type B. The comparison of the output 
classification with the actual cluster class provides an estimate of the algorithm performance, 
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which is described by the receiving operating characteristics (ROC) and the precision-recall 
diagrams. Examples of the result diagrams can be found in Section 4.1.

It is important to note that, due to the small dataset available, validation is performed during 
training using the LOO method and for the individual features. The merging of the feature 
performance is only carried out in the testing phase, and there is no validation set to determine 
the best interval for each analysed region. For simplicity, in this paper, only the best results are 
provided in the dedicated section, but all data can be found in the corresponding articles.

3.2.3. Near-real-time application

The NRT module is the latest development of NESTOREv1.0, which aims to forecast the 
class type of an ongoing seismic cluster. The first description of this module is in Gentili et al. 
(2023a). According to the NESTORE general procedure, the cluster is defined with a window-
based, magnitude-dependent method from the mainshock, which also determines the time and 
area for the forecasting. The features are calculated for increasing time intervals, Ti, until the 
one for which the testing procedure estimated the classification performances are the best, and 
compared with the corresponding values and thresholds obtained in the training for the study 
area. The NRT output consists of a map of the cluster in each time interval and the class forecast, 
given in the form of an AFtershock-based Traffic Light System (AFTLS) (Gentili et al., 2023a). The 
AFTLS colours are related to the probability of occurrence of a strong aftershock: red for high 
probability (type A), green for low probability (type B), and yellow for uncertain assessment. 

Before applying the NRT module, training is carried out once again with all the available data 
(training set and test set) in order to obtain more stable thresholds. Like in the case of previous 
training, validation is performed by means of the LOO method, without using a dedicated 
validation set. In Brondi et al. (2025a) and Gentili et al. (2025), the thresholds obtained with the 
larger dataset are compared with the previous ones, detailing which are stable and which are 
improved. Since the NRT module needs an estimate of which are the more reliable time intervals 
for the forecasting, but no proper validation set is available, this information is taken from the 
output of the testing phase (see Section 5 for further details).

3.3. NESTORE features

The features used in NESTORE (see Gentili et al., 2025) are related to the spatio-temporal 
distribution of the aftershocks, source area, magnitude trends, and radiated energy. They are 
calculated for events with magnitude in the range [Mm-2, Mm], chosen in order to account for the 
possible incompleteness of the catalogue. They are:

a)	 S, the normalised event source area:

(3)

	 where mi is the ith event magnitude;
b)	 Z, the linear concentration of events:

(4)

	 with rij being the distance between the ith and jth events;
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c)	 Q, the normal radiated energy:

(5)

	 being Em the mainshock energy, and Ei the energy of the ith event;
d)	 SLCum, the cumulative deviation of S from the long-term trend on increasing length 

windows:

;                  (6)

e)	 SLCum2, the cumulative deviation of S from the long-term trend on sliding windows:

;
            (7)

f)	 QLCum, the cumulative deviation of Q from a long-term trend on increasing length 
windows:

;                  (8)

g)	 QLCum2, the cumulative deviation of Q from the long-term trend on sliding windows:

;
                          (9)

h)	 Vm, the cumulative variation of magnitude from event to event:

;                         (10)

i)	 N2, the number of events with magnitude ≥Mm-2:

(11)

	 where H is the Heaviside step function.
	 In the case of the application of NESTORE to Japan (Gentili et al., 2025), we substituted N2 

with:

i’)		  (12)

	 which performed better in that area.
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3.4. Data cleaning by outlier removal – REPENESE algorithm

The biggest challenge of NESTORE is the classification of small and often very unbalanced 
datasets such as, for example, in the Japanese seismicity case. For this reason, starting with the 
paper of Gentili et al. (2025), we developed the RElevant features, class imbalance PErcentage, 
NEighbourhood detection, SElection (REPENESE) algorithm. A preliminary quality assessment 
of the training dataset is essential to achieve reliable results and to establish more appropriate 
thresholds for discriminating between cluster populations. The detection of outliers must fulfil 
three important requirements: 1) the selection must be solely based on relevant features, 2) 
the imbalance between classes must be taken into account (removing a rare cluster of type A is 
more critical than removing a frequent cluster of type B), and 3) the standard centroid distance 
methods such as Z-score (Rousseeuw and Hubert, 2011) must be replaced by a threshold-based 
approach, since correct classification depends on the position relative to a feature threshold 
rather than the proximity to a centroid.

To overcome these challenges, REPENESE (Gentili et al., 2025) involves four steps:
•	 RE (RElevant features). Features are selected as relevant if a threshold exists and the true 

positive rate is greater than 0.5, the false positive rate is smaller than 0.5, and the precision 
is greater than 0.5;

•	 PE (PErcentage class weighting). The imbalance between the classes is quantified using 
probabilities PA and PB calculated from the relative frequencies of clusters of type A and B 
in the training set;

•	 NE (NEighbourhood detection). Neighbourhoods are defined for each relevant feature 
based on the sorted feature values. Type A samples consider the nearest N1 (set to 5) 
larger values, type B considers the N1 smallest values;

•	 SE (SElection). A sample of a given class (A or B) is labelled as an outlier if the number of 
samples of the same class in its neighbourhood does not exceed P·Sn, where Sn is the 
size of the neighbourhood and P is probability PA or PB. Only samples that are consistently 
identified as outliers across all relevant features and thresholds are removed from the 
training set.

This method increases the robustness of the training set by ensuring a better representation 
of minority classes and reducing noise, which ultimately improves the generalisation capability 
of the model.

4. Results

This section summarises the more recent results for Italy, NE Italy and western Slovenia, 
California, Greece, and Japan. For California, reference is made to the results available on GitHub 
and Zenodo (Gentili et al., 2023a), where a version of the code, more recent than the one in the 
paper by Gentili and Di Giovambattista (2022), is available.

In Section 4.1., training and testing performances in different regions are compared. Section 
4.2 provides results on the NESTORE thresholds in different regions, outlining their differences. 
Section 4.3 yields further statistical information on the evolution of the clusters in space-time 
and the seismic moment, which can be provided together with the cluster class at the time 
of forecasting. Finally, the NRT application of NESTORE is presented in Section 4.4. In the final 
section, the outcome of the results is discussed.
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4.1. Training and testing

The clustering module identifies seismic clusters from the input catalogues. However, not 
all clusters are suitable for NESTORE. Clusters are discarded under various conditions: 1) if the 
mainshock is outside of the definition areas (see Fig. 1); 2) if the strongest aftershock occurs 
within the first six hours after the mainshock, limiting the availability of statistical data; 3) if the 
magnitude of the strongest aftershock falls within the range of Mm−1±0.2, to avoid incorrect class 
assignments due to inaccuracies in magnitude estimation; 4) if the completeness magnitude is 
greater than Mm-2.

The cardinality of the refined training set used for the first six-hour time interval of each 
analysed area is shown in Table 2.

Table 2 - Training set and test set cardinality for the analysed areas.

	 Region	 Dataset	 Period	 No. of clusters	 No. of A clusters	 No. of B clusters
	

California
	 Training	 1981–2019	 50	 21	 29

		  Testing	 1981–2023	 13	 4	 9
	

Greece
	 Training	 1995–2015	 46	 6	 40

		  Testing	 2016–2022	 27	 6	 21
	

Italy
	 Training	 1980–2009	 24	 7	 17

		  Testing	 2010–2020	 14	 6	 8
	 NE Italy - 	 Training	 1977–2009	 13	 4	 9
	 western Slovenia	 Testing	 2010–2020	 18	 3	 14
	

Japan
	 Training	 1973–2004	 50	 7	 43

		  Testing	 2005–2023	 31	 4	 27

The table shows how the ratio between the number of type A and type B clusters changes 
from region to region and how, in Japan and Greece, the classes are highly unbalanced, with 
type B cardinality being six to seven times greater than that of type A. In order to account for the 
class imbalance and the presence of outliers, we introduced in our work on Japan the REPENESE 
algorithm (see Section 3.4). After its application, the number of type A clusters in the training set 
decreased from 11 to 7 and of type B from 45 to 43 (the final number is the one used for training 
and shown in the table).

