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ABSTRACT	 Accurate lithofacies classification is essential for effective reservoir characterisation 
and hydrocarbon development. This study presents a lightweight one-dimensional 
convolutional neural network (1D-CNN) for automated facies classification using well-
log data from two offshore wells in south-western Iran. Four petrophysical logs, gamma 
ray, resistivity, sonic transit time, and bulk density served as input features to distinguish 
calcite, dolomite, and anhydrite facies. Five optimisation algorithms (Adagrad, 
Adadelta, Adam, Adamax, and stochastic gradient descent) were evaluated based on 
classification accuracy, convergence behaviour, and computational efficiency. The CNN 
architecture incorporates batch normalisation, dropout regularisation, and fine-tuned 
hyperparameters to ensure stable learning under limited data conditions. Results show 
that adaptive optimisers, especially Adam and Adamax, outperformed others. Adam 
achieved the highest accuracy (95.7%), while Adamax offered a better balance between 
accuracy and training efficiency. In contrast, Adadelta showed the poorest performance. 
Despite class imbalance and the absence of core data, the Adamax-optimised model 
achieved strong F1-scores across all facies. This study demonstrates the feasibility of 
optimised 1D-CNNs for lithofacies classification in data, and resource, constrained 
environments and highlights the importance of optimiser choice. Future work should 
include more diverse geological datasets and integrate core or seismic data for improved 
validation and broader applicability.
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1. Introduction

Accurate characterisation of subsurface formations is critical for optimising hydrocarbon 
exploration and reservoir development. Understanding lithofacies distribution enables 
geoscientists to interpret depositional environments, assess reservoir quality, and enhance 
recovery strategies. Lithofacies, which describe the physical and spatial characteristics of 
depositional units, are essential for guiding well placement and improving hydrocarbon 
extraction (Al-Mudhafar et al., 2022). Robust reservoir characterisation also requires accounting 
for structural heterogeneities, lithological variability, and fracture networks (Milad and Slatt, 
2018).

Given the importance of precise lithofacies identification in geological modelling, numerous 
automated and data-driven methods have emerged to support objective subsurface interpretation 



2

Bull. Geoph. Ocean., XX, XXX-XXX	 Soleimani et al.

and reduce expert bias (Chai et al., 2009). Traditional techniques such as manual interpretation of 
well logs, core samples, and borehole images remain widely used but are limited by subjectivity, 
time demands, and reliance on expert judgment (Alzubaidi et al., 2021). These constraints have 
led to the development of automated classification methods based on petrophysical logs, core 
data, and borehole imagery (Basu et al., 2002).

With advances in computational intelligence, machine learning (ML) has emerged as a 
promising alternative, offering improved efficiency and reduced bias (Ceci et al., 2017). A 
variety of ML algorithms have been applied to lithofacies classification, including support vector 
machines and k-nearest neighbours (Cover and Hart, 1967; Boser et al., 1992; Alexsandro et 
al., 2017; Prabowo et al., 2023). While effective in simpler geological settings, these models 
often struggle in heterogeneous carbonate reservoirs due to their limited ability to capture non-
linear and complex patterns (Dubois et al., 2007). Boosting techniques have been introduced to 
improve performance, yet challenges persist in addressing geological heterogeneity and data 
non-stationarity.

Recent developments highlight the strong potential of deep learning approaches, particularly 
convolutional neural networks (CNNs), for subsurface classification. CNNs can extract hierarchical 
spatial features from input data, enabling accurate lithofacies prediction even in the absence of 
core samples (Hall et al., 1996). One-dimensional CNNs (1D-CNNs) are particularly well-suited 
for processing well-log data, capturing fine-scale lithological patterns (Hall, 2016; Imamordiev 
and Sukhosta, 2019). Prior studies have also demonstrated CNN effectiveness in analysing core 
computerised tomography scans (Newberry et al., 2004; Chawshin et al., 2021) and recognising 
geological textures across various depositional settings (Li et al., 2015).

Despite these advancements, key challenges remain. Many CNN-based studies require 
substantial computational resources, limiting their field applicability. Issues such as model 
convergence, stability, and overfitting, particularly under data-limited conditions, are frequently 
encountered, and few works offer systematic solutions. Techniques such as batch normalisation 
have been proposed to improve training efficiency and reduce internal covariate shift (Ioffe 
and Szegedy, 2015). However, the role of optimisation algorithms in training performance and 
generalisation remains underexplored, as many studies employ a single optimiser without 
comparative evaluation.

