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ABSTRACT YOLO (You Only Look Once) is one of the most popular computer vision algorithms.
Computer vision has revolutionised the field of moving object detection in real time
with its ability to analyse and understand visual content much like a human. This paper
presents a comprehensive framework for fish detection, bounding box-based tracking,
and counting in underwater environments using the YOLOv8 deep learning architecture.
Accurately and efficiently identifying, tracking, and counting fish plays an important role
in aquatic research, conservation efforts, and fishery management. The proposed system
uses a pre-trained YOLOv8 model which is fine tuned using a large annotated dataset of
underwater fish images. The model is improved using transfer learning to learn features
specific to fish detection in water. Real-time underwater fish detection is performed
on underwater video streams using a fine-tuned YOLOv8 model. The high speed and
accuracy of YOLOvS8 enables efficient localisation of fish instances at every frame. The
analysis of such data enables accurate fish counts and facilitates effective monitoring
and assessment of fish populations in water bodies. The true positive rate of 0.91 and
accuracy of 92% indicated that the system successfully identified a significant proportion
of fish instances present in the images.
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1. Introduction

Exploration and comprehension of marine ecosystems are now more crucial than ever for
resource management and environmental preservation. Important indicators of the health of an
ecosystem are fish population dynamics and behaviour. Manual surveys and acoustics are two
common traditional approaches for fish detection and tracking in underwater habitats (Sprague
et al., 2014). However, when employing camera-based systems for fish monitoring, a crucial
design consideration is the long-standing dichotomy between baited and unbaited systems.
Baited remote underwater video stations can enhance detection rates by attracting fish, but they
may introduce behavioural biases due to artificial attraction (Burgi, 2021; Knausgard et al., 2022).
In contrast, unbaited systems provide a more accurate representation of natural fish behaviour,
though often at the cost of reduced detection rates (Coro and Walsh, 2021). The choice between
these setups significantly impacts both the system design and the generalisability of Al-based
solutions, as discussed in prior reviews (Barbedo, 2022). Moreover, traditional approaches are
labour-intensive, time-consuming, and inaccuracy-prone. This underscores the growing need
for automated, scalable, and accurate systems to facilitate effective fish population monitoring
(Gruszczynski et al., 2020).
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He et al. (2016) highlighted the benefits of using deep residual networks for addressing the
vanishing gradient problem and improving the accuracy of computer vision tasks. However,
a number of difficulties arise when directly implementing these methods in aquatic settings.
Water turbidity, uneven lighting, and colour distortion cause underwater photos to have poor
visibility, which can have a big impact on how well traditional object detection algorithms work
(Buono et al., 2021). Additionally, the complexity and variety of underwater scenes, including
the presence of corals, rocks, and other marine organisms, increases the possibility of occlusions
and confusion in fish detection.

Redmon et al. (2016) introduced the original YOLO (You Only Look Once) algorithm, provided
an overview of its architecture, and demonstrated its real-time object detection capabilities for
computer vision applications. The study by Cimino et al. (2018) emphasises the importance of
real-time detection for various applications in marine exploration, including species identification,
habitat mapping, and environmental monitoring. There are many well-known deep learning
approaches for object detection, including YOLO, Single Shot MultiBox Detector, Faster Region-
based Convolutional Neural Network (R-CNN), Region-based Fully Convolutional Networks,
RetinaNet, Mask R-CNN, etc. While each algorithm has its merits, YOLO stands out as a powerful
solution for various reasons.

One key advantage of YOLO is its real-time processing capabilities. By adopting single-pass
architecture, YOLO converts the input image into a grid form and simultaneously predicts and
draws bounding boxes, thus mentioning probabilities for each class. This parallel processing
enables YOLO to achieve faster inference speeds compared to other algorithms, making it well
suited for real-time applications (Redmon et al., 2017). Its ability to strike a balance between
accuracy, speed, and robustness to occlusions makes it a compelling choice for practical
applications. YOLO exhibits strong generalisation capabilities. Its effectiveness in underwater
environments makes it particularly valuable for tasks such as fish detection in real time. The
study by Fang et al. (2020) presented a comparative analysis of object detection algorithms
for underwater robotic applications. The researchers evaluated the performance of different
algorithms, including YOLO, in terms of real-time processing, robustness to occlusions, and
accuracy in complex underwater scenes. The results show that YOLO achieves a real-time
processing speed of 30 frames per second (FPS) with an accuracy of 92.5% which is better than
other algorithms. In an article by Rath and Gupta (2023), a comprehensive analysis of various
YOLO object localisation and detection models, which focused on their performance, in terms of
FPS and Mean Average Precision (mAP) on different hardware setups, was presented. The article
focused on the performances of the YOLOv5, YOLOv6, and YOLOvV7 models. In terms of Graphics
Processing Unit (GPU) performance, the study reveals that the YOLOv5 nano model stands out by
achieving an impressive 230 FPS on an NVIDIA RTX 4090 GPU. All YOLO models in the study can
run in real time on GPUs, with none dropping below 30 FPS. This demonstrates the effectiveness
of YOLO models in leveraging GPU capabilities for fast and efficient object detection.

YOLOvS (Jindal, 2023) introduces Darknet-53, a new backbone network that is considerably
quicker and more precise than the one utilised in YOLOv7. A convolutional neural network
(CNN) called DarkNet-53, which has 53 layers, is capable of classifying photos into thousands
of different categories, including pencil, keyboard, mouse, and numerous animals. YOLOv8
generates detection box predictions in a manner akin to pixel-wise picture segmentation.
Additionally, YOLOv8 uses a much bigger feature map and also a more effective CNN than earlier
versions, making it more effective than earlier versions. As a result, the model can detect things
more quickly and accurately, it can identify patterns and moving objects in the data in a much
better way, and can capture more intricate interactions between various features with a larger
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feature map. A larger feature map can also aid in accelerating the model’s training and learning
process and help to prevent overfitting. In addition to object detection, object tracking and
counting play a vital role in computer vision applications, offering significant advantages. Object
counting provides valuable quantitative information about the number of objects present in a
scene (Khan et al., 2018).

2. Literature survey

The study by Sah et al. (2017) illustrates the distinction between object detection and object
tracking within a video stream. It highlights that, in scenarios with occlusions, tracking techniques
utilise temporal information to predict the position of an object. Amraee et al. (2022) conducted a
study focusing on the efficiency of feature extraction methods for classifying small metal objects.
In their research, they compared the Histogram of Oriented Gradients (HOG) and Local Binary
Pattern (LBP) approaches with deep learning methods, including the popular YOLO algorithm.
The authors examined the effectiveness of these algorithms in classifying screws, nuts, keys, and
coins. While traditional feature extraction methods like HOG and LBP demonstrated efficiency in
generating accurate feature vectors for classification, YOLO stood out as a deep learning-based
approach capable of both object detection and classification.