The cluster selection process described above (points 1 to 4) is also applied to the clusters of 
the test set, but the REPENESE algorithm is not applied because the outliers should be taken into 
account in the performance evaluation. See Table 2 for the cardinality testing datasets of all the 
analysed regions.

The performance of NESTORE in the different regions varies according to the region 
characteristics, the catalogue quality, the number of available clusters, the balance of classes 
A and B, and so on. In articles on NESTORE, the testing module estimates and visualises the 
performances through the ROC and precision-recall diagrams, suitable for binary classifications. 
Fig. 2 shows the results corresponding to the time interval Ti for which the algorithm provided 
the best performances in the analysed regions. The ROC diagram (Fig. 2a) shows, on the ordinate 
axis, the true positive rate (or recall), i.e. the percentage of correctly classified positives that in 
our case is the percentage of correctly forecasted as type A clusters (normalised to one). On the 
abscissa axis, it shows the false positive rate, which in our case corresponds to the percentage of 
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type B clusters incorrectly classified as type A (normalised to one). The dashed line corresponds 
to a random response. All applications are clearly above the random response and close to the 
ideal classification that is the one in which the true positive rate is equal to one and the false 
positive rate is equal to zero. 

If the negative class (in our case type B) has a much greater cardinality than the positive one, 
even if a small percentage of the negative class is misclassified as positive, a large percentage of 
the events classified as positive can be misclassified.

A crucial parameter to evaluate in the case of a heavily imbalanced class distribution is, 
therefore, precision, which in our case is the percentage of clusters classified as type A that are 
actually type A. This information is shown in the precision-recall diagram (Fig. 2b). Horizontal 
dashed lines show the response of a random classifier, i.e. a value of precision equal to the 
normalised percentage of type A clusters in the dataset for different regions in the test set. 
Also, in this case, the performance in different regions is close to the ideal precision=recall=1 
classification, corresponding to the upper right corner in the diagram.

Fig. 2 - NESTORE performances in different regions.

(a) (b)

The large unbalancing of the classes of the test set in Japan and Greece (corresponding to 
a low value of random classifier precision) slightly affects precision in the two regions, which is 
however greater than 70%. In the case of Italy and NE Italy, no type-B cluster is misclassified, so 
that precision is one. 

As a further analysis, in order to validate our results, we estimated probability α of obtaining 
h or more hits (type A clusters correctly classified) by chance accordingly with Zechar (2010) as:

(13)

In this case, τ, the fraction of the time-space occupied by alarms, is simply the ratio between 
the number of clusters classified as A and the number of all the clusters; unlike applications 
in evaluating mainshock forecasting, in which the measure of time-space may be not uniquely 
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defined, in this particular application τ is uniquely defined, avoiding ambiguous results; in this 
case N is the number of observed type A clusters. A small α corresponds to an alarm with high 
skill. 

Table 3 shows the value of α for the different analysed regions. Note that for all the cases 
analysed, the number of type A clusters in the training set was unchanged with respect to the 
one of Table 2, even when longer time intervals were considered. For this reason, such values 
are not specified in the table.

Table 3 - Values of α for the different regions.

	 Region	 Time interval	 α
	 California	 12 hours	 4.06 %
	 Greece	 6 hours	 0.07 %
	 Italy	 24 hours	 5.97%
	 NE Italy - 
	 western Slovenia	

6 hours	 3.41 %

	 Japan	 6 hours	 3.36 %

In all cases, the probability α of obtaining h or more hits by chance is very low, lower than 
6%. The highest value is obtained for Italy, where two type A clusters were wrongly classified. 
However, a detailed analysis (Gentili et al., 2024) of one of the two clusters which occurred in 
Molise (southern Italy) in 2018 showed how its misclassification may be due to an incorrect 
cluster identification caused by effects related to fluid diffusion. Considering the proposed 
cluster definition by Gentili et al. (2024), α is reduced to 2.45% and recall (true positive rate) 
passes from 0.67 (Fig. 2) to 0.83.

4.2. Comparison between feature thresholds

In this section, the feature thresholds encountered in different regions (Italy, NE Italy and 
western Slovenia, California, and Japan) are compared by analysing the results of papers from 
2023 (Anyfadi et al., 2023; Gentili et al., 2023a, 2025; Brondi et al., 2025a).

For this purpose, Fig. 3 shows, when available (Italy, NE Italy and western Slovenia, Japan), 
the thresholds obtained from the whole dataset after outlier removal, being this the most stable 
characterisation of the areas. Since for all cases the best performances were obtained with time 
intervals smaller or equal to one day, only these thresholds are compared. It should be noted that 
the values for Italy and NE Italy - western Slovenia may differ, as Italian seismicity is dominated 
by Apennine seismicity (Brondi et al., 2025a), which is different from Alpine-Dinaric seismicity 
in NE Italy. The thresholds inherited from previous intervals are not shown. For details on the 
thresholds obtained during the original training, reference should be made to the corresponding 
papers.

As shown in Fig. 3, all feature threshold values increase or remain constant with increasing 
length of time interval Ti. This is due to the fact that most features (e.g. the number of events 
or radiated energy) are cumulative and, therefore, they cannot decrease, and that the larger 
productivity, especially for type B clusters, occurs in the first hours after the operative mainshock, 
so some thresholds do not need to increase. When available, the threshold values for the 
cumulative source area (S), radiated energy (Q), their time variation (SLCum, SLCum2, QLCum, 
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Fig. 3 - Thresholds for each feature and time interval (when available) for the analysed regions.

and QLCum2), the number of events (N2), and the earthquake concentration (Z) generally show 
higher values for Greece and Japan compared to Italy and NE Italy, while California does not 
show a general trend with respect to the other regions. The Vm feature, which refers to the 
fluctuation in magnitude from one event to the next, does not show the region-dependent trend 
of the other features.

Focusing on the partially overlapping areas of Italy and NE Italy - western Slovenia, the 
threshold values in NE Italy - western Slovenia are found to be lower at short time intervals after 
the mainshock. The trend is inverted for the time interval ending 18 hours after the mainshock 
(Brondi et al., 2025a). One reason for this inversion could be related to the change in the size of 
the dataset. Since we only consider type A clusters that have not yet had the strongest aftershock 
at the time of the analysis, the data set shrinks over time, possibly increasing noise in the data. 
Another explanation could be a selection effect in the population of type A clusters, if the type 
A clusters with the strongest aftershock at a later point in time are also characterised by higher 
feature values.
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4.3. Further information based on classification

When NESTOREv1.0 was applied to the catalogues of California (Gentili and Di Giovambattista, 
2022), Greece (Anyfadi et al., 2023), Italy (Gentili and Di Giovambattista, 2017, 2020; Brondi et 
al., 2025a), and Japan (Gentili et al., 2025), type A and type B clusters were found to differ in 
terms of various seismicity characteristics in the first hours or days after the operative mainshock 
(Gentili et al., 2023a, 2025).

