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1. Introduction

Reservoir characterisation using Artificial Intelligence (AI) and Machine Learning (ML) has 
become a hot topic of research, in the last decade. El-Dabaa et al. (2024) published a paper 
dealing with the use of an unsupervised ML-based multi-attribute analysis for enhancing gas 
channel detection and facies classification in the Serpent field, offshore the Nile Delta, Egypt. 
Goliatt et al. (2023) discussed the performance of evolutionary optimised ML for modelling 
Total Organic Carbon (TOC) in core samples of shale gas fields. The obtained results show that, 
regardless of the metaheuristic used to guide the model selection, optimised extreme learning 
machines attained the best performance scores according to six metrics. Such hybrid models can 
be used in exploratory geological research, particularly for unconventional oil and gas resources. 
Ismail et al. (2021) paper deals with the problem of gas channel and chimney prediction using 
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artificial neural networks (ANNs) and multi-seismic attributes and its application to the offshore 
West Nile Delta, located in Egypt. Longman et al. (2024) paper discusses the exploratory 
analysis of ML methods for TOC prediction using well-log data of the Kolmani field. Saporetti 
et al. (2022) published a paper that shows different hybrid ML models for estimating TOC from 
mineral constituents in core samples of shale gas fields. The results obtained proved that ML 
methods, assisted by the evolutionary algorithm, could accurately estimate TOC and be used to 
carry out further exploratory geological analyses, especially those related to the prospects of 
unconventional oil-gas resources.

The Multilayer Perceptron (MLP) ANN model has been widely used in the last decades as 
predictor in the full spectrum of sciences (Awadallah, 2023). Fierro et al. (2022) showed an 
application of a single MLP model to predict the solubility of carbon dioxide in different ionic liquids 
for gas removal processes. Fujita et al. (2019) used the MLP model to create a prediction model 
for dressing independence in a small sample at a single facility suggesting that higher accuracy 
could be expected with a MLP rather than with logistic regression and decision-tree strategy 
when creating a prediction model for the independence of daily-life activities in a small sample of 
stroke patients. In geophysics and geology, the MLP is used to estimate electrical resistivity. For 
this purpose, a case study from the Lublin basin, located in SE of Poland, is shown (Ważny et al., 
2021). The authors of this paper used five separate MLP models that were trained on subsequent 
chronostratigraphic intervals. Waszkiewicz et al. (2019) estimated the absolute permeability 
using a MLP ANN based on well logs and laboratory data from Silurian and Ordovician deposits 
in SE of Poland; the obtained results show the legitimacy of using ANNs in the issue of estimating 
permeability. However, they also show limitations resulting from the lack of accurate data or 
influence of geological setting and processes. Ouadfeul and Aliouane (2012) demonstrated that 
the MLP neural network is not suitable to predict lithofacies in case of small numbers of input-
output couples, i.e. the case of core rock data, since they are expensive. To resolve this drawback, 
the authors of the paper suggested a combination between the Kohonen self-organising map and 
the MLP. 

In this paper, the capability of the MLP ANN to predict missing or expensive well-log data, such 
as the TOC and the Elemental Capture Spectroscopy (ECS) data, is tested in boreholes drilled in 
the Barnett Shale and Bakken oil fields. The following three learning algorithms were used: the 
Hidden Weight Optimisation (HWO), Conjugate Gradient (CG), and Levenberg-Marquardt (LM). 
This paper is organised as follows: an initial description of the theory and methods, a discussion 
of the results obtained, and, ultimately, the conclusions.