Zhang et al. (2016) addressed the challenge of fish detection and tracking in underwater
visual sensor networks using traditional computer vision techniques. They proposed a method
that combines background subtraction and motion analysis for fish detection. However, these
traditional approaches have limitations in handling complex underwater conditions, such as low
visibility and colour distortion. Yousif and Ghareeb (2019) proposed a real-time fish detection
and tracking method. They utilised background subtraction and contour-based feature extraction
to detect fish in video frames. While their approach showed promising results in controlled
underwater environments, it could face challenges in high dynamic backgrounds where the fish
and background exhibit similar motion patterns. Ren et al. (2016) introduced Faster R-CNN, a
state-of-the-art architecture for real-time object detection. This approach utilises region proposal
networks to generate object proposals and, then, classifies and refines them. This method may
require adaptations to handle the unique challenges posed by underwater environments.

Redmon and Farhadi (2018) proposed YOLOv3, an incremental improvement of previous
versions of the YOLO architecture. YOLOv3 divides the input image into a grid and directly
predicts bounding boxes and class probabilities. Its performance in underwater fish detection
can be further improved by incorporating adaptations to handle low visibility, colour distortion,
and changing light conditions. Li et al. (2017) explored fish counting and tracking in underwater
video sequences using deep learning techniques. They proposed a combination of CNNs and
recurrent neural networks to detect and track fish. Qin et al. (2020) proposed a robust visual
tracking method for underwater fish using deep learning. They employed a Siamese network
architecture to track fish across consecutive frames. Their method demonstrated robustness to
changes in fish appearance and background clutter.

Pagire and Phadke (2020) achieved an accuracy of 99.74% using the mobile net model
of a deep neural network to detect and recognise fish species. Though the trained model
detected nine different types of fish species with high accuracy, the dataset used in the work is
comparatively less complex with only one or two fishes in each image. In the work by Pagire and
Phadke (2020), a Gaussian mixture model-based Godbehere-Matsukawa-Goldberg algorithm is
used to detect moving objects in three types of backgrounds. The authors considered three
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classes of backgrounds: static, moderate dynamic, and high dynamic backgrounds. The algorithm
performance is comparatively poor while detecting objects in high dynamic backgrounds.
The study by Lekunberri et al. (2022) focuses on the application of computer vision and deep
learning techniques to identify and measure tropical tuna species in purse seiner catches and
also presents a methodology to automatically classify and quantify different tuna species
from captured images. In their work, Garg and Phadke (2024) address the pressing need for
effective underwater fauna monitoring by conducting a comprehensive comparative study of
two state-of-the-art object detection models: YOLOv4 and YOLOvS. Their research focuses on
real-time fish detection and tracking within dynamic underwater environments, emphasising
the importance of accuracy, processing speed, and adaptability to challenging conditions. Their
findings demonstrate the superiority of the YOLOv8 model over the YOLOv4. In response to
the challenges of underwater surveillance, Pagire and Phadke (2024) present a novel hybrid
model for fish detection in aquatic environments. Central to this approach is the integration of
the local structure binary pattern method with a unique attribute extractor called Multi Frame
Triplet Pattern (MFTP). The MFTP enhances object detection by encoding background layout
information across three successive frames, while considering local intensity variances.

This paper suggests reliable fish detection, bounding box-based tracking, and counting system
based on YOLOv8. The real-time performance and high detection accuracy of YOLOv8 make it ideal
for underwater monitoring applications. By implementing a number of significant improvements
and adaptations, the performance of YOLOVS, in the underwater realm, is improved.

3. Methodology

Fig. 1 depicts the step-by-step process followed to accomplish underwater fish detection,
bounding box-based tracking, and counting using the YOLOv8 algorithm. The proposed flow for
the system involves annotating and pre-processing data, fine-tuning the YOLOv8 model with
configured hyper parameters and augmented data and model evaluation using a separate test
set to assess performance.

Data Acquisition |—| Data Cleaning Il,)ra:,tca:sl;;:-g
Model TeStlflg «————|Model Fine-Tuning « Data Annotation
and Evaluation

Performance
Analysis

Fig. 1 - System block diagram.
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3.1. Data acquisition

For this model a custom dataset, specifically curated for underwater fish monitoring, was
created. The dataset comprises a collection of underwater images captured from various aquatic
environments, including rivers, lakes, and oceans. The dataset consists of 1,000 images, each
with an average size of 1024x768 pixels. For the construction of this dataset, multiple sources
were utilised, the primary source being the Google Open Images dataset V7 (Kuznetsova et al.,
2020), which provided a diverse collection of underwater images. In addition, manual capture
of aquarium images and videos incorporated controlled underwater environments and specific
fish species.

3.2. Data cleaning

To ensure the suitability of the dataset for this research, relevance and quality, a rigorous
selection process was implemented. Various unwanted images that did not align with the
research purpose, such as those with low visibility, images outside water, animated fish images
or those with insufficient fish presence, were removed from the dataset.

3.3. Data pre-processing and data augmentation

The pre-processing steps, performed on the acquired dataset for the proposed model,
included contrast enhancement, noise reduction, and resizing of images to a standardised
resolution. Different data augmentation techniques were used to enhance the diversity of the
dataset, improve generalisability of the model, and avoid overfitting. Techniques such as random
scaling, channel shifting, rotation, image distortion, and image saturation were employed to
augment the dataset.

3.4. Data annotation

Accurate and reliable annotations serve as the foundation for training machine learning
models, enabling them to learn and generalise from labelled data. Good annotations provide
the necessary ground truth information, enabling the models to recognise and differentiate fish
instances from the background (Joshi and Shivalker, 2023). The overall performance, robustness,
and accuracy of the trained models are usually influenced by the quality of the annotations.
Precise bounding box annotations help the models accurately localise fish objects within the
images or videos. For the proposed work, the process of data annotation and labelling was
conducted manually using the Computer Vision Annotation Tool (CVAT) (CVAT Documentation,
2023). CVAT is a versatile and user-friendly annotation platform that facilitates the efficient and
precise labelling of objects in images and videos. The annotation results are provided in the ‘0
x_min y_min width height’ format, where 0 indicates the fish class label and, as this is a single
class classification, all labels are labelled as 0. The coordinates (x_min, y_min) represent the
normalised top-left corner of the bounding box, while the ‘width” and ‘height’ represent its size.
These annotations demonstrate the precise localisation and size estimation of fish objects within
the images, aiding in object detection tasks and further analysis.