Recently, it has been observed that for Italy, NE Italy - western Slovenia (Brondi et al., 2025a) 
and Japan (Gentili et al., 2025), type A and type B clusters also differ with regards to three 
parameters measured over the entire duration of the cluster: the effective cluster duration 
normalised by the cluster duration derived from the window method, the number of aftershocks 
with a magnitude greater than, or equal to, Mm-2, and the cumulative seismic moment associated 
with previous aftershocks normalised by the seismic moment of the operative mainshock. In 
most cases, the type A clusters show greater values than the type B clusters in all three areas 
mentioned. This corresponds to what was observed with the NESTOREv1.0 features in the first 
hours after the o-mainshock. 

Comparing the distribution of these characteristics for the whole clusters (Brondi et al., 
2025a; Gentili et al., 2025) in different regions, we found the following:

1.	 Japan and Italy are characterised by a higher number of events with M ≥ Mm-2 for type A 
with respect to NE Italy - western Slovenia (no type A clusters with less than three events, 
while this is the case in NE Italy - western Slovenia in one third of the cases);

2.	 although the minimum value of normalised cumulative seismic moment associated with 
type A clusters is higher in the case of NE Italy - western Slovenia, for all three areas most 
type A clusters are above 0.2;

3.	 for type B clusters, the normalised cumulative seismic moment is always confined between 
0 and 0.2 and, more specifically, always below 0.1 in the case of NE Italy - western Slovenia 
and Japan. Therefore, on average, Italy shows a slightly higher type B cluster productivity 
compared to NE Italy - western Slovenia and Japan;

4.	 normalised duration of type A clusters in Italy and NE Italy - western Slovenia are comparable; 
data on Japan cannot be compared because of the different cluster identification method 
adopted. However, in all cases, the normalised duration of type A clusters is generally 
higher than that of type B ones.

4.4. NESTORE application in near-real time 

The main goal of the NESTORE algorithm is to provide an alarm when in the first hours/
days after a strong earthquake, the values of seismicity feature are consistent with the ones 
measured for a type A cluster. For this purpose, we proposed a NRT module. In the following 
sections, the performance of the NRT module is shown for the time intervals corresponding to 
the best performances in the testing phase. The application of this module to the various regions 
analysed by NESTORE is at different stages of development. The NRT module is functional for 
Greece and California, but is not currently being used. In Japan, automatic cluster identification 
for NRT is still under development, as the window-based methods are not suitable for the 
seismicity of this area. In Italy and NE Italy - western Slovenia, the NRT module is operational 
and routinely employed.
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4.4.1. Italy 

Fig. 4 shows the performances of the NRT method in Italy from 2021 to 2024. With this 
method, the analysed clusters should meet the following requirements:

1.	 the location must be within the analysis area (see Fig. 1);
2.	 the mainshock magnitude must be greater than, or equal to, 4 (as the completeness 

magnitude was set to two for the whole Italian territory after 2020);
3.	 no strong aftershock must be recorded in the first six hours after the operative mainshock. 

Fig. 4 - NRT module performances on the INGV catalogue.

The code is manually launched when the previous conditions are satisfied. Even though the 
dataset is not very large, due to the short duration of the NRT module evaluation (11 available 
clusters), the performances of the method are in good agreement with those obtained in the 
testing phase, with all type B clusters correctly forecasted (false positive rate = 0), two thirds of 
type A clusters correctly forecasted (true positive rate = recall = 0.66), and all clusters classified 
as A actually being of type A (precision = 1).

4.4.2. NE Italy and western Slovenia

Fig. 5 shows the performance in NE Italy and western Slovenia using the OGS catalogue 
(Snidarcig et al., 2021; Brondi et al., 2024b, 2025b; https://terremoti.ogs.it/). The limited size of 
the area leads to a dataset that is smaller than the one of the entire Italian territory. Originally, 
the NRT module was started manually after the occurrence of an earthquake with magnitude ML 
≥ 3.7 that was not already part of an analysed cluster. Since March 2024, the analysis has been 
carried out automatically (see next section).
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All clusters analysed through the NRT module were correctly forecasted. As with training 
and testing, the eastern part of the area is characterised by type B clusters. From 2024, the 
NRT algorithm is automatically applied to the monitoring system managed by the department 
Seismological Research Centre (CRS) of OGS. For further details see the Appendix.

4.4.3. Greece

In Greece the NRT module has not been applied in a systematic way, but was applied in the 
thesis work by Anyfadi (2023). A total of four clusters, including data from 1995 to 2022, were 
analysed and 75% were correctly classified (Fig. 6).

Among the three type B clusters, one was misclassified as type A. The Mm = 4.9 type A cluster, 
located in the Evia area, was correctly classified by NESTORE. The more relevant features are S, Z, 
and Q at the six hours. The probabilities for the majority of these features exceed the threshold 
indicating that these features voted for the classification of this cluster as type A and a strong 
aftershock with magnitude larger than, or equal to, 3.9 was correctly expected to occur within a 
circular region with radius of 19 km, in the 25 days after the o-mainshock. The number of clusters 
considered in this analysis is too small to enable a fully robust statistical evaluation. Nevertheless, 
the method’s performance is consistent with the testing phase: the type A cluster was correctly 
classified (as were all type A clusters in the testing phase), while the only misclassifications 
occurred among the type B clusters, which also produced some false alarms during testing. A 
routine application of NESTORE to Greek seismicity would enable a more reliable performance 
assessment. The analysis of the misclassified type B clusters did not reveal any region-specific 
characteristics. In Anyfadi et al. (2023), the two misclassified type B clusters were located in 
eastern Crete and near the Anatolian peninsula coast, far from the location of the B cluster 
misclassified by the NRT algorithm.

Fig. 5 - NRT module performances on the OGS catalogue.
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5. Discussion and conclusions

In this paper, we have shown the performance of the NESTORE algorithm in classifying seismic 
clusters based on the characteristics of the first hours of seismicity after the o-mainshock. 
NESTORE is based on a set of features extracted from seismic catalogues. It assumes that type 
A clusters (those with the strongest aftershocks) have large feature values. In contrast, type B 
clusters typically show smaller values. The classification is based on threshold feature values 
determined in the training phase. In all analysed regions, feature S, which refers to the normalised 
cumulative source area, has shown good results shortly after the o-mainshock (six hours).

The capability of the S feature, in discriminating type A and type B clusters in most datasets 
for a short time after the mainshock, may be interpreted from the physical point of view. Similarly 
to the analysis by Smirnov and Petruchov (2025) on precursors of strong earthquakes, we can 
state that, since the value of the normalised cumulative source area S is obtained from the 
aftershock magnitude and, since the size of the sources is related, from a physical perspective, 
to the size of lithospheric heterogeneity in fracturing (Scholz, 2019), the dimensional distribution 
of heterogeneities plays a crucial role in determining the distribution of aftershock magnitudes 
(Aki, 1981). The development of fracturing and the subsequent stress redistribution lead to the 
widening of cracks as they merge. The tendency of cracks to coalesce into larger cracks, leading 
to the development of strong aftershocks, depends on the fracturing state of the medium, the 
stress field, the orientation of cracks relative to the stress field, and the presence of fluids, and 
varies in time and space. Clusters in which this tendency is most pronounced are those where 
strong aftershocks (high S), with magnitude comparable to that of the mainshock, are most likely 
to occur (type A clusters). This result is independent of the analysed region. Type A clusters, on 
the other hand, are also the ones characterised by strong S fluctuations (as shown by SLCum 
and SLcum2) and higher magnitude variations from event to event (as shown by Vm). This shift 
can be interpreted as a manifestation of instability within the nonlinear system of earthquake-
generating faults (Vorobieva, 1999), consistent with observations preceding major earthquakes 

Fig. 6 - NRT module performances on the AUTH catalogue. Editor note: please cite Fig. 6 in the text
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and stronger events within seismic clusters (Keilis-Borok and Kossobokov, 1990; Keilis-Borok and 
Rotwain, 1990; Vorobieva and Panza, 1993).