Recent research has advocated for combining adaptive and non-adaptive optimisers to 
enhance training. Adaptive methods such as Adagrad, Adadelta, Adam, and Adamax adjust 
learning rates dynamically, promoting faster convergence and improved generalisation (Hastie 
et al., 2009; Zeiler, 2012; Kingma and Ba, 2014), while non-adaptive methods like stochastic 
gradient descent (SGD) offer stability in certain geological applications (Duchi et al., 2011). Yet, 
comparative analyses of these optimisers within lithofacies classification remain scarce.

Alternative approaches such as random forests, fuzzy logic, naïve Bayes classifiers, and 
discriminant analysis have also been applied to geological datasets with mixed success (Saggaf and 
Nebrija, 2003; Li and Anderson-Sprecher, 2006). Techniques like resistivity imaging and prestack 
seismic inversion have further contributed to facies prediction in complex reservoirs (Linek et 
al., 2007; Moghanloo et al., 2018; Rahimi and Riahi, 2022). However, the integration of CNN 
architectures with rigorous optimiser evaluation, especially in data-scarce or computationally 
constrained settings, remains a largely unexplored research niche.

In this study, we present and evaluate a lightweight CNN architecture optimised for accurate 
and efficient lithofacies classification. By conducting a comprehensive comparison of adaptive 
(Adagrad, Adadelta, Adam, Adamax) and non-adaptive (SGD) optimisers, we assess their impact 
on convergence, generalisation, and classification accuracy. Addressing key gaps in current 
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literature, this work contributes to the development of scalable, robust deep learning frameworks 
for lithofacies prediction under realistic operational constraints.

2. Geological setting

This study investigates a hydrocarbon-bearing offshore field located in the south-western 
region of Iran. The area encompasses several major stratigraphic units, including the Kangan, 
Dalan, Asmari, Pabdeh, and Gachsaran formations, which collectively exhibit a broad range of 
lithologies such as limestone, dolomite, evaporites, and shale. Structurally, the field is situated 
along the north-eastern margin of the Zagros Fold – Thrust Belt and is superimposed on the Qatar 
Arch (Fig. 1), a prominent NW-SE-trending basement high that marks the boundary between the 
Zagros foreland basin and the Qatar-Fars Arch. The absence of the Cambrian Hormuz Salt in this 
region has contributed to the relative tectonic stability of the arch and played a significant role in 
shaping the area’s structural evolution (Perotti et al., 2011). Ongoing convergence between the 
Arabian and Eurasian plates has resulted in considerable sediment accumulation in the Zagros 
basin, whereas the Qatar Arch has undergone only limited subsidence, maintaining its elevated 
structural character.

Hydrocarbon accumulations in this field are primarily associated with carbonate reservoirs 
from the Upper Permian to Lower Triassic, while Silurian-aged shales act as the main source 
rocks (Esrafili-Dizaji et al., 2013). The geological map presented in Fig. 1, compiled using data 
from Pollastro et al. (1999) and Geographic Information System (GIS) layers from GISGeography 
(2025), illustrates the regional tectonic framework, major oil and gas fields, and prevailing 
structural trends across south-western Iran. This map also highlights the lithostratigraphic 

Fig. 1 - Geological map of south-western Iran highlighting the studied offshore hydrocarbon field (outlined in red). The 
map illustrates major tectonic zones, hydrocarbon fields, and stratigraphic units ranging from the Precambrian to the 
Cenozoic, including extensive Mesozoic-Tertiary carbonate formations and Miocene evaporites.
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complexity of the region, which includes sedimentary successions ranging from the Precambrian 
to the Cenozoic. Notably, widespread carbonate and clastic formations of Mesozoic and Tertiary 
age serve as prolific reservoir rocks within much of the Zagros basin. Additionally, the Miocene-
aged evaporitic Gachsaran Formation, which is extensively mapped throughout the area, 
functions as a major regional seal, promoting the effective entrapment of hydrocarbons both 
above and below its interval.