While horizontal bounding boxes provide a practical method for annotating fish locations, they
do not capture the true orientation or shape of the fishes. This can introduce biases, especially in
tracking scenarios where fish overlap or appear at oblique angles. In such cases, bounding boxes
may contain significant background or intersect with other instances, leading to identity switches
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or false detections. Moreover, this approach may limit biological insights related to behaviour,
directionality, or body posture. Future work could explore oriented bounding boxes or instance
segmentation to more accurately capture fish geometry and improve tracking fidelity.

3.5. Model fine-tuning

In the proposed work, the YOLOv8n (nano) model is selected as it offers its lightweight
architecture, fast inference speed, and compatibility with constrained hardware. Ultralytics
(Rath, 2023), a leading technology company in the field of computer vision and deep learning,
is revolutionising the way we interact with visual data. The Ultralytics team has created an
open-source software library called YOLOv8 that builds upon the success of the original YOLO
algorithm. YOLOvS offers different model variants with varying sizes, such as YOLOv8n, YOLOvSs,
YOLOv8m, YOLOvSI, and YOLOv8x. These variants have different model complexities, enabling
users to choose an appropriate balance between the computational efficiency and accuracy of
a model, based on their specific requirements. Table 1 compares the different variants of the
YOLOv8 model based on their specifications. The models have a fixed input size of 640 pixels and
performance ranging from 37.3 to 53.9 mAPval, indicating their object detection accuracy. These
specifications provide insights into the trade-offs between accuracy, speed, model size, and
computational requirements for the YOLOvS8 variants. The model underwent a comprehensive
fine-tuning procedure, spanning 150 epochs, utilising a batch size of 16. The process lasted
approximately three hours, leveraging the computational resources of the Google Colab platform.
Throughout the process, input images of 640 pixels were utilised, ensuring an optimal balance
between computational efficiency and detection accuracy. To evaluate model performance and
generalisation, the dataset was divided into three distinct sets: training, validation, and testing,
splitin a ratio of 700:150:150, respectively, to ensure a sufficient number of samples for training,
model selection, and final evaluation.

Table 1 - Different variants of the YOLOv8 model.

si APval Speed Speed P FLOPS
Model _'z"i ";0 ;’5"‘ CPU ONNX A100 TensorRT a’arlcleters "

(pixels) - (ms) (ms) (M) (B)

YOLOV8N 640 37.3 80.4 0.99 3.2 8.7
YOLOVSs 640 44.9 128.4 1.20 11.2 28.6
YOLOV8m 640 50.2 234.7 1.83 25.9 78.9
YOLOVSI 640 52.9 375.2 2.39 43.7 165.2
YOLOV8x 640 53.9 479.1 3.53 68.2 257.8

Among the five YOLOvVS8 variants (n, s, m, |, and x), the YOLOv8n model was selected due to its
lightweight architecture and compatibility with real-time processing on limited hardware. This
model was fine-tuned on the curated underwater fish dataset.

3.51. Model selection

For the proposed work, the YOLOv8n model is preferred as it offers several advantages that
align well with the requirements of the research. First and foremost, one of the primary reasons
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for selecting YOLOvS8n is its real-time inference capabilities and faster training capabilities.
Additionally, YOLOv8n exhibits remarkable accuracy, even while operating at high speed. The
model leverages a deep CNN architecture combined with advanced techniques like anchor free
detections, multi-scale predictions, and feature pyramid networks. These elements enable it to
efficiently locate and detect objects across different scales and aspect ratios, resulting in more
precise bounding box predictions and improved overall performance. Considering the real-time
inference capabilities, high accuracy, deployment flexibility, and strong community support, the
YOLOv8n model emerged as the ideal choice for the proposed work.

3.5.2. Model architecture and specifications

The YOLOv8n model employed in this research work boasted an impressive architecture with
225 layers, comprising a total of 3,011,043 parameters. The deep structure of the model enabled
it to capture intricate features and learn complex representations. With 3,011,027 gradients, the
model had a considerable capacity for adjusting its parameters during the fine-tuning process.
The YOLOv8n model demonstrated a computational efficiency of 8.2 gigaFLOPS, enabling
rapid inference. Fig. 2 showcases the sequential arrangement of various layers involved in the
process. Starting with convolutional (Conv) layers for feature extraction, the model incorporates
C2f blocks—the lightweight residual CSP-style feature-extraction modules used throughout
the backbone/neck—to improve gradient flow and representation capacity. Spatial Pyramid
Pooling—Fast (SPPF) layers capture multi-scale information, while Upsample layers increase the
spatial resolution for refined object localisation. Concatenation (Concat) layers combine features
from different scales, and the final Detect layer generates bounding box predictions and class
probabilities.

The backbone is responsible for the initial feature extraction from the input data. It typically
consists of a series of Conv and pooling layers, and other operations. The primary objective of
the backbone network is to capture and encode low-level and mid-level features present in the
input data, while the head is responsible for taking the extracted features from the backbone
and performing specific tasks, such as classification, regression, or object detection. It typically
consists of additional Conv layers, and specialised modules tailored for the specific task at hand.
The head network inputs the high-level features captured by the backbone and transforms these
features into the desired output format. This comprehensive arrangement of Conv, C2f, SPPF,
Upsample, Concat, and Detect layers enables YOLOv8 to effectively extract features, handle
objects of different sizes, and produce accurate object detections. The YOLOv8 architecture
utilises the Leaky Rectified Linear Unit (ReLU) activation function. This function is a modified
version of the traditional ReLU function that also introduces a small slope/value for any negative
input values, preventing the issue of “dying” neurons. In YOLOv8, the Leaky RelLU activation
function is applied after certain layers to introduce nonlinearity and enable the network to learn
complex representations. The Leaky ReLU function is defined as:

fx)=(ax,x). (1)

The graph of the Leaky ReLU function in Fig. 3 depicts that the function returns x if it receives
any positive input, but for any negative value of x, it returns a very small value which is a times
X. a is a small constant that determines the slope of the function for negative inputs. Typically,
the value of a is set between 0.1 or 0.01 to ensure that there is a small non-zero gradient for
negative inputs. The use of the Leaky RelLU activation function in YOLOVS aids in capturing and




Bull. Geoph. Ocean., XX, XXX-XXX Garg and Phadke

Backbone Head
}
w \ > Concat
| ‘ |
Caf
l Upsample S
Conv b l
l Caf f—— Concat
Caf \ l
}

! Upsample —
l L
Concat
Caf
|

[ serr ] — _.