From the machine learning point of view, the variability in feature performance across 
seismotectonic regimes highlights an important point: including a variety of features during 
training helps the model to adapt to regional differences. Some features show different 
performance depending on the analysed area: the Q feature, referring to the cumulative radiated 
energy, works well in Greece, Italy, and NE Italy - western Slovenia, but not in California and 
Japan; feature N2, based on the earthquake number, gives good results in California, Italy and NE 
Italy - western Slovenia but not in Greece and Japan.

Overall, NESTORE correctly classified between 66% and 100% of type A clusters, and between 
90% and 100% of type B clusters. Precision, corresponding to the percentage of clusters 
classified as type A that actually were type A, ranged between 75% and 100%, depending on 
the class imbalance (lower precision if type B clusters are more than type A clusters). Most 
of these results are obtained within the first 6–12 hours or, at the most, within one day after 
the o-mainshock. Therefore, the method shows a great potential for application in seismic risk 
mitigation.

A recent and interesting result is that type A and type B clusters differ not only in terms of 
the strongest aftershock magnitude, but also in terms of the characteristics of the entire cluster, 
such as the cumulative seismic moment, duration, and number of earthquakes. The analyses for 
Italy, NE Italy - western Slovenia, and Japan have shown that type A clusters have higher values 
for seismic moment, duration, and number of earthquakes compared to type B clusters with 
the same o-mainshock magnitude. Although the clusters in Italy and Japan depend on different 
seismotectonic contexts, seismic network characteristics, clustering laws, and magnitude scales, 
it is interesting to note that, to a first approximation, the different behaviour between type A and 
type B clusters is the same with respect to the three analysed characteristics. Shortly after the 
o-mainshock, the results on these three seismicity characteristics provide further information on 
how the ongoing cluster will behave.

Another interesting outcome of NESTORE is its capability of estimating feature thresholds 
robust enough to enable class forecasting in a whole region, even when multiple and diverse 
seismotectonic regimes coexist. The next step in our research investigation will be to understand 
whether the different threshold values from region to region are related to seismicity 
characteristics. We, therefore, compared it with the geometric mean of the annual seismic rate 
obtained by analysing the same catalogues. Recently, van der Elst and Page (2023) proposed a 
new method to estimate the seismic rate in the presence of incomplete data. This method, called 
a-positive (a+), is based on measuring interevent time interval  not between all earthquakes, 
as in the standard definition above, but only between pairs of earthquakes where the second 
event has a larger magnitude than the first. Specifically, the difference in magnitude between 
the two earthquakes in the pair must exceed threshold value dMth. By rescaling Δti with , and the 
expected seismic rate can be estimated as if the catalogue were complete.

Table 4 shows the geometric mean for parameter a+. We used the geometric mean because 
the distribution of the a+ values is very skewed and long-tailed, due to the considerably 
heterogeneous and clustered seismicity nature. Greece and Japan have the highest productivity 
value; Italy and California are in the middle range, while NE Italy - western Slovenia has the 
lowest values. We hypothesise that the threshold values of the features may be related to the 
seismic rate. When the rate is higher, both the type A and type B clusters show higher values for 
the features and, thus, higher thresholds while, conversely, a lower rate leads to lower thresholds 
for both type A and type B clusters.
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While the relationship between the seismicity rate of the whole catalogue and, for example, 
the cumulative radiated energy or the cumulative source area of the clusters is not obvious, 
the a+ value in the whole catalogue can be more easily related to the number of events with a 
magnitude larger than, or equal to, Mm-2 in the clusters. The seismicity rate simply behaves the 
same way in the whole catalogue and in the clusters, and regions with higher a+ values are also 
those with a higher number of events with magnitude larger than, or equal to, Mm-2 in both the 
type A and type B clusters. As shown in Section 4.3, Japan and Italy are characterised by a higher 
number of events with M ≥ Mm-2 for the A type compared to NE Italy - western Slovenia. This 
difference is also reflected in the threshold on N2, which only covers the first hours of the cluster 
and is smaller for NE Italy - western Slovenia than for Italy; for Japan, the decision tree for N2 
does not converge.

Understanding how differences in fault geometry, slip rates, and tectonic loading can influence 
seismic patterns is essential for the future improvement of machine learning methods such as 
NESTORE, which aims to forecast strong aftershocks in different tectonic settings. Trugman and 
Ben-Zion (2023) conducted a comprehensive analysis of the productivity of earthquake sequences 
in California and Nevada using a 40-year seismicity catalogue and nearest-neighbour clustering. 
They showed that productivity variations are strongly related to geophysical parameters such 
as heat flow, fault complexity, and deformation velocity. Highly productive sequences are found 
in areas such as the Walker Lane, while lower productivity sequences are found along the San 
Andreas fault. Using XGBoost and SHAP, they showed how these physical conditions influence 
the clustering and triggering potential of earthquakes.

Their results provide a useful framework for interpreting the classification of type A and type 
B clusters in NESTORE. Since high heat flow, high fault density, and high complexity are associated 
with high productivity, these parameters could help explain why certain clusters evolve into type 
A clusters while others remain type B.

Both Gentili and Di Giovambattista (2022) and Trugman and Ben-Zion (2023) use interpretable 
machine learning approaches and focus on seismicity in California seismicity, showing potential 
from the combination of seismic and geophysical features to improve NESTORE forecasts.

NESTORE is still under development and several studies are in progress, among which the 
application to New Zealand (Caravella and Gentili, 2025) and the use of new features in improved 
catalogues such as that of the Rapid Assessment of Moment and Energy Service, which also 
includes the energy and seismic moment (Brondi et al., 2024). Furthermore, routine testing has 
been conducted in Italy and in the NE Italy–western Slovenia region since 2021. The analysis is 
based on the real-time version of the catalogues, which may have reduced accuracy in event 
location and detection performance. Although the proposed results require validation on a 
larger test set, they show performance levels consistent with those achieved during the testing 
phase, confirming that NESTORE also performs well on unrevised catalogues.

Table 4 - Geometric mean of annual seismic rate a+.

	 Region	 Geometric mean a+
	 Greece	 2.767282·106

	 Italy	 3.727444·105

	 Japan	 1.058114·106

	 California	 4.393627·105

	 NE Italy - western Slovenia	 3.128294·103
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Newer performance assessments are planned where the best performance interval for 
NESTORE, as shown in Fig. 2, is estimated not only in the predefined test set but by a k-fold 
approach (Caravella and Gentili, 2025). This approach could be particularly important for the 
NRT module, where NESTORE is applied to new clusters after training with both the old training 
set and the old test set, while the window in which performances are considered optimal is 
estimated based on the old test set only.