The red polygon in Fig. 1 delineates the study area, where two exploratory wells were drilled 
and utilised in this research. These wells penetrate a representative stratigraphic column of the 
basin, encompassing key carbonate reservoirs within the Kangan and Dalan formations and 
the overlying evaporitic units of the Dashtak and Gachsaran formations. This structural and 
stratigraphic context provides a robust framework for testing ML models aimed at automated 
lithofacies classification using well-log data.

The field was discovered in 1990 by the National Iranian Oil Company as part of a broad 
hydrocarbon exploration campaign in the Persian Gulf. Since its discovery, it has evolved into one 
of Iran’s largest gas accumulations and remains a cornerstone of the country’s offshore energy 
strategy.

Fig. 2 presents a generalised stratigraphic column of the south-western offshore region, 
summarising the key lithostratigraphic units encountered in the study area. The sequence spans 
from the Upper Permian to the Miocene and includes, from base to top, the Dalan, Kangan, 
Dashtak, Asmari, Pabdeh, and Gachsaran formations. Within the Permian-Triassic interval, the 
Kangan and upper Dalan formations are subdivided into four informal units, designated K1 through 
K4, based on vertical lithological variations. These consist of alternating carbonate and evaporite 
layers and represent the principal stratigraphic intervals analysed in this study. The overlying 
Dashtak Formation is mainly composed of shale and anhydrite, while the upper succession 
includes the Asmari, Pabdeh, and Gachsaran formations, which reflect continued sedimentation 
into the Cenozoic. This stratigraphic column provides a regional context for understanding the 
vertical distribution of the lithological units in the studied wells, with intervals corresponding to 
the facies classification conducted via the 1D-CNN model applied in this research.

3. Materials and methods

This study presents a comprehensive methodology for lithofacies classification using a 
lightweight 1D-CNN trained on well-log data acquired from an offshore hydrocarbon field in 
south-western Iran. The workflow comprises dataset characterisation, rigorous preprocessing, 
model architecture design, hyperparameter tuning, and performance evaluation using 
multiple classification metrics. Each of these components is described in detail in the following 
sections.

3.1. Dataset 

The input feature set comprises four essential petrophysical logs: bulk density (RHOB), 
gamma ray (GR), resistivity (RD), and sonic travel time (DT). These logs capture critical geological 
and petrophysical variations within the subsurface and serve as the foundation for lithofacies 
discrimination. Fig. 3 illustrates the vertical facies distribution across the dataset, highlighting 
the thickness and variability of the interpreted intervals. Fig. 4 presents detailed well-log profiles 
for wells A and B, respectively, including GR, DT, RHOB, and RD curves alongside corresponding 
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Fig. 2 - Generalised stratigraphic column of south-western Iran. The gas-producing interval is hosted within the Upper 
Dalan and Kangan carbonate formations. This reservoir succession is overlain by the shaley and anhydritic Dashtak 
Formation and subdivided into four main informal units, designated K1 through K4. The Kangan Formation (units K1 
and K2) constitutes the upper part of the reservoir system in the field (Esrafili-Dizaji et al., 2013).

Fig. 3 - Facies distribution of wells A and B.
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lithological interpretations and facies classifications. These visualisations help to elucidate 
the relationships between measured rock properties and facies types, reinforcing the model’s 
capacity to differentiate between distinct geological units.

3.1.1. Data preprocessing

Preprocessing begins with statistical characterisation of the input dataset, as summarised 
in Table 1. This table presents descriptive statistics for the principal well-log parameters: DT, 
GR, RD, depth (DEP), and RHOB. The depth range spans from 2,934.77 to 3,131.27 m. DT 
measurements exhibit a mean of 56.28 µs/ft, ranging from 46.64 to 123.55 µs/ft, with a standard 
deviation of 7.67 µs/ft. GR readings average 8.45 API units, spanning from 0.55 to 117.56 API 
units, and display a standard deviation of 10.09 API units. RD values vary significantly, from 0.92 
to 1,235.90 W·m due to geological heterogeneity, with a mean of 103.94 W·m and a standard 
deviation of 136.15 W·m. RHOB measurements average 2.66 g/cm³, ranging from 2.10 to 2.99 
g/cm³, with a standard deviation of 0.09 g/cm³, indicating relatively stable density variations 
across the formation. These statistical insights inform model design and provide valuable context 
for interpreting subsurface lithological variability.