2. Materials and methods

This section is organised as follows: to start, a definition of the TOC and the Schmoker method 
that uses the density well log to estimate TOC and, then, a description of the principal of the 
ECS well-logging tool that measures the mineralogy content of different geological formations 
crossed by a borehole. Next, the problem of TOC prediction using the MLP ANN with different 
learning algorithms, in Bakken oil and Barnett Shale field data, is discussed. Following, a debate 
of the problem of ECS data prediction using the MLP ANN in the Bakken Oil field. Numap, CG 
and LM-MLP software, developed by Neural Decision Research Laboratory, are used for the 
implementation of MLP machines [for more details on the software see https://www.neuraldl.
com/Software.php; for more information on the HWO, CG, and LM training algorithms see Yu 
and Manry (2002), Azami et al. (2013), and Aliouane et al. (2014)].
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2.1. MLP

The neurons of a MLP can be seen as a multitude of perceptrons connected to each other. 
The topological particularity of this network is that all the neurons of a layer are connected to 
all the neurons of the next layer. Each neuron, therefore, has N inputs, where N is the number 
of neurons present in the previous layer, and an output that is sent to all the neurons of the 
next layer. Each neuronal connection is associated with a weight, W, as for the inputs of the 
perceptron. The calculation of a neuron output is made according to the activation function 
chosen. Many activation functions are proposed in literature, among which the Sigmoid is one 
of the most popular; for more details about the MLP and activation functions see Gardner and 
Dorling (1998)]:

(1)

A major advantage of the MLP is its singular nature and its flexibility to adjust to different 
binary problems. However, the best performance can be obtained when MLPs are used for 
classification and prediction with a supervised learning mechanism. The most suitable form of 
data for MLPs is simply a tabular data set with labels assigned to input signals. Throughout the 
development of ML techniques, MLPs found their place as a basic neural model at the preliminary 
recognition stage of analysis but also as a versatile predictive tool (Ważny et al., 2021)

2.2. TOC prediction using a MLP ANN

TOC, with no unit to quantify it, is the amount of organic carbon in a source rock. A high 
TOC (> 5%) is very important to identify good shale plays and sweet spots. Three methods are 
used for TOC measurement and estimation. The first method is based on direct measurement in 
laboratory; the second method is based on direct measurement using a well-logging tool, and 
the last method is based on empirical measurement. In the case of this study, two methods are 
used: the Passey (Passey et al., 2010) and the Schmoker methods. The Schmoker method was 
developed in Devonian shales using bulk density logs (Schmoker, 1979, 1980) and was later refined 
in Bakken shales (Schmoker, 1983). Based on the response of the bulk density measurement 
to low-density organic matter (~1.0 g/cm3), the Schmoker method, as it is commonly called, 
computes TOC as follows (Schmoker, 1980):

(2)

where ρb is the bulk density in g/cm3 and TOC is reported in wt%. This equation assumes a 
constant mineral composition and porosity throughout the formation. Although the method was 
developed and refined based on specific environments, it is frequently used for TOC estimation 
in a wide variety of shale formations (Ouadfeul and Aliouane, 2015a, 2015b).

2.2.1. Application to the Barnett Shale and Bakken oil fields

In this section, the TOC well log is predicted in three horizontal wells, i.e. 1H, 2H, and 3H, using 
a MLP ANN. These wells are drilled in the Lower Barnett Shale gas reservoir, which is located in 
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the USA. The two horizontal wells, 1H and 3H, are used for the learning and validation phases 
whereas the horizontal well, 2H, is used for generalisation. Fig. 1 shows the location map of the 
Barnett Shale and Fig. 2 shows the top of the Upper and Lower Barnett Shale and the trajectory 
of the three horizontal wells. To predict TOC, a MLP machine composed of one hidden layer is 
implemented. Of utmost importance is the fact that one hidden layer is enough to resolve such 
problem (Ouadfeul and Aliouane, 2015b). The MLP machine is composed of three neurons in the 
input layer and one neuron in the output layer. The number of neurons in the input layer is equal 
to the number of well logs that are used as input. The well-log data are: P-wave slowness, S-wave 
slowness, and natural gamma ray. The number of neurons in the output layer is equal to the 
number of the predicted well logs using the implemented MLP machine. In this case, only one 
log is predicted. The number of neurons in the hidden layer is determined after many numerical 
experiences. For each experience, the root-mean-square- error (RMSE) is calculated and the 
number of neurons in the hidden layer providing the lowest root mean square (RMS) is chosen. 
Fig. 3 shows the graphs of the well-log data that are used as input of the MLP machine. Track 
number 2 of Fig. 4 shows the Schmoker TOC log for horizontal wells 1H and 3H, respectively. This 
log is used as a desired output for the learning and validation phases. As a general rule, before 
the application of AI, a quality control of the different data must be performed and to do this 
the histogram of each log is calculated with the goal of checking data distribution and removing 
abnormal values and depth intervals containing gaps. Table 1 shows the minimum and maximum 
values of different well-log data for horizontal wells 1H, 2H, and 3H, respectively. 