Acknowledgments. Following the presentation at the recent GNGTS conference (Gentili et al., 2025), 
the work was recognised by the conveners as worthy of publication in this special issue of the Bulletin 
of Geophysics and Oceanography. This work is co-funded within the RETURN Extended Partnership 
and received funding from the European Union Next-GenerationEU (National Recovery and Resilience 
Plan - NRRP, Mission 4, Component 2, Investment 1.3 – D.D. 1243 2/8/2022, PE0000005) and by the 
grant “Progetto INGV Pianeta Dinamico: Near real-time results of Physical and Statistical Seismology 
for earthquakes observations, modelling and forecasting (NEMESIS)” - code CUP D53J19000170001 - 
funded by the Italian Ministry of Education, Universities, and Research (“Fondo Finalizzato al rilancio degli 
investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese”, Fund for the relaunch 
of investments by central State administrations and for the development of the country, established 
by Italian Law 145/2018). G.P. would like to acknowledge the Earth Observatory of Singapore, and the 
Singapore Ministry of Education Tier 3b project “Investigating Volcano and Earthquake Science and 
Technology (InVEST)”. G.P. and J.Z. are also partially supported by the Japan Ministry of Education, Culture, 
Sports, Science and Technology (MEXT) project for seismology Toward Research innovation with data of 
earthquakes (STAR-E), Grant Number JPJ010217. Another project, currently ended, strongly contributed 
to the results used in this analysis: the bilateral project Italy-Japan funded by a grant from the Italian 
Ministry of Foreign Affairs and International Cooperation was pivotal for NESTORE development. E.-A.A. 
was partially supported by the Erasmus+ programme of the European Union. Map figures have been 
realised using QGIS (http://www.qgis.org), while other analyses have been performed using ZMAP (http://
www.seismo.ethz.ch/en/research-and-teaching/products-software/software/ZMAP). The NESTOREv1.0 
toolbox is available for free download from GitHub at the address https://github.com/StefaniaGentili/
NESTORE and its reproducibility package is available at the Zenodo website https://zenodo.org/account/
settings/github/repository/StefaniaGentili/NESTORE.

REFERENCES

Aki K.; 1981: A probabilistic synthesis of precursory phenomena. In: Simpson D.W. and Richards P.G. (eds), 
Earthquake prediction: an international review, Am. Geophys. Union, Washington, DC, USA, Vol. 4, pp. 556-
574, doi: 10.1029/ME004p0566.

Alatza S.; 2013: Geodetic determination of tectonic displacements in Chalkidiki. Bachelor’s thesis in Geological 
Sciences, National Technical University of Athens School of Surveying and Surveying Engineering, Athens, 
Greece.

Ambraseys N.N. and Jackson J.A.; 1997: Seismicity and strain in the Gulf of Corinth (Greece) since 1694. J. 
Earthquake Eng., 1, 433-474, doi: 10.1080/13632469708962374.

Anyfadi E.-A.; 2023: Forecasting strong aftershocks in Greek earthquake clusters using the NESTORE machine 
learning algorithm. PH.D. Thesis in Geological Sciences, Hellenic Republic, National and Kapodistrian 
University of Athens, Department of Geology and Geoenvironment, Sector of Geophysics and Geothermy, 
Athens, Greece, 177 pp.

Anyfadi E.-A., Gentili S., Brondi P. and Vallianatos F.; 2023: Forecasting strong subsequent earthquakes in Greece 
with the machine learning algorithm NESTORE. Entropy, 25, 797, doi: 10.3390/e25050797.

Argus D.F., Gordon R.G. and DeMets C.; 2011: Geologically current motion of 56 plates relative to the no-net-
rotation reference frame. Geochem. Geophys. Geosyst., 12, Q11001, doi: 10.1029/2011GC003751.

Azzara R., Basili A., Beranzoli L., Chiarabba C., Di Giovambattista R. and Selvaggi G.; 1993: The seismic sequence 
of Potenza (May 1990). Ann. Geofis., 36, 237-243.



26

Bull. Geoph. Ocean., XX, XXX-XXX	 Gentili et al.

Bailer-Jones C.A.L. and Smith K.; 2011: Combining probabilities. Gaia DPAC Data Processing & Analysis 
Consortium, 14 pp., <www.mpia.de/3432751/probcomb_TN.pdf>.

Bressan G., Bragato P.L. and Venturini C.; 2003: Stress and strain tensors based on focal mechanisms in the 
seismotectonic framework of the Friuli-Venezia Giulia region (northeastern Italy). Bull. Seismol. Soc. Am., 
93, 1280-1297.

Bressan G., Gentile G.F., Perniola B. and Urban S.; 2009: The 1998 and 2004 Bovec-Krn (Slovenia) seismic 
sequences: aftershock pattern, focal mechanisms and static stress changes. Geophys. J. Int., 179, 231-253.

Bressan G., Gentile G.F., Tondi R., de Franco R. and Urban S.; 2012: Sequential integrated inversion of tomographic 
images and gravity data: an application to the Friuli area (north-eastern Italy). Boll. Geof. Teor. Appl., 53, 
191-212.

Bressan G., Ponton M., Rossi G. and Urban S.; 2016: Spatial organization of seismicity and fracture pattern in 
NE-Italy and W-Slovenia. J. Seismol., 20, 511-534.

Bressan G., Barnaba C., Magrin A. and Rossi G.; 2018: A study on off-fault aftershock pattern at N-Adria 
microplate. J. Seismol., 22, 863-881.

Brondi P., Gentili S., Picozzi M., Spallarossa D. and Di Giovambattista R.; 2024a: Characterizing clusters with 
strong subsequent events in central Italy using RAMONES. In: Proc. EGU General Assembly 2024, Vienna, 
Austria, EGU24-6346, doi: 10.5194/egusphere-egu24-6346.

Brondi P., Snidarcig A., Bernardi P., Bragato P.L. and Di Bartolomeo P.; 2024b: Bollettino della Rete Sismometrica 
dell’Italia Nord Orientale (RSINO). Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, 
Trieste, Italy, doi: 10.13120/w1vp-b578.

Brondi P., Gentili S. and Di Giovambattista R.; 2025a: Forecasting strong subsequent events in the Italian territory: 
a national and regional application for NESTOREv1.0. Nat. Hazards, 121, 3499-3531, doi: 10.1007/s11069-
024-06913-6.

Brondi P., Snidarcig A., Di Bartolomeo P., Magrin A., Barnaba C., Poggi V., Pettenati F., Romanelli M., Rebez A., 
Moratto L., Sandron D., Plasencia M., Pesaresi D., Compagno A., Del Negro E., Comelli P., Magrin E., Zuliani 
D., Bertoni M., Fabris P. and Bernardi P.; 2025b: Bollettino della Rete Sismometrica dell’Italia Nord Orientale 
(RSINO), Anno 2023. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy, doi:  
10.13120/m4pk-nd81

Calderoni G., Rovelli A. and Di Giovambattista R.; 2017: Rupture directivity of the strongest 2016-2017 central 
Italy earthquakes. J. Geophys. Res., 122, 9118-9131.

Caputo R.; 1995: Inference of a seismic gap from geological data: Thessaly (central Greece) as a case study. Ann. 
Geophys., 38, 1-19.

Caputo R. and Pavlides S.; 1993: Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-
northern Greece). Tectonophys., 223, 339-362, doi: 10.1016/0040-1951(93)90144-9.

Caravella L. and Gentili S.; 2025: Forecasting strong subsequent aftershocks in New Zealand: preliminary results. 
In: Proc. 21st International Conference Applied Statistic 2025, Koper/Capodistria, Slovenia, p. 40.

Chiarabba C., De Gori P. and Speranza F.; 2008: The southern Tyrrhenian subduction zone: deep geometry, 
magmatism and Plio-Pleistocene evolution. Earth Planet. Sci. Lett., 268, 408-423.

Delibasis N., Ziazia M., Voulgaris N., Papadopoulos T., Stavrakakis G., Papanastassiou D. and Drakatos G.; 1999: 
Microseismic activity and seismotectonics of Heraklion area (central Crete Island, Greece). Tectonophys., 
308, 237-248.

DeMets C., Gordon R.G. and Argus D.F.; 2010: Geologically current plate motions. Geophys. J. Int., 181, 1-80, doi: 
10.1111/j.1365-246X.2009.04491.x.

Devoti R., Riguzzi F., Cuffaro M. and Doglioni C.; 2008: New GPS constraints on the kinematics of the Apennines 
subduction. Earth Planet. Sci. Lett., 273, 163-174, doi: 10.1016/j.epsl.2008.06.031.