Fig. 2 - The YOLOv8 model architecture.

representing complex features and patterns in the input data.

The YOLOv8 architecture employs a combination of different loss functions to train the
model and optimise its performance. The primary loss function used in YOLOv8 consists of three
components:
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Fig. 3 - The Leaky ReLu activation function.

the box loss, the Distribution Focal Loss (DFL), and the class loss. The box loss is responsible for
measuring the accuracy of predicted bounding box coordinates. It ensures that the predicted
boxes closely align with the ground truth boxes. The box loss is measured using the Mean-Squared
Error (MSE) loss. It penalises the discrepancies between the predicted and true box coordinates,
encouraging precise localisation of objects. The MSE is used to calculate the average squared
difference between the predicted and true values. In the case of box loss, it quantifies the error
in the predicted box coordinates, allowing the model to learn to accurately localise objects. The
formula for the MSE is:

] & :
MSE = — 5 2
Ng(y, 5) 2)

where N is the total number of bounding boxes, y. represents the predicted box coordinates, and
y represents the ground truth box coordinates.

The class loss evaluates the accuracy of predicted class probabilities. It is computed based on
the binary cross-entropy loss for the confidence scores of each and every predicted bounding
box, which encourages the model to assign high probabilities to the correct object classes and
low probabilities to incorrect object classes. The binary cross-entropy loss is calculated as:

1 n
Lag= =~ 2. vilog (9) + (1-;)log (1 - 9,-) (3)
i=1

where L is the binary cross-entropy loss, n represents the total number of bounding
boxes, y, represents the true label, and y represents the predicted probability/confidence
score.

The DFL is a variant of the focal loss that helps improve model performance when training
data is imbalanced. Specifically, the DFL is used to deal with class imbalance that arises when
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training on datasets with very rare objects. The DFL aims at addressing this problem, thus making
sure that the model correctly detects these rare objects.

3.5.3. Detection, bounding box-based tracking, and counting

For object detection, the YOLOv8n model was used. This model demonstrated high accuracy
and efficiency in detecting objects of interest within images. The YOLOv8n architecture, with its
225 layers and 3,011,043 parameters, proved instrumental in capturing intricate features and
learning complex representations.

To enable the real-time bounding box-based fish tracking system, the bounding box predictions
from YOLOv8n were processed using the ByteTrack (Skalski, 2023) tracking algorithm. ByteTrack
performs tracking-by-detection by associating detection boxes with tracklets, i.e. sequences
of frames where an object has been continuously observed. Its core strength lies in a two-
stage data association process. In the first stage, high-confidence detections are matched to
existing tracklets to ensure reliable identity assignment and in the second stage, low-confidence
detections, which are typically discarded by traditional trackers, are re-evaluated and matched
using Intersection over Union (loU) and appearance similarity metrics. The detailed working of
the ByteTrack tracking-by-detection model is described here following.

D, represents detections at frame t and T,_, represents active tracks from the previous frame.

Step 1. Detections are split into high-confidence (D,") and low-confidence (D) sets based on
confidence thresholds t, and t, using:

DH={deDt| s(d)>1th}, Dit={deDt| T <s(d)<Th} (4)
Step 2. D" is matched to existing tracks using loU:
IoU(bi,bj) = | biubj| / | binbj|. (5)

Step 3. For unmatched tracks, matching is performed with D" using a combination of loU and
appearance similarity Sapp:

Match score = a - (loU) + (1 — a) - Sapp. (6)

This two-stage comprehensive matching strategy allows ByteTrack to recover missed or briefly
occluded objects and maintain identity consistency across frames. A gating mechanism further
filters redundant matches, enhancing robustness. However, ByteTrack assumes reasonably
consistent motion and visual appearance and may experience identity switches in crowded
scenes with overlapping fish.

For object counting, the Supervised learning Matlab library was used to implement a line-
crossing strategy. A virtual counting line was drawn across the video frame, and each tracked
fish was counted once upon crossing it, based on its unique tracker ID [refer to Eq. (7)]. This
minimised false positives and avoided duplicate counts. For the line-crossing counting model, L
is the virtual counting line with normal vector n, p,_, and p, represents the consecutive positions
of a tracked fish, and p . represents any point on the line.

A fish is counted when:

10
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sign ((pe1- p) ® n) = sign ((pt - p.) * n). (7)

In simple terms: if a fish’s path crosses from one side of the line to the other, the count is
incremented once per unique ID.

By combining the detection capabilities of YOLOv8n, the tracking system built upon the
YOLOvS8 architecture using the Bytetrack package, and counting functionality implemented
through the supervision package based on YOLOv8, the research achieved comprehensive
detection, tracking, and counting capabilities.

3.5.4. Adaptations and modifications

To optimise YOLOv8 for underwater fish detection, several modifications were introduced
to the model architecture. Firstly, the backbone network was fine tuned to handle underwater-
specific image characteristics, such as low visibility and colour distortion. The anchor box
design was modified to account for the size and shape variations of underwater fish species.
Anchor boxes are predefined bounding boxes with a specific shape and size. In object detection
algorithms like YOLO, anchor boxes are used to predict and localise objects in an image. During
training, the model learns to predict the bounding box coordinates relative to the anchor box
for each object present in the grid cell. This is done by regressing the offset values for the
box coordinates. The predicted box coordinates, combined with the anchor box parameters,
determine the final bounding box for the detected object. Fig. 4 illustrates the concept of anchor
boxes in object detection models like YOLOvS. It depicts a grid overlaying the image, dividing it
into multiple cells.

Offset:
rnageurm: i
Predefined anchor boox location
Offsety el e
| |
i
A4 Predicted offset 0
[ |

Refined location of anchor box

Fig. 4 - Anchor boxes for object detection (Mathworks, 2023).

11
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Each cell is associated with anchor boxes, which are predefined bounding boxes of different
sizes and aspect ratios. Furthermore, the YOLOv8 detection head was adjusted to handle the
detection of fish in different orientations and postures. The adapted YOLOv8 model was evaluated
using appropriate performance metrics, specifically tailored for underwater fish monitoring.
These performance measures included F1 score, recall, mAP, and overall detection accuracy.