The result analysis demonstrates that data are ready for the application of AI. The hidden 
layer is composed of 50 neurons; this number is obtained after 645 numerical experiences. The 
RMSE between the desired and calculated outputs using a MLP machine with 50 neurons in 
the hidden layer is equal to 0.05, being this RMS value lower compared to the RMS value of 
other machines with different neuron numbers in the hidden layer. The implemented machine 
is trained in a supervised mode using the HWO learning algorithm and, at this stage, 60% of the 

Fig. 1 - Location map of the Barnett Shale (Universal 
Royalty Company, 2013).
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input-output couples is used for the training phase and 40% is used for the validation phase. 
Data of horizontal well 2H are used for the generalisation phase. Fig. 5 shows the slowness log 
of P and S waves, and the natural gamma ray, recorded in this well. These data are propagated 
through the implemented MLP machine with the connection weights optimised during the 
learning phase. Fig. 6 shows the following logs for well 2H: the Schmoker TOC, the predicted TOC 
using the implemented MLP machine, and their difference.

Fig. 2 - The top and bottom of the Lower Barnett Shale gas reservoir and the trajectory of horizontal wells 1H (red), 
2H (magenta), and 3H (green).

The second phase consists in checking the capability of the MLP to predict TOC in vertical 
wells that cross the Bakken oil source rock. Fig. 7 shows the location map of the Bakken formation 
and Fig. 8 shows the seismic surfaces of the top and bottom of this source rock along with 
the trajectory of four vertical wells named OLSON 13-26, ORTLOFF 13-28, THOMPSON 1-4, and 
WALLEN 1. Fig. 9 shows the recorded raw well-log data in the four boreholes, which are: deep 
and shallow resistivity, P-wave slowness, and neutron porosity. As done before, the minimum and 
maximum values of these data and Schmoker TOC derived from the density log are calculated. 
Table 2 shows the global values for the four wells cited above. The analysis of these values shows 
that the deep resistivity logs contain high values, which are due to the presence of spikes. To 
overcome this phenomenon, a despiking operation, is performed prior to the application of AI. 
The data of the two boreholes, OLSON 13-20 and ORTLOFF 13-28, are used for the training and 
validation phases, while the data of boreholes THOMPSON 1-4 and WALLEN 1 are used for the 
generalisation phase. A MLP ANN machine with one hidden layer is trained in a supervised mode 
and the CG learning algorithm is used; the number of neurons in the hidden layer is equal to 40. 
The data of the two boreholes are divided into two parts: 60% are used for the training phase and 
40% are used for the validation phase. Fig. 10 shows the following logs of boreholes OLSON 13-
20 and ORTLOFF 13-28: Schmoker TOC, TOC predicted during the learning and validation phases 
using the implemented MLP machine, and the difference between these two logs. Fig. 11 shows 
the same logs for boreholes THOMPSON 1-4 and WALLEN 1, but the predicted TOC is obtained 
in the generalisation phase of the implemented machine. During the generalisation phase the 
raw well-log data, recorded in these boreholes (shown in Fig. 9), are propagated through the 
implemented MLP machine, using the weights of connections optimised during the learning and 
validation phases.
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Fig. 3 - Raw well-log data used as input of the implemented MLP machine; track 1: measured depth, track 2: P-wave 
slowness, track 3: S-wave slowness, and track 4: natural gamma ray.

Table 1 - Maximum and minimum values of the well-log natural gamma ray, P-wave slowness, S-wave slowness, and 
Schmoker TOC derived from the density log; for horizontal wells 1H, 2H, and 3H.