DeVries P.M.R., Viégas F., Wattenberg M. and Meade B.I.; 2018: Deep learning of aftershock patterns following 
large earthquakes. Nature, 560, 632-634, doi: 10.1038/s41586-018-0438-y.

Dimitriadis I., Papazachos C., Panagiotopoulos D., Hatzidimitriou P., Bohnhoff M., Rische M. and Meier T.; 2010: 
P and S velocity structures of the Santorini-Coloumbo volcanic system (Aegean Sea, Greece) obtained by 
non-linear inversion of travel times and its tectonic implications J. Volcanol. Geotherm. Res., 195, 13-30, doi: 
10.1016/j.jvolgeores.2010.05.013.

Doglioni C.; 1991: A proposal of kinematic modelling for W-dipping subductions - possible applications to the 
Tyrrhenian-Apennines system. Terra Nova, 3, 423-434.



27

NESTORE algorithm for aftershock forecasting: insights from five seismic regions	 Bull. Geoph. Ocean., XX, XXX-XXX

Doglioni C.; 1995: Geological remarks on the relationships between extension and convergent geodynamic 
settings. Tectonophys., 252, 253-268.

Doglioni C., Carminati E., Cuffaro M. and Scrocca D.; 2007: Subduction kinematics and dynamic constraints. 
Earth Sci. Rev., 83, 125-175.

Gardner J.K. and Knopoff L.; 1974: Is the sequence of earthquakes in southern California, with aftershocks 
removed, Poissonian? Bull. Seismol. Soc. Am., 64, 1363-1367, doi: 10.1785/BSSA0640051363.

Gentili S. and Bressan G.; 2008: The partitioning of radiated energy and the largest aftershock of seismic 
sequences occurred in the northeastern Italy and western Slovenia. J. Seismol., 12, 343-354, doi: 10.1007/
s10950-007-9075-x.

Gentili S. and Franceschina G.; 2011: High frequency attenuation of shear waves in the southeastern Alps and 
northern Dinarides. Geophys. J. Int., 185, 1393-1416.

Gentili S. and Gentile G.F.; 2015: High frequency attenuation k parameter and QS 3D model for south-eastern 
Alps and north-western Dinarides. Boll. Geof. Teor. Appl., 56, 383-406.

Gentili S. and Di Giovambattista R.; 2017: Pattern recognition approach to the subsequent event of damaging 
earthquakes in Italy. Phys. Earth Planet. Inter., 266, 1-17, doi: 10.1016/j.pepi.2017.02.011.

Gentili S. and Di Giovambattista R.; 2020: Forecasting strong aftershocks in earthquake clusters from northeastern 
Italy and western Slovenia. Phys. Earth Planet. Inter., 303, 106483, doi: 10.1016/j.pepi.2020.106483.

Gentili S. and Di Giovambattista R.; 2022: Forecasting strong subsequent earthquakes in California clusters by 
machine learning. Phys. Earth Planet. Inter., 327, 106879, doi: 10.1016/j.pepi.2022.106879.

Gentili S., Brondi P. and Di Giovambattista R.; 2023a: NESTOREv1.0: a MATLAB package for strong forthcoming 
earthquake forecasting. Seismol. Res. Lett., 94, 2003-2013, doi: 10.1785/0220220327.

Gentili S., Brondi P. and Di Giovambattista R.; 2023b: Machine learning for forecasting strong aftershocks in 
California: the NESTOREv1.0 application. In: Poster, AGU Fall Meeting 2023, San Francisco, CA, USA, Session: 
Seismology / Statistical Seismology Expanded: Observation, Modeling, Testing, and Forecasting II Poster, 
0499.

Gentili S., Brondi P., Rossi G., Sugan M., Petrillo G., Zhuang J. and Campanella S.; 2024: Seismic clusters and fluids 
diffusion: a lesson from the 2018 Molise (southern Italy) earthquake sequence. Earth Planets Space, 76, 157, 
doi: 10.1186/s40623-024-02096-3.

Gentili S., Chiappetta G.D., Petrillo G., Brondi P. and Zhuang J.; 2025: Forecasting strong subsequent earthquakes 
in Japan using an improved version of NESTORE machine learning algorithm. Geosci. Front., 16, 102016, doi: 
10.1016/j.gsf.2025.102016.

Gkarlaouni C., Papadimitriou E., Karakostas V., Kilias A. and Lasocki S.; 2015: Fault population recognition 
through microseismicity in Mygdonia region (northern Greece). Boll. Geof. Teor. Appl., 56, 367-382, doi: 
10.4430/bgta0153.

Godano C., Petrillo G., Tramelli A. and Convertito V.; 2025: The b‐value tomography of the Calabrian Arc. Earth 
Space Sci., 12, e2024EA004065, 7 pp.

Hauksson E. and Shearer P.M.; 2005: Southern California hypocenter relocation with waveform cross-
correlation, part 1: results using the double-difference method. Bull. Seismol. Soc. Am., 95, 896-903, doi: 
10.1785/0120040167.

Hutton K., Woessner J. and Hauksson E.; 2010: Earthquake monitoring in southern California for seventy-seven 
years (1932-2008). Bull. Seismol. Soc. Am., 100, 423-446.

ISIDe Working Group; 2007: Italian seismological instrumental and parametric database (ISIDe). Istituto 
Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italy, doi: 10.13127/ISIDE.

Japan Meteorological Agency; 2024: The seismological bulletin of Japan. <www.data.jma.go.jp/svd/eqev/data/
bulletin/index_e.html>.

Kagan Y.Y.; 2002: Aftershock zone scaling. Bull. Seismol. Soc. Am., 92, 641–655, doi: 10.1785/0120010172.
Kanamori H.; 1972: Tectonic implications of the 1944 Tonankai and the 1946 Nankaido earthquakes. Phys. Earth 

Planet. Inter., 5, 129-139, doi: 10.1016/0031-9201(72)90082-9.
Karimzadeh S., Matsuoka M., Kuang J. and Ge L.; 2019: Spatial prediction of aftershocks triggered by a major 

earthquake: a binary machine learning perspective. ISPRS Int. J. Geo-Inf. (IJGI), 8, 462, doi: 10.3390/
ijgi8100462.



28

Bull. Geoph. Ocean., XX, XXX-XXX	 Gentili et al.

Keilis-Borok V.I. and Kossobokov V.G.; 1990: Premonitory activation of earthquake flow: algorithm M8. Phys. 
Earth Planet. Inter., 61, 73-83.

Keilis-Borok V.I. and Rotwain I.M.; 1990: Diagnosis of time of increased probability of large earthquakes in 
different regions of the world: algorithm CN. Phys. Earth Planet. Inter., 61, 57-72.

Koukouvelas I.K., Kokkalas S. and Xypolias P.; 2010: Surface deformation during the Mw 6.4 (8 June 2008) Movri 
Mountain earthquake in the Peloponnese, and its implications for the seismotectonics of western Greece. 
Int. Geol. Rev., 52, 249-268.

Lay T.; 2018: A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake. Tectonophys., 
733, 4-36, doi: 10.1016/j.tecto.2017.09.022.

Le Pichon X., Chamot-Rooke N., Lallemant S., Noomen R. and Veis G.; 1995: Geodetic determination of the 
kinematics of central Greece with respect to Europe: implications for eastern Mediterranean tectonics. J. 
Geophys. Res., 100, 12675-12690, doi: 10.1029/95JB00317.

Lippiello E. and Petrillo G.; 2024: B‐more‐incomplete and b‐more‐positive: insights on a robust estimator of 
magnitude distribution. J. Geophys. Res.: Solid Earth, 129, e2023JB027849.