4. Results and discussion

The implementation of the system has yielded impressive outcomes. While multiple
optimisations and iterations were performed during the system’s development to enhance its
performance, a total of 150 epochs were used to achieve optimal results and address specific
challenges encountered in fish detection.

4.1. Graphical analysis of model performance

The resulting confusion matrix provides an overview of true positives, false positives, true
negatives, and false negatives. In this case, 91% of fish instances were correctly detected during
fine-tuning. The high true positive rate of 0.91 indicates that the system is effective in detecting
fish instances. This suggests that the system has a good capability to identify and locate fish
objects within underwater imagery. The low false negative rate of 0.09 implies that the system
has a relatively low tendency to miss actual fish instances. Fig. 5 provides a label correlogram,
which is a group of two-dimensional (2D) histograms showing each axis of data against the
other. The labels in the images are provided in the x, y, width, height (xywh) space. The xywh
representation is a common format used in object detection tasks to describe the bounding box
coordinates of objects within an image. Here, x and y denote the coordinates of the top-left
corner of the bounding box, while width and height represent the dimensions of the box.

width

height

0.0 0.5 1.0 00 0.5 10 0.0 05 1.0 0.0 05 1

Fig. 5 - Label correlogram. X y width height
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This format allows for precise localisation and description of objects; it also allows for 2D
localisation and statistical characterisation of detected objects within the image. The histograms
represent the distribution of fish bounding box sizes (width and height) and their relative
positions (x and y coordinates) in the frame. These insights help in understanding where fishes
are typically located and what their relative size is in terms of number of pixels by rectangular
approximation. We are approximating fish shape by a rectangular bounding box rather than
determining the precise outline of a fish through delineation of a smooth contour. Since the
objective is to detect, track, and count fish, the bounding box approach provides a reliable
estimate of fish numbers while incurring significantly lower computational cost. In contrast,
active contours, snake algorithms, and other fine-grained segmentation or boundary-detection
methods require iterative optimisation and high-resolution per-pixel processing, which leads to
considerably greater computational demands (Meimetis et al., 2025).

For the proposed application, such segmentation-based methods pose several practical
drawbacks. First, they are inherently slower, often unsuitable for real-time or high-throughput
scenarios, especially when dealing with video streams or large volumes of underwater imagery.
Second, their performance can degrade in challenging underwater conditions (such as low
contrast, motion blur, occlusion, or suspended particles) where precise contour delineation
becomes difficult and may not yield a substantial accuracy gain over simpler methods. Third,
segmentation outputs are often more sensitive to noise and require post-processing (mask
refinement, morphological operations) to be usable for tracking and this further increases
latency.

On the other hand, bounding box-based detectors can achieve comparable detection and
counting accuracy for well-separated objects, as the objective is not to extract exact morphology
but to identify and enumerate targets. Modern object detectors such as YOLO or Faster R-CNN
generate bounding boxes in a single forward pass, avoiding the iterative convergence steps
needed in classical segmentation. This results in a much lower computational overhead and
faster inference speeds, enabling near real-time processing even on resource-constrained
hardware. In practice, this trade-off, which consists in slightly reduced shape fidelity for a large
gain in processing speed, makes bounding boxes an efficient and robust choice for fish detection,
tracking, and counting in operational settings.

To evaluate the system’s performance at different confidence levels, metrics such as precision,
recall, and F1 score were computed across a range of confidence thresholds. Unlike standard
classification tasks, where recall is typically reported at a single threshold, object detection
systems produce confidence scores for each predicted bounding box. Varying this confidence
threshold directly affects which detections are accepted or rejected. Fig. 6 presents the recall-
confidence curve, which shows how recall changes as the confidence threshold increases. This
curve illustrates the trade-off between recall and model confidence. Lower thresholds may yield
higher recall but include more false positives, while higher thresholds improve precision at the
cost of recall. Eq. (8) provides the recall formula used in this analysis:

TP
Recall = ———. (8)
(TP + FN)

Fig. 7 illustrates the precision confidence curve, which showcases the system’s precision
values for different confidence intervals. This provides an indication of the system’s accuracy in
correctly identifying fish instances. It is calculated by:
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TP
Precision = ——. (9)
(TP + FP)
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Fig. 6 - Recall confidence curve. Fig. 7 - Precision confidence curve.

The Fl-confidence curve, shown in Fig. 8, highlights the F1 scores achieved by the system at
different confidence intervals. This metric combines precision and recall, providing an overall
assessment of the system’s performance. The best F1 score of 0.89 was observed at the 0.382
confidence interval. The F1 score is calculated by:

2PR
F1 Score = ——. (10)
(P+R)
£pi F1-Confidence Curve 20 Precision-Recall Curve
—— FAsh —— Fish 0.935
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o8 0.8
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Fig. 8 - F1-confidence curve. Fig. 9 - Precision recall trade-off curve.

This result indicates that the system attains a satisfactory blend of detection accuracy and
completeness in fish detection. Additionally, the precision-recall trade-off curve is depicted in
Fig. 9, providing insights into the trade-off between precision and recall for different confidence
thresholds. By analysing the precision-recall trade-off curve, a best decision threshold, balancing
precision and recall, was selected. Fig. 10 illustrates the graphical outputs and results obtained
during the fine-tuning and evaluation of the YOLOv8 model. The figure includes 10 distinct
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graphs providing a comprehensive overview of the convergence, loss functions, precision, recall,
and mAP. The training and validation box losses show a convergence trend below 1.5 after 150
epochs.
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Fig. 10 - Performance analysis of YOLOv8 for underwater fish detection.

This indicates that the model has effectively minimised the localisation error and improved
the accuracy of predicted bounding boxes. The training and validation class losses converged at
around 1 after 150 epochs. This suggests that the model has successfully learnt to allocate higher
probabilities to correct object classes and lower probabilities to incorrect classes, resulting in
more accurate class predictions. The training and validation DFLs converge below 1.5, proving that
the model is effectively handling the class imbalance and improving the detection performance.