 Well Log Min Max
 1H Gr 40 280
 1H DTCO 48 74
 1H DTSM 94 126
 1H Schmoker TOC -1.5 8.5
 2H Gr 15 120
 2H DTCO 47.22 63.33
 2H DTSM 90.91 108.42
 2H Schmoker TOC -0.5 8.1
 3H Gr 36.51 285.35
 3H DTCO 45.97 74.76
 3H DTSM 90.27 125.03
 3H Schmoker TOC -1.0 17.62
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Fig. 4 - Graphs of Schmoker TOC, predicted TOC using the HWO training algorithm, and their difference in horizontal 
wells 1H and 3H; track 1: measured depth, track 2: Schmoker TOC used as a desired output to train the MLP machine, 
track 3: obtained TOC using MLP with HWO training algorithm, and track 4: the difference.

Fig. 5 - Well-log data of horizontal well 2H. These data are used as input of the 
implemented MLP machine for the generalisation phase; track 1: measured 
depth, track 2: P-wave slowness, track 3: S-wave slowness, and track 4: natural 
gamma ray.
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Fig. 6 - TOC logs and their difference in horizontal well 2H; track 1: measured depth, 
track 2: Schmoker TOC, track 3: predicted TOC using the implemented MLP machine 
with HWO training algorithm, and track 4: the difference.

Fig. 7 - Location map of the Bakken formation (Vatter et 
al., 2022).

Fig. 8 - Top of Upper Bakken, Lower Bakken and Three Forks, and the trajectory of the following vertical wells: OLSON 
13-26 (red), ORTLOFF 13-28 (yellow), THOMPSON 1-4 (magenta), and WALLEN 1 (blue).
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Table 2 - Global minimum and maximum values of the log resistivity of the shallow and deep zones, P-wave slowness, 
neutron porosity, and Schmoker TOC derived from the density log, for the four boreholes, OSLON 13-26, ORTLOFF 
13-28, THOMPSON-1, and WALLEN 1.

 Log Min Max
 LLS 0.20 2148.90
 LLD 0.19 91593
 DT 1.29 176.80
 NPHI -2.78 60.48
 Schmoker TOC -0.1 10.9

Fig. 9 - Raw well-log data 
recorded in boreholes 
OSLON 13-26, ORTLOFF 
13-28, THOMPSON-1, 
and WALLEN 1; track 1: 
measured depth, track 2: 
deep resistivity, track 3: 
shallow resistivity, track 
4: P-wave slowness, 
and track 5: neutron 
porosity.
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Fig. 11 - TOC logs and their difference in horizontal wells THOMPSON 1-4 and WALLEN 1, the predicted TOC log is 
obtained in the generalisation phase; track 1: measured depth, track 2: Schmoker TOC, track 3: obtained TOC using 
MLP with CG training algorithm, and track 4: the difference.

Fig. 10 - TOC logs and their difference in boreholes OLSON 13-20 and ORTLOFF 13-28, the predicted TOC log is obtained 
in the learning and validation phases; track 1: measured depth, track 2: Schmoker TOC, track 3: obtained TOC using 
MLP with CG training algorithm, and track 4: the difference.
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2.3. ECS data prediction using a MLP ANN

2.3.1. The ECS sonde

The ECS sonde, which is a small and easy-to-use logging tool, measures and processes gamma 
ray spectra, or the number of gamma rays, received by the detector at specific energy levels. These 
measurements allow for a more accurate definition of the clay content, mineralogy, and matrix 
properties of each potential zone. Using the neutron-induced capture gamma ray spectroscopy 
principle, the ECS sonde determines relative elemental yields by measuring the gamma rays 
produced when neutrons bombard the formation and lose energy as they are scattered, primarily 
by hydrogen [for more details about the ECS sonde see Schlumberger (2006)].