Liu B., Wen H., Di M., Huang J., Liao M., Yu J. and Xiang Y.; 2024: Mapping and interpretability of aftershock 
hazards using hybrid machine learning algorithms. J. Rock Mech. Geotech. Eng., 17, 4908-4932, doi: 
10.1016/j.jrmge.2024.09.015.

Lolli B. and Gasperini P.; 2003: Aftershocks hazard in Italy Part I: estimation of time-magnitude distribution 
model parameters and computation of probabilities of occurrence. J. Seismol., 7, 235-257.

Lolli B. and Gasperini P.; 2006: Comparing different models of aftershock rate decay: the role of catalog 
incompleteness in the first times after mainshock. Tectonophys., 423, 43-59, doi: 10.1016/j.tecto.2006.03.025.

Malinverno A. and Ryan W.B.F.; 1986: Extension in the Tyrrhenian Sea and shortening in the Apennines as a 
result of arc migration driven by sinking of the lithosphere. Tectonics, 5, 227-245.

McClusky S., Balassanian S., Barka A., Demir C., Ergintav S., Georgiev I., Gurkan O., Hamburger M., Hurst K.J., 
Kahle H.G., Kastens K.A., Kekelidze G., King R.W., Kotzev V., Lenk O., Mahmoud S., Mishin A., Nadariya 
M., Ouzounis A., Paradissis D., Peter Y., Prilepin M., Reilinger R., Şanlı I., Seeger H., Tealeb A., Toksöz M.N. 
and Veis G.; 2000: Global Positioning System constraints on plate kinematics and dynamics in the eastern 
Mediterranean and Caucasus. J. Geophys. Res. Atmos., 105, 5695-5719, doi: 10.1029/1996JB900351.

McKenzie D.; 1978: Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. 
Geophys. J. R. Astron. Soc., 55, 217-254.

Mignan A. and Broccardo M.; 2020: Neural network applications in earthquake prediction (1994-2019): 
meta-analytic and statistical insights on their limitations. Seismol. Res. Lett., 91, 2330-2342, doi: 
10.1785/0220200021.

Milano G. and Di Giovambattista R.; 2011: Seismicity at the border between central and southern Apennines 
(Italy): re-evaluation of the early 1984 instrumental earthquake. Tectonophys., 499, 92-104, doi: 10.1016/j.
tecto.2010.12.008.

Miller S.A., Collettini C., Chiaraluce L., Cocco M., Barchi M. and Kaus B.J.P.; 2004: Aftershocks driven by a high‐
pressure CO2 source at depth. Nature, 427, 724-727.

NCEDC; 2014: Northern California earthquake data center. UC Berkeley Seismological Laboratory, Dataset, doi: 
10.7932/NCEDC.

Ogata Y.; 1988: Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. 
Stat. Assoc., 83, 9-27, doi: 10.2307/2288914.

Ogata Y. and Zhuang J.; 2006: Space-time ETAS model and an improved extension. Tectonophys., 413, 13-23, doi: 
10.1016/j.tecto.2005.10.016.

Papazachos B., Karakostas V., Papazachos C. and Scordilis E.; 2000: The geometry of the Wadati-Benioff zone and 
lithospheric kinematics in the Hellenic arc. Tectonophys., 319, 275-300, doi: 10.1016/S0040-1951(99)00299-
1.

Petrillo G. and Zhuang J.; 2022: The debate on the earthquake magnitude correlations: a meta-analysis. Sci. 
Rep., 12, 20683.

Petrillo G. and Zhuang J.; 2023: Verifying the magnitude dependence in earthquake occurrence. Phys. Rev. Lett., 
131, 154101.



29

NESTORE algorithm for aftershock forecasting: insights from five seismic regions	 Bull. Geoph. Ocean., XX, XXX-XXX

Picozzi M., Abdi F., Barnaba C., Bertoni M., Bragato P.L., Brondi P., Caravella L., Capotosti G., Cataldi L., Comelli P., 
Compagno A., Chiappetta G.D., Gentili S., Fabris P., Fangqing D., Magrin A., Moratto L., Pesaresi D., Peruzza 
L., Poggi V., Romano M.A., Rossi G., Sandron D., Santulin M., Saraò A., Spallarossa D., Sugan M. and Zuccolo 
E.; 2025: Rapporto di sintesi sul terremoto di Raveo (Udine) ML 3.9 del 12 Gennaio 2025. Centro di Ricerche 
Sismologiche - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (CRS-OGS) - Udine, Italy, doi: 
10.5281/zenodo.15168324.

Polonia A., Torelli L., Artoni A., Carlini M., Faccenna C., Ferranti L., Gasperini L., Govers R., Klaeschen D., Monaco 
C., Neri G., Nijholt N., Orecchio B. and Wortel R.; 2016: The Ionian and Alfeo-Etna fault zones: new segments 
of an evolving plate boundary in the central Mediterranean Sea? Tectonophys., 675, 69-90, doi: 10.1016/j.
tecto.2016.03.016.

Reilinger R., McClusky S., Paradisis D., Ergintav S. and Vernant P.; 2010: Geodetic constraints on the tectonic 
evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophys., 
488, 22-30, doi: 10.1016/j.tecto.2009.05.027.

Rousseeuw P.J. and Hubert M.; 2011: Robust statistics for outlier detection. Wiley Interdiscip. Rev.: Data Mining 
Knowl. Discov., 1, 73-79, doi: 10.1002/widm.2.

Sakellariou D., Lykousis V., Alexandri S., Kaberi H., Rousakis G., Nomikou P., Georgiou P. and Ballas D.; 2007: 
Faulting, seismic-stratigraphic architecture and Late Quaternary evolution of the Gulf of Alkyonides Basin-
east Gulf of Corinth, central Greece. Basin Res., 19, 273-295, doi: 10.1111/j.1365-2117.2007.00322.x.

SCEDC; 2013: Southern California earthquake center. Caltech, Dataset, Pasadena, CA, USA, doi: 10.7909/
C3WD3xH1.

Schimmenti V.M., Petrillo G., Rosso A. and Landes F.P.; 2024: Assessing the predictive power of GPS‐based ground 
deformation data for aftershock forecasting. Seismol. Res. Lett., 95, 3243-3249, doi: 10.1785/0220240008.

Scholz C.H.; 2019: The mechanics of earthquakes and faulting 3rd ed. Cambridge Univ. Press, Cambridge, UK, 
493 pp., doi: 10.1017/CBO9780511818516.

Smirnov V.B. and Petruchov A.A.; 2025: On the relationship between RTL and b-value anomalies of seismicity. 
Izvestiya Phys. Solid Earth, 61, 539-552, doi: 10.1134/S1069351325700545.

Snidarcig A., Bernardi P., Bragato P.L., Di Bartolomeo P., Garbin M. and Urban S.; 2020: Bollettino della 
Rete Sismometrica dell’Italia Nord Orientale (RSINO). Istituto Nazionale di Oceanografia e di Geofisica 
Sperimentale - OGS, Trieste, Italy, doi:  10.13120/108b8d94-361a-45f3-8195-fc4e8f73d264.

Snidarcig A., Bernardi P., Bragato P.L., Di Bartolomeo P., Garbin M. and Urban S.; 2021: Bollettino della 
Rete Sismometrica dell’Italia Nord Orientale (RSINO). Istituto Nazionale di Oceanografia e di Geofisica 
Sperimentale - OGS, Trieste, Italy, doi: 10.13120/8b252b09-314f-456f-812a-b05268ecd001.