Following this exploratory analysis, the dataset is split into training and testing subsets using 
a 70:30 ratio with a fixed random seed (random_state = 42) to ensure reproducibility. Facies 
labels are, then, transformed into one-hot encoded vectors to suit categorical classification 
tasks. All input features are standardised using scikit-learn StandardScaler to achieve zero mean 

Fig. 4 - Geophysical well logs (DT, GR, RD, RHOB) and lithological interpretations for wells A and B.
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and unit variance across attributes. To accommodate the Conv1D model structure, the data is 
reshaped into a three-dimensional (3D) array (samples × timesteps × features), matching the 
expected input dimensions. This preprocessing pipeline ensures data consistency and lays a 
robust foundation for accurate and generalisable model training.

3.1.2. Data limitations

The dataset used in this study is derived exclusively from two exploration wells, labelled A 
and B, drilled within a single offshore field in south-western Iran. Although these wells sample 
distinct lithofacies with measurable variations in petrophysical properties, the limited dataset size 
restricts both geological diversity and statistical representativeness. This limitation is particularly 
significant in the context of subsurface heterogeneity, which varies considerably across basins 
and depositional environments.

A notable constraint is the absence of core samples, which limits the ability to conduct direct 
lithological verification and introduces a dependence on log-based facies interpretations. This 
reliance may lead to uncertainty in facies labelling. Moreover, the geographic restriction to a 
single field poses the risk of overfitting, whereby the model captures local depositional patterns 
that may not generalise well to other geological settings.

Table 2 presents the distribution of facies classes across the dataset, revealing substantial 
class imbalance: calcite (1,842 samples) dominates the dataset, followed by dolomite (1,136 
samples), and anhydrite (346 samples). Such an imbalance may negatively affect model 
performance, especially in predicting minority classes. Fig. 5 displays a cross-plot matrix 
showing pairwise relationships between the primary petrophysical logs (DT, GR, RD, and RHOB), 
segmented by facies. Diagonal plots depict feature distributions within each facies class, while 
off-diagonal scatterplots illustrate inter-feature correlations. Although this visualisation confirms 
internal consistency within the dataset, it cannot substitute external validation sources such as 
core descriptions or seismic interpretation.

Table 1 - The numerical description of the dataset.

		  DEP	 DT	 GR	 RD	 RHOB
	 Count	 3324	 3324	 3324	 3324	 3324
	 Mean	 3030.912965	 56.283161	 8.445974	 103.941330	 2.661942
	 std	 54.187131	 7.670522	 10.091262	 136.149687	 0.094249
	 Min	 2934.767100	 46.639633	 0.554627	 0.924911	 2.101453
	 25%	 2984.297050	 51.461474	 1.187467	 10.485102	 2.615146
	 50%	 3030.626250	 53.460350	 1.460629	 60.266562	 2.663260
	 75%	 3077.108025	 58.901227	 16.098550	 193.092327	 2.703322
	 Max	 3131.270000	 123.551620	 117.555191	 1235.899902	 2.99640

Table 2 - The number of each facies in the total data.

	 Facies type	 Number of each facies
	 Anhydrite	 346
	 Calcite	 1842
	 Dolomite	 1136
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Despite these limitations, the study implements a rigorous preprocessing workflow, deliberate 
model design, and a balanced training procedure to reduce overfitting and improve generalisation. 
Initial experimental results suggest that the model demonstrates promising robustness, although 
further validation is required. Future work should address current constraints by incorporating 
additional wells from diverse geological contexts, integrating core data for facies ground-truthing, 
and supplementing petrophysical logs with other data types such as borehole images or seismic 
attributes. These enhancements would improve model performance, reduce interpretational 
bias, and extend the applicability of the facies classification framework to a wider range of 
depositional settings.

Fig. 5 - Cross-plot matrix illustrating the distribution and correlation of key well-log parameters (DT, GR, RD and RHOB) 
across different facies types: dolomite, calcite, and anhydrite. Diagonal histograms display the distribution of each 
parameter within facies classes, while off-diagonal scatter plots reveal inter-parameter relationships and clustering 
trends among the lithofacies.
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3.2. Methodology

Fig. 6 outlines the complete methodological workflow, spanning from raw well-log data 
acquisition to final model evaluation. The process begins with rigorous data preparation, 
including cleaning, normalisation, and transformation of well-log measurements, followed by 
the construction and optimisation of a lightweight 1D-CNN for lithofacies classification. After 
model training, performance is assessed using a suite of complementary classification metrics. 
Each step of this workflow is described in detail below to ensure transparency and reproducibility.