2.3.2 Application to the Bakken oil field

In this section, the capability of the MLP ANN to predict ECS data in vertical wells drilled in the 
Bakken oil field is tested and data of two boreholes, NS41X-36H and NS42X-36H, are used. The 
goal is to avoid direct measurement with the ECS tool inside the boreholes as it is very expensive. 
The results of Elemental Analysis (ELAN), using the raw well logs, are used as input, while the 
measured ECS tool data are used as output. Fig. 12 shows the ELAN data for wells NS41X-36H 
and NS42X-36H. The ELAN data correspond to: 1) water volume in the invaded zone, 2) water 
volume in the deep zone, 3) quartz volume, 4) irreducible water saturation, 5) illite volume, and 
6) clay volume.

Fig. 13 shows the ECS data of borehole NS41X-36H. These data are used as a desired output of 
the implemented MLP machine, in the training and validation phases. The figure also shows the 
ECS data of borehole NS42X-36H, which are used for the generalisation phase of the implemented 
MLP machine. The measured ECS data inside these two boreholes are: 1) permeability, 2) 

Fig. 12 - ELAN data for wells NS41X-36H and NS42X-36H used as input to train and test the MLP machine; track 1: 
measured depth, track 2: water volume in the invaded zone, track 3: water volume in the deep zone, track 4: quartz 
volume, track 5: irreducible water, track 6: illite volume, and track 7: clay volume.
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Fig. 13 - ECS data that will be used to implement the MLP machine of wells NS41X-30H (training and validation phases) 
and NS42X-36H (generalisation phase); track 1: measured depth, track 2: permeability, track 3: effective porosity, track 
4: bulk density, and track 5: saturation of irreducible water.

Fig. 14 - Predicted ECS data using the implemented MLP with the LM training algorithm for wells NS41X-36H (training 
and validation phases) and NS42X-36H (generalisation phase); track 1: depth, track 2: effective porosity, track 3: bulk 
density, and track 4: saturation of irreducible water.
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Table 3 - Minimum and maximum ELAN and ECS merged well-log data values for boreholes NS41X-36H and NS42X-36H.

 Log Min Max
 VXWA 0. 0.11
 VXBW 0. 0.06
 VQUA 0. 0.98
 VPYR 0. 0.14
 VILL 0. 0.54
 VCLC 0. 0.95
 KINT 0.01 474.96
 PIGN 0.0001 0.23
 RHGA 2.31 2.84
 SXWI 0. 1.

effective porosity, 3) bulk density, and 4) saturation of irreducible water. To check data quality, 
before AI application, maximum and minimum ELAN and ECS merged well-log data values are 
calculated (see Table 3 for obtained values). The result analysis demonstrates that these data 
are suitable for AI application. The LM learning algorithm is used to train the implemented MLP 
machine, composed of three layers. The input layer is composed of 6 neurons, the hidden layer 
is composed of 200 neurons (obtained after 700 numerical experiences), and the output layer is 
composed of 4 neurons. During the learning and validation phases, the ELAN-ECS couple data of 
borehole NS41X-36H were used to optimise the weights of the connections between neurons. 
To evaluate the learning and validation phases of the implemented machine, the ELAN data of 
borehole NS41X-36H are propagated through the implemented machine, using the optimised 
weights of the connections; Fig. 14 shows the output of the implemented machine. To evaluate 
the generalisation phase, the ELAN data of borehole NS42X-36H are propagated through the 
machine; Fig. 14 also shows the predicted ECS of the generalisation phase.

3. Results and discussion

The RMSE, derived from the Delta_TOC log (shown in Fig. 4), is the summation of the square 
of the Delta_TOC for all the full depths, devided by the number of samples containing the full 
depth. The Correlation Coefficient (CC) between two logs (Log1 and Log2) is the slope of the 
linear regression of the set of points obtained by cross-plotting Log2 versus Log1.

The RMSE between the predicted TOC log, using the implemented MLP machine and the 
calculated TOC logs using the Schmoker model for horizontal wells 1H and 3H (presented in 
Fig. 4), is equal to 0.05 and the CC is equal to 97%. These good results reflect good learning of 
the implemented MLP machine. Using the same procedures, the CC and RMSE between the 
predicted and calculated TOC are calculated for horizontal well 2H (generalisation phase). The CC 
is equal to 88% and the RMSE is equal to 0.43. These values reflect the ability of the implemented 
MLP machine to predict the TOC log.