Spassiani I., Gentili S., Console R., Murru M., Taroni M. and Falcone G.; 2025: Reconciling the irreconcilable: 
window-based versus stochastic declustering algorithms. Geophys. J. Int., 240, 1009-1027, doi: 10.1093/gji/
ggae425.

Stockman S., Lawson D.J. and Werner M.J.; 2023: Forecasting the 2016-2017 central Apennines earthquake 
sequence with a neural point process. Earth’s Future, 11, e2023EF003777, doi: 10.1029/2023EF003777.

Totaro C., Orecchio B., Presti D., Scolaro S. and Neri G.; 2016: Seismogenic stress field estimation in the 
Calabrian Arc region (south Italy) from a Bayesian approach. Geophys. Res. Lett., 43, 8960-8969, doi: 
10.1002/2016GL070107.

Trugman D.T. and Ben-Zion Y.; 2023: Coherent spatial variations in the productivity of earthquake sequences in 
California and Nevada. Seism. Rec., 3, 322-331, doi: 10.1785/0320230039.

Uhrhammer R.A.; 1986: Characteristics of northern and central California seismicity. Earthquake Notes, 57, 21-
37.

U.S. Geological Survey; n.d.: ANSS Comprehensive Earthquake Catalog (ComCat) documentation. U.S. 
Department of the Interior, accessed November 2025, https://usgs.gov/programs/earthquake-hazards/
anss-comprehensive-earthquake-catalog-comcat-documentation. 

Vallianatos F., Michas G. and Hloupis G.; 2021: Seismicity patterns prior to the Thessaly (Mw 6.3) strong 
earthquake on 3 March 2021 in terms of multiresolution wavelets and natural time analysis. Geosci., 11, 
379, doi: 10.3390/geosciences11090379.



30

Bull. Geoph. Ocean., XX, XXX-XXX	 Gentili et al.

Vallianatos F., Karakonstantis A., Michas G., Pavlou K., Kouli M. and Sakkas V.; 2022: On the patterns and scaling 
properties of the 2021-2022 Arkalochori earthquake sequence (central Crete, Greece) based on seismological, 
geophysical and satellite observations. Appl. Sci., 12, 7716, doi: 10.3390/app12157716.

van der Elst N.J. and Page M.T.; 2023: A‐positive: a robust estimator of the earthquake rate in incomplete or 
saturated catalogs. J. Geophys. Res.: Solid Earth, 128, e2023JB027089, doi: 10.1029/2023JB027089.

Vorobieva I.A.; 1999: Prediction of a subsequent large earthquake. Phys. Earth Planet. Inter., 111, 197-206.
Vorobieva I.A. and Panza G.F.; 1993: Prediction of the occurrence of related strong earthquakes in Italy. Pageoph, 

141, 25-41, doi: 10.1007/BF00876232.
Wang M., Shen J., Pan Z.A. and Han D.L.; 2019: An improved supported vector regression algorithm with 

application to predict aftershocks. J. Seismol., 23, 983-993.
Wu J., Suppe J., Lu R. and Kanda R.; 2016: Philippine Sea and east Asian plate tectonics since 52 Ma constrained 

by new subducted slab reconstruction methods. J. Geophys. Res.: Solid Earth, 121, 4670-4741, doi: 
10.1002/2016JB012923.

Zechar J.D.; 2010: Evaluating earthquake predictions and earthquake forecasts: a guide for students and new 
researchers. Community Online Resour. Stat. Seismicity Anal., 126, doi: 10.5078/corssa-77337879, <www.
corssa.org>.

Zhao S., Wang H., Xue Y., Wang Y., Li S., Liu J. and Pan G.; 2022: What are more important for aftershock spatial 
distribution prediction, features, or models? A case study in China. J. Seismol., 26, 181-196, doi: 10.1007/
s10950-021-10044-x.

Zhuang J., Ogata Y. and Vere-Jones D.; 2002: Stochastic declustering of space-time earthquake occurrences. J. 
Am. Stat. Assoc., 97, 369-380, doi: 10.1198/016214502760046925.

Corresponding author:	 Stefania Gentili  
	 National Institute of Oceanography and Applied Geophysics – OGS
	 Via Treviso 55, 33100 Udine, Italy
	 Phone: +39 040 2140234; e-mail: sgentili@ogs.it

Appendix: Online NRT software and web page on OGS data

The OGS automatic seismic monitoring system managed by its department Seismological 
Research Centre (CRS) performs several real-time procedures as part of its 24/7 monitoring 
activity, which includes localising events, estimating their magnitude, and forwarding warnings to 
civil protection authorities. We integrated the NESTORE NRT module among these processes. To 
support this functionality, a dedicated server has been set up to continuously monitor new events 
that exceed the magnitude threshold and execute the NRT module. This module, like the rest of 
the NESTORE codebase, is written in MATLAB. For our purpose, it is wrapped in a shell script that 
handles the interaction with the Linux operating system. When an event is detected, the server 
first evaluates whether the event fulfils conditions 1 and 2 for the NESTORE NRT analysis. If these 
criteria are satisfied, the system automatically prepares the required environment (generating 
input files and directory structures) and launches the NRT analysis in a temporary workspace 
(see Fig. A1). NESTORE stores, as potential aftershocks, all events that occur within the six hours 
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following the mainshock and within a radius that depends on Mm according to the window-
based law defined in the training and testing (see Section 3.2). If the magnitude of the strongest 
aftershock is greater than, or equal to, Mm−1, there are two possibilities:

1.	 if the magnitude is greater than Mm, the aftershock becomes the new operative mainshock 
and the procedure restarts;

2.	 if the magnitude is smaller than Mm, the cluster is already classified as type A and no 
further classification is performed.

This minor change to the original algorithm (the branch in point 1 was not present in the 
original algorithm) was added taking into account the low threshold (ML = 3.7) for the o-mainshock 
in the region, to allow analysis even in cases where the mainshock is preceded by a small (e.g. 
ML = 3.7 or similar) foreshock a few hours earlier.

If during the first six hours after the mainshock the aftershocks have magnitudes smaller 
than Mm−1, the seismic features are analysed and the system calculates the probability that the 
cluster is a type A based on prior machine learning training. The output includes the forecasted 
cluster class, its probability, and the forecasting spatiotemporal window.

Fig. A1 - Block diagram of the NRT algorithm.

Since the best results of the test phase in the region were obtained for a period of six hours 
after the main o-mainshock, according to the NRT procedure, the NRT performance should only 
be considered for six hours. In order to consider the possible future trainings on larger database, 
which may show better results for longer time intervals, the procedure is performed for all the 
intervals with training, i.e. 6, 12, and 18 hours after the o-mainshock. The o-mainshock is kept 
unchanged for longer time intervals, to avoid confusion with the six-hour analysis.

Since alerts are typically received by the NESTORE server within a few minutes after the event 
origin time, the automated pipeline is configured to wait for the minimum time window (six 
hours) before querying the CRS server for the updated aftershock catalogue (if available). This 
approach ensures that the analysis is based on the most up-to-date information (e.g. location, 
magnitude), which may have been refined by an operator in the meantime, and allows the 
system to deliver an informed classification (type A or B). The final output is published at https://
nestore.crs.ogs.it. The site is under development and is password protected. At present, the 
algorithm has correctly processed two sequences in 2024 (see Fig. 5). On 12 January 2025 an ML 
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3.9 event occurred close to the village of  Raveo (Picozzi et al., 2025), followed by an event of 
magnitude ML = 3.3 in the first six hours after the mainshock. According to the procedure shown 
in the block diagram in Fig. A1, the cluster already resulted to be a type A cluster in the first six 
hours, as the second event was not strong enough to become a new operative mainshock. The 
cluster did not require any further forecasting and was therefore ignored.