The precision graph demonstrates the precision of the model’s detections for the fish class.
A high precision value, above 0.8, indicates that the model is making accurate fish detections
most of the time. The recall graph shows the recall of the model’s predictions for the fish class.
A high recall value, above 0.8, indicates that the model is effectively capturing most of the fish
instances in the dataset, thus minimising false negatives. The mAP50 graph represents the mAP
at an IOU threshold of 0.5. It measures the overall detection performance of the model by
considering both precision and recall across different IOU thresholds. IOU is calculated as the
ratio of the intersection area to the union area of the two boxes. A mAP50 value between 0.8
and 1 indicates that the model is achieving high accuracy in detecting fish instances. The mAP50
value is calculated by:

(pre(:isir)n@().S + precision@(.75 + precision@(.95 )

mAP@0.5 = 3 . (11)

The mAP for 10U thresholds ranging from 0.5 to 0.95 is depicted by the mAP50-95 graph.
It offers a more thorough assessment of the model’s detection abilities over a wider variety of
IOU thresholds. A mAP50-95 value between 0.6 and 0.8 suggests that the model maintains good
detection performance across different levels of bounding box overlap. The mAP50-95 value is
calculated by:
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(precision@O.S + precision@0.55 + ... + precision@95 )

m (12)

mAP@0.5-0.95 =

Table 2 includes the model performance metrics such as recall, F1 score, the best confidence
interval, and the overall average accuracy.

Table 2 - Summary of model results: performance metrics.

Performance measure Value

F1 score 0.89

Recall 0.91

Best confidence interval 0.382
Overall average accuracy of the model 92%

4.2. Fish detection, bounding box tracking, and counting results

Figs. 11 and 12 present the detection outputs obtained from two variations of the model: one
using only detection capabilities and the other incorporating detection, bounding box tracking,
and counting functionalities. These figures clearly illustrate the improved performance of the
latter configuration. The results also serve as practical demonstrations of the efficient operation
of the ByteTrack tracking algorithm and the supervision-based line-crossing counting strategy
discussed in section 3.5.3. The accurate maintenance of fish identities across frames and accurate
counts exemplify the robustness of this integrated pipeline. Furthermore, the detection outputs
were categorised into five types, each showcasing the model’s performance under different
conditions: number of fishes in a frame, visibility, similarity with the background, fish size, and
fish position. These categories provide a comprehensive evaluation of the system’s capabilities
and highlight its potential to address diverse challenges in underwater fish monitoring.

Fig. 11 - Results of the detection model. Fig. 12 - Results of the enhanced model.

Accuracies from these different scenarios served as a quantitative measure to assess the
model’s effectiveness under different conditions:

1. number of fishes in a frame. As per the number of fishes in the frame, the dataset is

divided into three categories: fish count less than 3, fish count between 3 and 10, and

fish count greater than 10, as shown in Fig. 13a, 13b, and 13c, respectively. Accuracy is
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determined separately for these three categories and it is depicted in the first row of Table
3. From the table it is clear that the highest accuracy of 98% is obtained when the fish
count is less than 3. As the number of fishes in a frame increases, accuracy decreases;
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|1_|i| rl - i

r.!_hn“1

. g Fish O. 79,
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Fig. 13 - Number of fishes: less than 3 (a), from 3 to 10 (b), and more than 10 (c).

Table 3 - Accuracy under different conditions.

Sr. No. Based on Accuracy

1 Number of fishes More than 10 fishes From 3 to 10 fishes Less than 3 fishes
88% 94% 98%
Lo Medium High

2 Visibility w u '8
90% 92% 96%
High Medium Lo No

3 Similarity with background 'e u w/
85% 92% 97%

4 Fish size Small Medium Large
87% 91% 93%

5 Fish position Tail View Head View Side View
93% 94% 97%
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2. visibility. As per the visibility of the fishes, three categories are considered: low, medium,
and high.
Visibility and accuracy are determined separately for these three categories. Fig. 14 depicts
these three categories as per the visibility parameter. The second row of Table 3 indicates
accuracies for the three categories based on the visibility parameters. From the table it is
clear that as visibility increases, fish detection accuracy increases;

Fish 0.71

Fizh 0.B6

Fish 0.59

Fish 0.90

Fig. 14 - Visibility: low (a), medium (b), and high (c).

3. similarity with background. Underwater fish detection suffers from challenging
backgrounds. As per the similarity of the fishes with the background, three categories
are considered: low, medium, and high. An example of each category is displayed in Fig.
15. Accuracy is determined separately for these three categories as shown in the third
row of Table 3. From the table it can be concluded that, as similarity with the background
increases, fish detection accuracy decreases;

4. fish size. The underwater realm is inhabited by fishes of various sizes. In order to assess the
performance of the model across different fish sizes, fishes were categorised into three
distinct size categories: small fishes, medium fishes, and large fishes. Fig. 16 showcases
representative examples of fishes belonging to each size category. The corresponding
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Fig. 15 - Similarity with background: high (a), medium (b), and low (c).

accuracies based on fish size are summarised in the fourth row of Table 3. The results
indicate that, as fish size increases, fish detection accuracy improves;

5. fish position. The underwater environment presents fishes in a variety of positions like
tail view, head view, and side view, each offering distinct visual features for detection.
Fig. 17 showcases examples of fishes captured from each position category, highlighting
the variations in appearance and pose. The corresponding accuracies based on fish
position are presented in the fifth row of Table 3. The model demonstrates a high
accuracy for side view detection and a relatively low accuracy for tail and head view
detections.

4.3. Discussion
4.31. Overall performance

The proposed system demonstrated exceptional performance in fish detection within
underwater imagery. The true positive rate of 0.91 and accuracy of 92% indicated that the system
successfully identified a significant proportion of fish instances present in the images. The F1
score of 0.89 indicates a good overall performance both in terms of correctly identifying positive
instances and capturing all positive instances. Recall 0.91 signifies that the model successfully
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Fig. 16 - Fish size: small (a), medium (b), and large (c).

detects a high proportion of true positive instances, indicating its ability to accurately identify
fishes in the underwater environment. The best confidence interval for the model is 0.382 which
represents the level of uncertainty associated with the model’s predictions. A lower confidence
interval suggests higher confidence in the model’s accuracy. The high detection accuracy of
92% can be attributed to the adaptations and modifications made to the YOLOv8 model, which
effectively addressed the challenges posed by underwater environments.

4.3.2. Scenario-based performance

The accuracy analysis based on various parameters provides insightful interpretations and
conclusions. As the number of fishes increases, the accuracy slightly decreases, thus suggesting
that the accurate detection and localisation of individual fishes becomes more challenging in
crowded scenes. To improve accuracy in scenarios with a higher number of fishes, advanced
object detection techniques, such as multi-scale detection or instance segmentation, can be
explored. These methods can better handle overlapping instances and improve the model’s
ability to accurately localise individual fishes within crowded scenes. The evaluation based on
visibility conditions indicates that the model is adaptable to varying levels of visibility. Still, the
model faces challenges in accurately detecting fishes in scenarios with reduced visibility, where
factors such as limited contrast and blurriness impact its performance. To mitigate the challenges
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Fig. 17 - Fish position: head (a), side (b), and tail views.

posed by low visibility conditions, pre-processing techniques like image enhancement, contrast
adjustment, or adaptive filtering can be applied.