Fig. 6 - Workflow diagram illustrating the sequential steps of the study, from data acquisition and preprocessing to 
model training and performance evaluation.

3.2.1. Data preparation

The input dataset comprises 3,325 depth-indexed samples derived from two wells. A structured 
preprocessing pipeline was applied to ensure data integrity, consistency, and compatibility with 
the 1D-CNN architecture. Missing values in each petrophysical feature RHOB, GR, RD, and DT 
were imputted using the column-wise mean via scikit-learn SimpleImputer (strategy=’mean’). 
Outliers, identified as values exceeding three standard deviations from the mean, were clipped 
to the 5th–95th percentile range to reduce their impact on model convergence.

All input features were, then, standardised using StandardScaler to achieve zero mean 
and unit variance, which is essential for improving training stability and speed. Facies labels 
were encoded using OneHotEncoder to accommodate multi-class classification. The dataset 
was subsequently reshaped into a 3D tensor (samples × timesteps × features) compatible with 
Conv1D input requirements and partitioned into training and testing subsets using a 70:30 split. 
A fixed random seed (random_state = 42) was used to ensure reproducibility and preserve class 
distribution across the splits.
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3.2.2. CNN architecture and hyperparameter selection

The proposed 1D-CNN consists of three sequential convolutional blocks. Each block includes 
two Conv1D layers [64 filters, kernel size = 2, rectified linear unit (ReLU) activation, same 
padding], followed by a MaxPooling1D layer with a pool size of 2. The choice of a small kernel size 
(2) enables the model to capture abrupt transitions at lithofacies boundaries while minimising 
excessive smoothing. The number of filters (64) was selected via grid search from a candidate set 
{32, 64, 128}, balancing model expressiveness and computational efficiency.

To stabilise training and reduce internal covariate shift, batch normalisation was applied 
after each convolutional layer. A dropout layer with a 20% rate tuned over the range {10%, 20%, 
30%} was inserted after the final pooling operation to mitigate overfitting. The output of the 
convolutional backbone was flattened and passed through three fully connected layers with 
300, 200, and 100 neurons, respectively, each employing ReLU activation. These dimensions 
were empirically determined based on performance evaluations across layer sizes {100, 200, 
300, 400}.

The output layer consists of a fully connected dense layer with three units and softmax 
activation, producing class-probability scores for anhydrite, calcite, and dolomite. Model training 
was performed using the Adamax optimiser at a learning rate of 0.002, selected for its stable 
convergence behaviour during preliminary experiments. A batch size of 64 was adopted to 
balance generalisation and gradient estimation. Early stopping with a patience of 15 epochs was 
implemented to prevent overfitting by monitoring validation loss.

The model was developed using Python in the Google Colab environment, leveraging 
TensorFlow, NumPy, and Pandas libraries. This configuration, coupled with grid search 
optimisation, ensures that the model design is both transparent and reproducible. The full 
network architecture is depicted in Fig. 7.

Fig. 7 - Schematic of the proposed 1D-CNN architecture for facies classification.
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3.2.3. Evaluation metrics

Model performance was assessed using a comprehensive set of classification metrics. Overall 
categorical accuracy provides a general measure of the percentage of correctly predicted samples 
across all facies. However, due to class imbalance, accuracy alone may be misleading. To address 
this, class-specific precision, recall, and F1-score were reported.

Precision quantifies the proportion of true positives among predicted samples for each facies 
type, indicating susceptibility to false positives. Recall measures the proportion of actual facies 
correctly identified, emphasising the model’s ability to detect minority classes. The F1-score, as 
the harmonic mean of precision and recall, provides a balanced indicator of classification quality 
for each facies.

In addition to these metrics, a confusion matrix was analysed to visualise patterns of 
misclassification, such as frequent confusion between calcite and dolomite, highlighting areas 
for potential refinement. By incorporating both overall and class-specific metrics, this evaluation 
framework offers a nuanced understanding of the model’s strengths and weaknesses, guiding 
future improvements in both algorithmic design and geological interpretation.