The CC between the calculated and predicted TOC for boreholes OLSON 13-20 and ORTLOFF 
13-28, and the RMSE (presented in Fig. 10), obtained during the learning and validation phases, 
are equal to 90% and 0.20, respectively. These results confirm good learning of the implemented 
MLP machine during these two phases.
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However, the CC between the predicted and Shmoker TOC logs for boreholes THOMPSON 
1-4 and WALLEN 1 (presented in Fig. 11), obtained in the generalisation phase, drops to 82.5%. 
The RMSE is equal to 0.9. This quality drop in the results is caused by lateral heterogeneity of the 
Bakken oil source rock.

During the learning and validation phases, the CC between the measured and predicted ECS 
logs for borehole NS41X-30H (presented in Fig. 14) is equal to 90% and the RMSE is equal to 
0.36. These two values reflect good learning of this machine. The CC between the measured 
and predicted ECS logs of borehole NS42X-36H (shown in Fig. 14) drops to 70% during the 
generalisation phase, and the RMSE increases to 1.4. The increase of the RMSE and the drop 
of the CC are mainly caused by the high heterogeneity of the petrophysical properties of the 
Bakken oil field.

It is important to highlight that these results do not represent a general rule and cannot 
always be used to resolve the problem of TOC and ECS data prediction from raw and ELAN well-
log data, recorded in shale gas and shale oil reservoirs. The obtained results only represent a 
case study from the Barnett Shale and Bakken oil fields. This paper presents an important piece 
of research for the scientific community, since it shows the contribution of AI, such as a MLP 
ANN, to predict TOC in two huge unconventional hydrocarbon fields such as the Barnett Shale 
and Bakken Oil. To our best knowledge, this is the first paper, dealing with the topic of ECS data 
prediction from ELAN data.

4. Conclusions

In this study, we have developed and validated an AI framework based on MLP ANNs to 
predict critical geochemical parameters, namely, TOC and ECS data, using conventional well-
log measurements as input. The methodology was applied to two representative shale plays 
in North America: the Barnett and Bakken formations. These formations, known for their 
heterogeneity and complex depositional environments, present significant challenges for 
traditional petrophysical modelling approaches.

By training the models on horizontal and vertical wells and validating them against independent 
wells, we have shown that the proposed approach exhibits strong learning capabilities, with high 
correlation coefficients and low prediction errors across different well trajectories. However, 
during the generalisation phase, the quality of these metrics drops compared to the learning 
phase. This can be justified by the geological complexity, diagenesis, and high lateral variation of 
the Lower Barnett and Bakken oil formations.

Moreover, the use of ECS data, which are typically acquired through expensive and specialised 
tools, can be effectively substituted through this ML approach, thereby, significantly reducing 
exploration and production costs without compromising interpretative quality. The metrics that 
are used for the evaluation of MLP machines for TOC prediction are also used for the assessment 
of the implemented MLP machine for ECS estimation. These metrics exhibit the same behaviour 
as those of the first MLP machine. These results demonstrate that the quality of the output 
depends on the choice of learning algorithms, data volume or number of wells that are used 
during the learning and validation phases, distribution of wells and the distances between them.

The broader implication of this work lies in its potential to revolutionise how unconventional 
reservoirs are evaluated and developed. The integration of ML into geophysical workflows 
provides a pathway towards real-time, data-driven decision-making in reservoir characterisation. 
Furthermore, the methodology is scalable and adaptable to other basins and target properties; 
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this research contributes not only to the advancement of shale reservoir evaluation but also 
to the growing field of digital geoscience, where AI serves as a catalyst for innovation and 
operational efficiency.

Future work may explore the integration of additional data types such as seismic attributes, 
image logs, or core-derived mineralogy to further enhance predictive performance. Likewise, 
using big data and incorporating uncertainty quantification frameworks within the ANN 
architecture could offer more reliable risk assessments during the decision-making process in 
hydrocarbon exploration and production.
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