The analysis based on the similarity of fishes with the background reveals the difficulty in
accurately distinguishing fishes that blend with their surroundings, posing a challenge for
the model’s detection capabilities. Techniques such as background subtraction or foreground
extraction can be employed to separate fishes from their background. By reducing the influence
of background elements, the model’s ability to distinguish fishes that closely resemble
the background can be improved. The analysis based on fish size indicates that detecting
smaller fish instances presents inherent challenges which affect the model’s performance in
accurately localising and classifying them. Utilising higher-resolution images or employing data
augmentation techniques, specifically designed to preserve the details of small fish instances,
can aid in improving their detection. The evaluation based on the position of fishes reveals that
the model performs well in detecting fishes from side view but detecting fishes in head view and
tail view poses challenges such as limited visibility of key distinguishing features, consequently
impacting the model’s performance in the detection of these instances. Augmenting the
training data with more diverse side view examples and incorporating viewpoint-specific
learning techniques can help the model better capture the distinguishing features and patterns
associated with side view detections. Additionally, utilising additional contextual information or
incorporating multi-view fusion strategies can enhance the model’s ability to accurately detect
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fishes from various perspectives. By addressing these gaps through a combination of advanced
techniques, algorithmic improvements, and data augmentation strategies, the overall accuracy
and robustness of the model can be significantly improved.

5. Comparison with existing works

It is worth noting that YOLOv8 has not been extensively utilised for underwater applications,
as other methodologies have traditionally been favoured. Most existing underwater object
detection methods rely on traditional computer vision techniques, such as template matching,
edge detection, or feature-based methods. These approaches often require manual feature
engineering and may struggle to handle complex underwater environments due to challenges
such as varying illumination, water turbidity, and object occlusion. In contrast, this fish detection
system based on YOLOvS offers several advantages. Firstly, YOLO operates in real-time, enabling
prompt identification of fish species. Secondly, YOLO leverages deep learning techniques,
enabling end-to-end learning and the automatic learning of relevant features from the data. This
eliminates the need for manual feature engineering, reducing the reliance on domain-specific
knowledge and improving the adaptability of the system to different underwater environments.
Furthermore, YOLOV8, being a more recent version of YOLO, incorporates various improvements
and optimisations compared to its predecessors. However, it is important to note that, due to
its recent introduction, there is limited existing work exploring the full potential of YOLOv8 for
underwater object detection and fish species classification.

Additionally, one of the most important distinctions of this fish detection system is its ability
to encompass all three essential applications: detection, tracking, and counting. While previous
works have typically focused on one or two of these aspects, this model seamlessly integrates all
three functionalities. This comprehensive approach provides a holistic solution for underwater
fish analysis and monitoring. Moreover, this system achieves real-time performance, enabling
immediate and continuous analysis of fish populations. The utilisation of the fastest model,
YOLOv8n, ensures efficient processing and reduces any potential delays in capturing and
processing fish-related data. By combining real-time capabilities, the integration of detection,
tracking, and counting functionalities, and the utilisation of YOLOv8n, this fish detection system
surpasses the limitations of previous approaches. It provides accurate and efficient fish species
identification and population assessment in underwater environments.

In summary, while traditional approaches have dominated the field of underwater object
detection, this work demonstrates the potential and advantages of utilising YOLO, specifically
YOLOVS, for fish detection in underwater environments. By leveraging deep learning and real-
time object detection capabilities, this system provides a valuable contribution to the field
and opens up new avenues for underwater ecology research, fish population monitoring, and
environmental conservation efforts.

6. Conclusions

In summary, the proposed bounding box-based pipeline offers an efficient and reliable
solution for real-time fish detection, bounding box-based tracking, and counting, delivering
high accuracy while keeping computational demands low. This makes it particularly suitable for
large-scale monitoring deployments where processing speed and resource efficiency are critical.
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However, bounding box-based methods may be less effective in scenarios where precise object
boundaries are required, such as morphological health assessments, fine-grained behavioural
studies, or biomass estimation. In such applications, alternative techniques like active contour
models, snake algorithms, Mask R-CNN, or other instance segmentation methods could provide
the necessary detail at the cost of higher computational overheads. As part of future work, a
promising direction would be to investigate hybrid systems that use fast bounding box detection
for most objects, while selectively applying high-precision segmentation to regions of interest,
with the aim of balancing accuracy with efficiency.

Acknowledgments. The authors gratefully acknowledge the creators of the Google Open Images dataset
V7 (Kuznetsova et al., 2020). They also thank the Department of Electrical and Electronics Engineering
(ECE) at Dr. Vishwanath Karad MIT World Peace University (MIT-WPU) for providing essen'al support. The
authors appreciate the valuable input from anonymous reviewers, which greatly improved this research.

REFERENCES

Amraee S., Chinipardaz M. and Charoosaei M.; 2022: Analytical study of two feature extraction methods in
comparison with deep learning methods for classification of small metal objects. Vis. Comput. Ind. Biomed.
Art, 5, 13, doi: 10.1186/s42492-022-00111-6.

Barbedo J.G.A.; 2022: A review on the use of computer vision and artificial intelligence for fish recognition,
monitoring, and management. Fishes, 7, 335.

Buono A., Catania V., Longo A. and Distante C.; 2021: Challenges in underwater object detection: an extensive
evaluation of state-of-the-art algorithms. Sensors, 21, 1743.

Burgi K.; 2021: Fish-bait-efficiency and benthic stock assessments using deep learning. Mémoire de MSc.
MARRES, Université Cote d’Azur, 35 pp.

Cimino M.G., Faro A.M., Mariano A.M. and Nunnari G.; 2018: Object detection for underwater environments: a
comparative analysis. OCEANS 2018 MTS/IEEE, Charleston, SC, USA, pp. 1-8.

Coro G. and Walsh M.B.; 2021: An intelligent and cost-effective remote underwater video device for fish size
monitoring. Ecological Informatics, 63, 101311.

CVAT Documentation; 2023: <opencv.github.io/cvat/docs/> (accessed 21 June 2023).

Fang X., Liu X, Li Y., Luo W. and Wang Y.; 2020: Comparative analysis of object detection algorithms for
underwater robotic applications. Sensors, 20, 5291.