4. Results

We evaluated five optimisation algorithms, Adagrad, Adadelta, Adam, Adamax, and SGD, to 
train efficient 1D-CNN models for lithofacies classification. Adagrad and Adadelta were initially 
configured with a dropout rate of 0.2, a batch size of 32, and early stopping with a patience of 15 
epochs to prevent overfitting. For Adam and SGD, the dropout rate was increased to 0.5, and the 
batch size was set to 64, while maintaining the same early stopping configuration. Adamax was 
also trained with a 0.5 dropout rate and a batch size of 64. All hyperparameters were selected 
via grid search to achieve a practical balance between model complexity and performance, 
ultimately contributing to more robust classification results.

The goal of this analysis is to assess the effectiveness of these five optimisers within the 
context of a 1D-CNN-based facies classification task. We interpreted the results drawn from 
classification reports, accuracy and loss curves, and confusion matrices for both training and 
validation datasets. The confusion matrix is particularly useful for identifying misclassification 
trends, such as systematic confusion between similar lithologies.

To visual the training dynamics, we plotted model accuracy across epochs. A comparative 
analysis of optimiser performance, summarised in Table 3, reveals notable differences. In addition 
to test accuracy and loss values for the training, validation, and test datasets, Table 3 includes 

Table 3 - Evaluation of the proposed model for facies classification.

		
Training	 Validation

		
Validation	 Training

	 Training	
Epoch

 
	 Model	

loss	 loss
	 Test loss	

accuracy (%)	 accuracy (%)
	 time	

number 							       (seconds)
	 1D-CNN (Adagrad)	 0.17	 0.19	 0.19	 0.92%	 94%	 184.93	 355
	 1D-CNN (Adadelta)	 0.39	 0.41	 0.37	 84%	 84%	 432.62	 608
	 1D-CNN (Adamax)	 0.08	 0.13	 0.18	 94%	 96%	 111.97	 128
	 1D-CNN (Adam)	 0.04	 0.19	 0.19	 95.7%	 97.4%	 72.18	 155
	 1D-CNN (SGD)	 0.16	 0.18	 0.18	 92%	 94%	 130.65	 142
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total training time (in seconds) and the number of epochs completed. These additional metrics 
offer insight into the computational efficiency and convergence behaviour of each optimisation 
method, supporting a comprehensive evaluation of their overall effectiveness.

Tables 4 through 8 present detailed classification results for the 1D-CNN model trained 
with each optimiser. For every facies class, calcite, dolomite, and anhydrite, these tables 
report precision, recall, F1-score, and overall accuracy, offering a more nuanced view of model 
performance.

Table 4 - 1D_CNN (Adagrad) model classification report.

	 Facies type	 Precision	 Recall	 F1-Score	 Support
	 Anhydrite	 1.00	 0.99	 1.00	 108
	 Calcite	 0.95	 0.92	 0.93	 544
	 Dolomite	 0.88	 0.92	 0.90	 346
			   Accuracy	 0.93	 998

Table 5 - 1D_CNN (Adadelta) model classification report.

	 Facies type	 Precision	 Recall	 F1-Score	 Support
	 Anhydrite	 0.92	 0.83	 0.87	 108
	 Calcite	 0.91	 0.89	 0.90	 544
	 Dolomite	 0.79	 0.84	 0.81	 346
			   Accuracy	 0.87	 998

Table 6 - 1D_CNN (Adamax) model classification report.

	 Facies type	 Precision	 Recall	 F1-Score	 Support
	 Anhydrite	 1.00	 0.99	 1.00	 108
	 Calcite	 0.98	 0.92	 0.95	 544
	 Dolomite	 0.88	 0.97	 0.93	 346
			   Accuracy	 0.94	 998

Table 7 - 1D_CNN (Adam) model classification report.

	 Facies type	 Precision	 Recall	 F1-Score	 Support
	 Anhydrite	 0.99	 0.99	 0.99	 108
	 Calcite	 0.98	 0.94	 0.96	 544
	 Dolomite	 0.91	 0.96	 0.94	 346
			   Accuracy	 0.95	 998

Table 8 - 1D_CNN (SGD) model classification report.

	 Facies type	 Precision	 Recall	 F1-Score	 Support
	 Anhydrite	 0.98	 0.97	 0.98	 108
	 Calcite	 0.95	 0.93	 0.94	 544
	 Dolomite	 0.88	 0.91	 0.90	 346
			   Accuracy	 0.93	 998
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Fig. 8 displays the training and validation loss and accuracy curves for each optimiser. These 
curves reveal key differences in convergence behaviour, learning stability, and generalisation 
across the five optimisers. Adam and Adamax demonstrate the smoothest and most stable 
learning trajectories.

Fig. 9 - Comparison of the data confusion matrix for 5 models used in the test [1D-CNN (Adam), 1D-CNN, (Adagrad), 
1D-CNN (Adadelta), 1D-CNN (Adamax), 1D-CNN (SGD)].

Fig. 8 - Loss function curves and facies classification accuracy for training and validation datasets for 1D-CNN (Adagrad), 
1D-CNN (Adadelta), 1D-CNN (Adamax), 1D-CNN (Adam), and 1D-CNN (SGD).
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Fig. 9 presents the confusion matrices for all five optimisers. Adam achieved the highest 
classification performance, with minimal misclassifications across all facies. Adamax followed 
closely, also delivering strong generalisation. Adagrad and SGD showed moderate results, though 
both struggled with correctly classifying dolomite samples. Adadelta exhibited the weakest 
performance, misclassifying a large number of dolomite and anhydrite instances, indicating poor 
generalisation.

Finally, Fig. 10 compares the optimisers’ classification results relative to true facies labels. 
Each plot shows the predicted versus actual class distributions, facilitating a side-by-side visual 
comparison of model effectiveness. Overall, Adam and Adamax emerged as the most effective 
optimisers for facies classification in this study.

Fig. 10 - Facies classification performance comparison across different optimisation algorithms.

5. Discussion

This study presents a detailed evaluation of five optimisation algorithms, Adagrad, Adadelta, 
Adam, Adamax, and SGD within a 1D-CNN framework for lithofacies classification. The analysis 
extends beyond standard classification accuracy, incorporating additional metrics such as 
precision, recall, F1-score, and computational indicators (training time and number of epochs) 
to comprehensively assess each optimiser’s performance. In this section, we synthesis and 
interpret these findings, compare the performance of the different optimisers, and highlight the 
strengths and weaknesses of each approach.

5.1. Convergence behaviour and training efficiency

Although training was permitted for up to 1,000 epochs, early stopping was employed to 
reduce overfitting and computational cost. As shown in Table 2, the optimisers exhibited diverse 
convergence profiles. Adagrad completed training in 355 epochs with a total training time of 
184.93 seconds. Adadelta, the slowest to converge, required 608 epochs and 432.62 seconds. 
In contrast, Adamax and Adam achieved substantially faster convergence, completing training 
in 128 and 155 epochs, with training times of 111.97 and 72.18 seconds, respectively. Adam 
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demonstrated the highest computational efficiency among all optimisers, producing optimal 
results with the shortest training duration. SGD exhibited moderate efficiency, converging in 142 
epochs over 130.65 seconds.

5.2. Underlying optimiser characteristics

Performance differences among the optimisers are primarily attributable to their intrinsic 
characteristics, particularly adaptive learning mechanisms, momentum, batch size, and numerical 
stability. Adam and Adamax, both of which employ momentum and dynamically adjust learning 
rates, converged faster and in a more stable manner than Adagrad and Adadelta, which lack 
such mechanisms. Larger batch sizes (64 for Adam, Adamax, and SGD) further contributed to 
smoother gradient updates and improved convergence. Adam stood out for its superior training 
efficiency and convergence speed, making it well-suited for applications where computational 
resources are limited.

5.3. Classification accuracy and model performance

The classification performance of each optimiser was evaluated through both high-level 
training metrics (Table 3) and facies-specific classification reports (Tables 4 to 8). Adagrad 
achieved a training accuracy of 94% and a validation accuracy of ~92%, with corresponding 
loss values of 0.17 (training), 0.19 (validation), and 0.19 (test). Adadelta performed significantly 
worse, converging slowly with a training accuracy of only 84% and higher loss values (training: 
0.39, validation: 0.41, test: 0.37). In contrast, Adamax delivered strong results with 96% training 
accuracy, 94% validation accuracy, and low loss values (training: 0.08, validation: 0.13, test: 0.18).

Adam achieved the highest overall performance, converging in 155 epochs with a training 
time of only 72.18 seconds. It recorded a training accuracy of 97.4% and validation accuracy 
of 95.7%, with remarkably low loss values (training: 0.04, validation: 0.19, test: 0.19). SGD also 
performed well (training accuracy: 94%, validation: 92%), with balanced loss values comparable 
to those of Adam.