Garg R. and Phadke A.C.; 2024: Enhancing underwater fauna monitoring: a comparative study on YOLOv4 and
YOLOVS for real-time fish detection and tracking. In: Pandit M., Gaur M.K. and Kumar S. (eds), Artificial
Intelligence and Sustainable Computing, ¢ Algorithms for Intelligent Systems, Springer, Singapore, doi:
10.1007/978-981-97-0327-2_4.

Gruszczynski M., Ruciinska A., Wozniak A. and Nowakowski K.; 2020: Automated fish tracking and behavior
analysis in a tank environment. ). Mar. Sci. Eng., 8, 665.

He K., Zhang X., Ren S. and Sun J.; 2016: Deep residual learning for image recognition. In: Proc. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770-778, doi:
10.1109/CVPR.2016.90.

Jindal P.; 2023: YOLOvS8 is here, and it gets better!. <pub.towardsai.net/yolov8-is-here-and-it-gets-better-
54b12b87e3b9> (accessed 20 June 2023).

Joshi S. and Shivalker C.; 2023: Why data annotation is important for machine learning and al. <www.habiledata.
com/blog/why-data-annotation-is-important-for-machine-learning-ai/ (accessed 21 June 2023).

Khan N., Bors A.G. and Mihaylova L.; 2018: Object detection and tracking: a review of the state-of-the-art. Image
and vision computing. 76, 1-13.

Knausgard K.M., Wiklund A., Sgrdalen T.K., Halvorsen K.T., Kleiven A.R., Jiao L. and Goodwin M.; 2021: Temperate
fish detection and classification: a deep learning based approach. Appl. Intell., 52, 6988-7001.

Kuznetsova A., Rom H., Alldrin N., Uijlings J., Krasin I., Pont-Tuset J., Kamali S., Popov S., Malloci M., Kolesnikov
A., Duerig T. and Ferrari V.; 2020: The open images dataset V4: unified image classification, object detection,
and visual relationship detection at scale. Int. J. Comput. Vision, 128, 1956-1981, doi: 10.1007/s11263-020-
01316-z.

23



Bull. Geoph. Ocean., XX, XXX-XXX Garg and Phadke

Lekunberri X., Ruiz J., Quincoces I., Dornaika F., Arganda-Carreras |. and Fernandes J.A.; Identification and
measurement of tropical tuna species in purse seiner catches using computer vision and deep learning. Ecol.
Inf., 67, 101495. doi: 10.1016/j.ecoinf.2021.101495.

Li Y., Yu J. and Zhang Y.; 2017: Fish counting and tracking in underwater video sequences using deep learning
techniques. Sensors, 17, 2066.

Mathworks; 2023: Anchor Box documentation. <in.mathworks.com/help/vision/ug/anchor-boxes-for-object-
detection.html> (accessed 23 June 2023)

Meimetis D., Daramouskas |., Patrinopoulou N., Lappas V. and Kostopoulos V.; 2025: Comparative analysis of
object detection models for edge devices in UAV swarms. Mach., 13, 684, doi: 10.3390/machines13080684.

Pagire V. and Phadke A.C.; 2020: Underwater moving object detection using GMG. In: Proc. 12th International
Conference on Soft Computing and Pattern Recognition (SoCPaR 2020), pp. 233-244, doi: 10.1007/978-3-
030-73689-7.

Pagire V. and Phadke A.C.; 2022: Underwater fish detection and classification using deep learning. In: 2022
International Conference on Intelligent Controller and Computing for Smart Power, Hyderabad, India, pp.
1-4, doi: 10.1109/1CICCSP53532.2022.9862410.

Pagire V. and Phadke A.C.; 2024: Fish Detection by Hybrid of MOG2 and LSBP Methods. Nonlinear Optics, 60, No.
1-2,137-157, ISSN 15430537.

Priyadarshni D., Kolekar M.H.; 2020: Underwater Object Detection and Tracking. In: Pant M., Sharma T., Verma
0., Singla R., Sikander A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems
and Computing, vol 1053. Springer, Singapore, pp. 837-846, doi: https://doi.org/10.1007/978-981-15-0751-
9 76.

Qin Y., Wu C., Yu N. and Zhang L.; 2020: Robust visual tracking of underwater fish using deep learning. IEEE
Access, 8, 55090-55100.

Rath S. and Gupta V.; 2023: Performance comparison of YOLO object detection models — An intensive study.
<learnopencv.com/performance-comparison-of-yolo-models> (accessed 20 June 2023).

Rath S.; 2023: YOLOv8 Ultralytics: State-of-the-Art YOLO models. <learnopencv.com/ultralytics-yolov8/>
(accessed 27 August 2023).

Redmon J. and Farhadi A.; 2017: YOLO9000: better, faster, stronger. In: Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 6517-6525, doi: 10.1109/CVPR.2017.690.
Redmon J. and Farhadi A.; 2018: YOLOv3: an incremental improvement. In: Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 7794-7803.

Redmon J., Divvala S., Girshick R. and Farhadi A; 2016: You only look once: unified, real-time object detection. In:
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779-788.

RenS., He K., Girshick R. and Sun J.; 2016: Faster R-CNN: towards real-time object detection with region proposal
networks. Adv. Neural Inf. Process. Syst., 28, 91-99, doi: 10.48550/arXiv.1506.01497.

Sah S., Shringi A., Ptucha R., Burry A. and Loce R.; 2017: Video redaction: a survey and comparison of enabling
technologies. ). Electron. Imaging, 26, 051406, doi: 10.1117/1.JE1.26.5.051406.

Skalski P.; 2023: Track and count using YOLOVS. <blog.roboflow.com/yolov8-tracking-and-counting/> (accessed
24 June 2023).

Sprague M., Ramsey D. and Taylor G.; 2014: Traditional field methods for studying fish populations. Fish. Tech.
3rd ed., 55-105.

Ultralytics documentation; 2023: <docs.ultralytics.com/models/yolov8/> (accessed 28 August 2023).

Yousif K.A. and Ghareeb A.A.; 2019: Real-Time fish detection and tracking in underwater videos. J. Mar. Sci. Eng.,
7, 188.

Zhang ., JiaK., Liu L. and Li Y.; 2016: Fish detection and tracking for underwater visual sensor networks. Sensors,
16, 927.

Corresponding author: ~ Anuradha Phadke
MIT-WPU: Dr Vishwanath Karad MIT World Peace University
Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra 411038, India
Phone: +91 020 30273400; e-mail: anuradha.phadke@mitwpu.edu.in

24