Facies-specific metrics reinforced these trends. The Adagrad-based model (Table 4) achieved 
perfect classification for anhydrite (precision: 1.00, recall: 0.99, F1-score: 1.00) and solid 
performance for calcite and dolomite, resulting in an overall accuracy of 93%. Adadelta (Table 
5), however, underperformed across all classes, especially dolomite (F1-score: 0.81), with the 
lowest overall accuracy of 87%.

Adamax (Table 6) demonstrated near-perfect classification for anhydrite and strong results 
for calcite and dolomite, achieving an overall accuracy of 94%. The Adam-based model (Table 7) 
further improved on this, attaining near-perfect scores across all classes and the highest overall 
accuracy of 95%. SGD (Table 8) maintained consistent but slightly lower performance, with 93% 
overall accuracy.

In summary, the adaptive, momentum-based optimisers, particularly Adam and Adamax, 
offered superior classification accuracy, faster convergence, and greater computational efficiency 
than the other algorithms. Adam emerged as the best-performing optimiser overall.

5.4. Generalisation and limitations

While the results demonstrate that a compact 1D-CNN optimised with Adam or Adamax 
can achieve high accuracy with efficient training, several limitations must be acknowledged. 
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First, the dataset is derived from only two wells in the South Pars field, limiting geological 
diversity. Variability in depositional environments, lithology, and logging tool calibration across 
different reservoirs may reduce the model’s generalisability. A model trained on local lithofacies 
distributions may not transfer effectively to other geological settings with distinct mineralogies 
or petrophysical signatures.

Second, facies labelling relies exclusively on well-log data, without supporting core or 
petrographic validation. This introduces a degree of uncertainty, particularly in intervals where 
log responses are ambiguous or transitional. The absence of physical samples reduces the 
reliability of the ground-truth facies interpretations.

Third, the dataset, although sufficient for initial model training, contains only 3,324 depth-
indexed samples, which may underrepresent rare facies and subtle lithological transitions. As 
a result, classifier performance may be biased toward dominant classes, reducing accuracy on 
underrepresented lithologies.

To address these limitations and enhance the model’s generalisability, future work will 
involve assembling a more diverse training dataset that includes well logs from multiple fields 
encompassing a wider range of geological environments and logging conditions. Integration 
of core-derived facies labels supported by petrographic and geochemical analyses will provide 
a stronger ground-truth foundation for model training. Advanced validation strategies, such 
as k-fold cross-validation and well-level hold-out testing, will be employed to assess model 
transferability. Additionally, synthetic data augmentation techniques such as noise injection or 
the generation of synthetic well logs will be explored to improve class balance and robustness 
against logging artifacts.

Through these enhancements, we aim to validate and extend the utility of the Adamax-driven 
lightweight CNN framework for reliable, efficient facies classification across a broad spectrum of 
geological contexts and operational environments.

6. Conclusions

This study developed a lightweight and efficient deep learning framework for lithofacies 
classification using well-log data from an offshore hydrocarbon field in south-western Iran. By 
designing an optimised 1D-CNN and systematically comparing five optimisation algorithms, 
Adagrad, Adadelta, Adam, Adamax, and SGD, we aimed to enhance classification accuracy, reduce 
computational cost, and identify the most effective training strategy for resource-constrained 
environments.

The results demonstrate that adaptive, momentum-based optimisers particularly Adam 
and Adamax, substantially improve model performance by accelerating convergence, reducing 
overfitting, and effectively capturing complex geological patterns. While Adam achieved 
the highest overall accuracy, Adamax offered the best trade-off between performance and 
computational efficiency, delivering high classification accuracy with the shortest training 
time. This makes Adamax especially suitable for real-time or operational scenarios with limited 
computational resources.

The streamlined 1D-CNN architecture further contributed to robust facies prediction, even 
in the absence of core validation data, by successfully extracting patterns solely from well-
log measurements. These findings highlight the importance of combining efficient model 
architecture with adaptive optimisation strategies, especially Adamax, for scalable and practical 
subsurface facies classification.
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Future research should focus on expanding the dataset to include geologically diverse fields 
and integrating core or seismic data to strengthen model validation. Overall, this study provides 
a solid foundation for broader applications of deep learning in reservoir characterisation and 
hydrocarbon exploration.
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